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Abstract— In this paper, we present a joint source-channel
coding method which employs quantized overcomplete frame
expansions that are binary transmitted through noisy channels.
The frame expansions can be interpreted as real-valued block
codes that are directly applied to waveform signals prior to
quantization. At the decoder, first the index-based redundancy
is used by a soft-input soft-output source decoder to determine
the a posteriori probabilities for all possible symbols. Given these
symbol probabilities, we then determine least-squares estimates
for the reconstructed symbols. The performance of the proposed
approach is evaluated for code constructions based on the DFT
and is compared to other decoding approaches as well as to
classical BCH block codes. The results show that the new
technique is superior for a wide range of channel conditions,
especially when strict delay constraints for the transmission
system are given.

I. INTRODUCTION

A well-known approach for the efficient transmission of
source signals over noisy channels is to first compress the
signals as best as possible and then to add explicit redundancy
for error protection at the binary level. This is in accordance
with Shannon’s source-channel separation principle, which
states that such systems are asymptotically optimal. However,
in recent years it has been shown that especially for delay- and
complexity-constrained systems a better performance can be
achieved with combined source-channel coding or decoding
techniques (see e.g. [1], [2]). Some of these approaches keep
the classical structure and carry out a joint allocation of
source and channel coding rates [3–5], while others do not
use binary channel codes at all and design the source encoder
such that the residual index-based redundancy in the resulting
bitstream alone is sufficient to provide reasonable error pro-
tection [1], [6], [7]. The first class provides excellent results
for moderately distorted channels, however, especially for low
channel signal-to-noise ratios (SNRs) their performance highly
depends on the properties of the used channel codes. The
methods in the second class often have less encoding delay
and complexity, and for very low channel SNRs they often
yield similar or better performance than the combination of

strong source and channel encoding.
Recently, overcomplete signal expansions, where the re-

dundancy for error protection is inserted prior to the quan-
tization stage of the source encoder, have been suggested
as an alternative to classical forward error protection (FEC)
approaches [8–14]. In this paper, we follow the idea of [10],
[14] and insert explicit redundancy by applying structured
overcomplete signal expansions to nonoverlapping blocks of
input samples, resulting in real-valued block channel codes.
In our previous work [14], we studied code designs based
on different orthogonal transforms, and the discrete Fourier
transform (DFT) lead to the best results. Therefore, we solely
consider DFT-based codes in this paper. The first decoding
stage of the new approach is similar to the one in [14] in
that it computes a posteriori probabilities (APPs) for the
different possible symbols. For this, an index-based version
of the BCJR algorithm [15] is employed, which exploits the
unequal symbol transition probabilities that are present due
to the overcomplete signal representation. Other than in [14],
where we used a maximum a posteriori (MAP) decoding, we
now determine mean-squares (MS) symbol estimates together
with reliability information in terms of symbol error variances.
This soft information is then exploited in a second decoding
stage to obtain MS estimates for the final output symbols.
The performance of the proposed joint source-channel coding
and decoding approach is studied for signal transmission over
AWGN channels.

II. TRANSMISSION SYSTEM

The block diagram of the overall transmission system is
depicted in Fig. 1. The real-valued symbols Uk ∈ IR repre-
sent samples of a source signal, where we assume that the
source correlation, if present, can be described as a first-
order autoregressive process (AR(1)), which represents a good
correlation model for many waveform source signals. First,
the symbols Uk are grouped into nonoverlapping blocks of
K symbols, and then for each block an overcomplete frame
expansion with the frame operator G of dimension N × K
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Fig. 1. Model of the transmission system.

with N > K is carried out. Similar to [8], [10], [14], the
obtained symbols are quantized with M -bit quantizers and
transmitted. The redundancy introduced prior to quantization
has two effects. First, it gives us some information on the
original symbols Uk which can be utilized in the decoder to
reduce the quantization effects irrespective of any transmission
errors. Second, in analogy with the theory of real-valued BCH-
codes [16], the matrix G can be interpreted as a generator
matrix of the underlying channel code with a code rate of
R = K/N .

In accordance with [10], [11], [14], the matrix G is defined
as

G =

√
N

K
TH

N QTK , (1)

where TN and TK denote the N × N and K × K DFT
matrices, respectively. The matrix Q ∈ IRN×K has nonzero
elements only on two diagonals and serves to introduce
redundancy into the data sequences. It is designed under
consideration of the symmetries of the DFT and yields a final
matrix G that is real-valued. For the exact definition we refer
to [10], [11], [14]. For the present work, it is only important
that G is an N × K matrix satisfying GHG = I. Moreover,
it is obvious that there must exist an L × N matrix T with
rank L = N − K for which TG = 0L×K where 0L×K is a
zero matrix of size L × K. This matrix T can be interpreted
as a parity check matrix.

The vector Y is scalar quantized with M -bit uni-
form quantizers, where we obtain the index vector I =
[I1, I2, . . . , Ik, . . . ] with Ik ∈ I, I = {0, 1, . . . , 2M−1}.
I may also be interpreted as a binary sequence Ibin =
[i1,1, i1,2, . . . , ik,�, . . . ] with ik,� ∈ {0, 1} denoting the �-th bit
of the index Ik. Applying the overcomplete expansion G to
a data vector U leads to additional dependencies within each
N -symbol block of the sequence Y . Since we only employ
scalar quantization in our work, these dependencies are also
present in the index sequence I . For the sake of simplicity
we assume only mutual index correlations and neglect the fact
that the expansion G does not introduce dependencies between
symbols being separated by a block boundary. By following
this assumption, the index correlations can be modeled as
a first-order stationary Gauss-Markov process with transition
probabilities P (Ik = λ | Ik−1 = µ) with µ, λ ∈ I. Fig. 2
displays a contour plot of the joint probability P (Ik−1, Ik) for
M = 5 bits, K = 16, N = 32, and an independent identically
distributed (iid) Gaussian-distributed input sequence U . We
observe that even for uncorrelated input symbols the frame
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Fig. 2. Contour plot of the joint probability P (Ik−1, Ik) for M = 5 bits, a
frame expansion G of dimension N ×K with N = 32, K = 16, and an iid
Gaussian-distributed input sequence U having a length of 160000 symbols

expansion G leads to significant index correlations which can
be exploited for error protection at the decoder. Of course, for
a correlated sequence U these dependencies are even stronger.

The sequence I is transmitted over an AWGN channel with
noise variance σ2

n = N0
2Es

, where coherently detected binary-
phase shift keying is assumed for the modulation. N0 denotes
the one-sided power spectral density and Es is the transmit
energy per codebit. Then the conditional probability density
function (pdf) of a received soft-bit îk,� ∈ IR is Gaussian and
can be written as

p(̂ik,� | ik,�) =
1√

2πσn

· exp
(
− 1

2σ2
n

(̂ik,� − īk,�)2
)

(2)

with īk,� = 1−2 · ik,�. All soft-bits for a certain time instant k
can be arranged in a softbit vector Îk = [̂ik,1, îk,2, . . . , îk,M ].

III. DECODER STRUCTURE

At the decoder, first a soft-input soft-output (SISO)
source decoder is applied to the received sequence Î =
[Î1, Î2, . . . , ÎQ], where Q ≥ N denotes the overall length
of the source block. The SISO decoder outputs reliability
information for the source hypotheses Ik = λ, λ ∈ I, in form
of a posteriori probabilities (APPs) P (Ik = λ | Î ). Analog
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to the classical BCJR algorithm [15] which calculates bit-
based APPs, the index-based APPs P (Ik = λ | Î ) can be
decomposed as

P (Ik = λ | Î ) =
1

p(I )
p(Ik = λ, Î k

1 ) p(ÎQ
k+1 | Ik =λ). (3)

The quantity Î k2
k1

denotes a sub-vector of Î from time instant
k1 to k2, where Î k2

k1
= [Îk1 , Îk1+1, . . . , Îk2 ]. By using the

Bayes theorem, (3) can be expressed in a more convenient way
where the pdfs are written as index-based APPs according to

P (Ik =λ | Î ) =
1

P (Ik =λ)
P (Ik =λ | Î k

1 )P (Ik =λ | ÎQ
k+1).

(4)
By repeated application of the Bayes theorem it can be shown
that the forward APPs P (Ik = λ | Î k

1 ) in (4) can now be
calculated via a modified forward recursion (compared to the
original BCJR) as

P (Ik =λ | Î k
1 ) = C

2M−1∑
µ=0

P (Ik =λ | Ik−1 =µ)︸ ︷︷ ︸
trans. prob., Markov source

× p(Îk | Ik =λ)︸ ︷︷ ︸
channel term

P (Ik−1 =µ | Î k−1
1 ), (5)

where C represents a normalization constant. The channel
term in (5) can be rewritten as

p(Îk | Ik = λ) =
M∏

�=1

p(̂i�,k | i�,k =λ�)

where the product notation is due to the memoryless character
of the AWGN channel. The quantity λ� denotes the �-th bit
of the hypothesis λ. Hence, in order to calculate the forward
APP for the next time instant k, a priori information in
form of the transition probabilities of the first-order Markov
source and the observation Îk at the channel output is utilized.
Likewise, a modified expression for calculating the backward
APPs P (Ik = λ | ÎQ

k+1) in (4) can be derived as

P (Ik=λ | ÎQ
k+1)= C ′P (Ik =λ)

2M−1∑
µ=0

P (Ik+1=µ | Ik=λ)
P (Ik+1 =µ)

× p(Îk+1 | Ik+1 =µ)P (Ik+2 =µ | ÎQ
k+2). (6)

The initialization of the recursions in (5) and (6) is carried
out with the source index probabilities P (Ik = λ). In order to
realize a robust transmission scheme with low latency we may
consider only the forward APPs in (4), which can be generated
instantaneously for every k. In this case the overall system
latency amounts to only K − 1 source samples and is solely
determined by the size of the real-valued block transform G.

At the output of the SISO source decoder a mean-squares
(MS) estimation is performed according to

Ŷk =
2M−1∑
λ=0

yλ P (Ik =λ | Î ), (7)

where yλ denotes the quantizer reconstruction level corre-
sponding to the index λ. Note that the MS estimation in
(7) minimizes the conditional expected distortion E{(Yk −
Ŷk)2 | Î }. Concatenating all Ŷk for the whole source block
leads to the sequence Ŷ in Fig. 1.

For the final decoding stage, and in order to obtain a low-
complexity linear reconstruction method, we now approximate
the densities of the errors associated with the symbols Ŷk

by Gaussian distributions. With ê denoting the estimation
error (noise) on the vector ŷN , which contains a block of
N elements taken from Ŷ , we set

p(ê |P) =
(
(2π)N

N∏
i=1

σ2
êi

)− 1
2

exp
(
−1

2
êT Λ−1ê

)
(8)

where Λ = diag[σ2
ê1

, σ2
ê2

, . . . , σ2
êN

] with σ2
êi

= E{ê2
i }. P ∈

[0, 1]2
M×N represents a matrix containing the APPs for a

length N block of the source data corresponding to the vector
ŷN . The variances σ2

êi
can now be estimated from the APPs

at the output of the SISO source decoder by considering all
possible error vectors for a given (deterministic) ŷN , which
for stationary source sequences can element-wise be described
as êi(λ) = yλ − Ŷi for all λ ∈ I. Thus, in combination with
the fact that P (Ii = λ | Î ) = P (yλ | Î ) = P (êi(λ) | Î ) the
variances σ2

êi
can be approximately computed as

σ2
êi

≈
2M−1∑
λ=0

(yλ − Ŷi)2 P (Ii = λ | Î ). (9)

Here, it is assumed that the APPs describe (unnormalized)
samples of the true pdf of the random variables êi. Note that
the variance approximation in (9) only considers the estimation
error due to the transmission noise, whereas ê also includes
the quantization error. The final symbol vector û can now be
obtained as

û = [GHΛ−1G]−1GHΛ−1ŷN . (10)

In [14] a syndrome decoding method was developed for
a similar task, which explicitly used the parity check matrix
T. The entries of the correlation matrix Λ were calculated
using a polynomial approximation, based only on the APPs
for the MAP decoded symbols and the channel SNR, but their
role was similar to the one in the present paper. In contrast,
in the above approach all available reliability information for
a source index Ii are exploited. The final expression for the
decoded symbols was

û = [GHG]−1GH [I − ΛTH [TΛTH ]−1T]ŷN (11)

where I denotes the identity matrix. By exploiting the fact
that TG = 0L×K and that Λ is Hermitian symmetric, one
can show that for a given Λ both methods are equivalent (see
Appendix). For L < K, the matrix [TΛTH ] to be inverted is
smaller than [GHΛ−1G], and for L > K, [TΛTH ] is bigger
than [GHΛ−1G].

Note that both the proposed approach and the method
presented in [14] lead to identical system latencies, if both the
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Fig. 3. Reconstruction SNR for an uncorrelated input process for a
block length of 48000 5-bit symbols averaged over 50 simulated AWGN
transmissions

same SISO source decoder and frame expansion G are used.
Furthermore, for a diagonal Λ the estimation complexities for
(10) and (11), resp., are comparable.

IV. SIMULATION RESULTS

Simulations were carried out for an AR(1) input pro-
cess U with correlation coefficient a and a block length
of 48000 source symbols. The results were averaged over
50 simulated AWGN transmissions. The parameters for the
frame expansion are K = 16 and N = 32, and the scalar
uniform quantization has a resolution of M = 5 bit. The
performance is compared to an FEC scheme employing a
binary (N ′,K ′)2 BCH code, which is hard-decoded using the
Berlekamp-Massey [17] algorithm and whose parameters are
chosen such that approximately the same system latency is
achieved as for the proposed approach with the BCJR forward
recursion. Furthermore, we compare the proposed decoding
method to the (one-dimensional) syndrome decoding approach
from [10], where the decoding operation is performed on the
hard-decoded AWGN channel outputs.

Figs. 3 and 4 show the reconstruction SNR
10 log10(

∑
k U2

k/
∑

k(Uk − Ûk)2) at the decoder output
over the channel parameter Eb/N0 with Eb = Es/R. The
overall code rate R is given by R = K/N and R = K ′/N ′,
respectively.

The results in Fig. 3 for an uncorrelated input process (a=0)
show a strong SNR gain compared to the method from [10].
Clearly, the full BCJR-based source decoder performs best
at the expense of a larger system delay. The new decoding
method also outperforms the one from [14] by up to 2 dB
in reconstruction SNR in the waterfall region. This is due
to the fact that both a MS estimation is employed and all
available reliability information is exploited in the estimation
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Fig. 4. Reconstruction SNR for a strongly correlated AR(1) input process
with a = 0.9 for a block length of 48000 5-bit symbols averaged over 50
simulated AWGN transmissions

of the correlation matrix Λ, whereas in [14] only the APPs
corresponding to the MAP solutions are used. Furthermore, it
can be observed that for strongly distorted channels and the
clear channel case the proposed transmission technique gives
a better performance compared to the FEC-based system with
the binary (127, 64)2 BCH code as well.

Fig. 4 depicts the results for a strongly correlated AR(1)
input process with a=0.9. Compared to Fig. 3, here the SNR
gain by using additional SISO source decoding is higher due
to the source symbol correlation already inherent in the input
sequence U .

V. CONCLUSIONS

We have presented a joint source-channel coding approach
where explicit redundancy is inserted prior to quantization by
an overcomplete expansion, leading to a real-valued block
channel code. The decoding is carried out in two stages:
First, the redundancy being present in the transmitted source
indices is exploited by SISO source decoding, where the
reconstructed code symbols are obtained via a MS estimation.
In the second decoding step a Gaussian approximation is
used for the pdfs of the residual decoding error symbols.
The error variances are then computed from the reliability
information at the output of the source decoder, and the
reconstructed information symbols are finally obtained by
applying a linear estimator. The proposed decoding strategy
proves to be very robust in the presence of noise and gives
superior results compared to previously published syndrome
decoding approaches and classical FEC based on finite field
BCH codes. This especially holds when a low latency is
required for the overall transmission system.
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APPENDIX

Let
A = I − ΛTH [TΛTH ]−1T

and
B = G[GHΛ−1G]−1GHΛ−1

with matrices G,T,Λ, I defined as before, where A,B ∈
IRN×N . In the following we will show that A = B. We do this
by showing that both A and B describe orthogonal projections
onto the same subspace and with respect to the same inner
product. Given A = B it is then straightforward to see that
the estimates in (10) and (11) are equal.

It is easy to see that B2 = B and that B is a projection
matrix that projects onto the K-dimensional subspace that is
spanned by the columns of G. Also, one can easily check that
BHΛ−1[I − B] = 0.

Let v̂ = Bv. Because of

v̂HΛ−1[v − v̂] = vHBHΛ−1[I − B]v = vH · 0 · v = 0

the matrix B describes an orthogonal projection with respect
to the inner product 〈x,y〉 := yHΛ−1x, i.e., the projection
error v− v̂ is orthogonal to v̂ in the sense of 〈v − v̂, v̂〉 = 0.

Next we consider the matrix A, which satisfies A2 = A and
AHΛ−1[I−A] = 0. Thus, also A performs an orthogonal pro-
jection with respect to the inner product 〈x,y〉 = yHΛ−1x.

We will now show that both matrices project onto the same
subspace. For this, we consider the projection error [v − ṽ]
with ṽ = Av and show that it is orthogonal to the projection
v̂ = Bv. Because of

[I − A]HΛ−1B = 0

this is in fact the case:

〈v̂,v − ṽ〉 = vH [I − A]HΛ−1Bv = 0

Thus, ṽ = v̂ for any v, and therefore A = B.
In (10) and (11), we had the estimators [GHG]−1GHB

and [GHG]−1GHA. With A = B it is easy to see that both
estimators are equal.

REFERENCES

[1] K. Sayood and J. C. Borkenhagen, “Use of residual redundancy in the
design of joint source/channel coders,” IEEE Trans. on Comm., vol. 39,
no. 6, pp. 838–846, June 1991.

[2] J. Hagenauer, “Source-controlled channel decoding,” IEEE Trans. on
Comm., vol. 43, no. 9, pp. 2449–2457, Sept. 1995.

[3] B. Hochwald and K. Zeger, “Tradeoff between source and channel
coding,” IEEE Trans. on Inf. Theory, vol. 43, no. 5, pp. 1412–1424,
Sept. 1997.

[4] P. G. Sherwood and K. Zeger, “Progressive image coding for noisy
channels,” IEEE Signal Processing Letters, vol. 4, no. 7, pp. 189–191,
July 1997.
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