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ABSTRACT

In this paper we propose a novel way of using time-of-flight cam-
era depth and intensity images to produce a higher resolution depth
image with prior knowledge of spatial noise distribution, which is
correlated with the incident light falling on each pixel. The pro-
posed method is compared to well-established methods, and results
with real image data are presented.

Index Terms— Super Resolution, Time-Of-Flight, Denoising,
Bilateral Filter, Regularization

1. INTRODUCTION

In recent years a new type of range sensors has conquered the mar-
ket. Time-of-flight cameras provide, beside an ordinary 2D image, a
depth map containing gray levels proportional to the distance of ob-
jects. Modern time-of-flight cameras have a spatial resolution of less
than QVGA which is by far less than modern 2D CMOS/CCD image
sensors. In addition to the poor resolution, the depth map provided
by the camera is superimposed by a considerable amount of noise.
In practice most applications average the depth maps of several sub-
sequent images to increase the SNR. Fortunately the noise variance
per depth pixel is correlated with the amount of light collected by
that pixel.

In the literature two decades ago an interesting field in image
processing emerged called super resolution, which has been exten-
sively studied since then (see [1] and references therein). In this
paper we show the combination of a denoising approach with the
technique of super resolution for depth images. For this we exploit
the fact that the gray-value image can be used to obtain an uncer-
tainty map for the depth image and therefore can be used to improve
denoising.

In the next section we introduce the image model, used for
the theory of denoising and super resolution. Section 3 describes
the important part of fusing the measured images to a single high-
resolution denoised result and the task of regularization, since both
denoising and super resolution are ill-posed problems. Section 4
gives an introduction to time-of-flight measurements and the under-
lying noise model. Finally the results are presented in Section 5.

2. GENERATIVE IMAGE MODEL

Let us assume we have several images taken from a real scene (con-
tinuous in space and intensity) by an image sensor through an optical
system and underlying some spatially and time dependent geometric
transformations (e. g. through camera movement) as well as noise.
Further we assume that this real scene is limited in its spatial fre-
quency and that there exists an exact representation in the discrete

spatial domain [2]. This representation is the vector x of dimension
[LN1 ·LN2×1]. All images in this work are represented by column
wise lexicographic ordered vectors. Each image taken by the camera
system with a resolution of N1 × N2 can be modeled as

yk = DHFkx + vk, (1)

where D, H, and Fk are matrices representing the downsam-
pling, blurring and geometric transformation, respectively. vk

represents zero mean Gaussian noise with a covariance matrix
of Σk = diag[σ2

1 , σ2
2 , ..., σ2

N1N2 ]. The k-th camera image is repre-
sented by yk.

3. DATA FUSION

3.1. Single-image restauration under assumption of spatially
variant noise variance

Let us assume we have taken one image y according to the model in
(1) with matrices D and Fk being identity matrices. The image can
then be written as

y = Hx + v = z + v. (2)

Instead of formulating the problem of finding x, we try to find z first
and therefore separate the reconstruction process into a denoising
and deconvolution part [3]. Looking at this problem as a statistic
optimization problem, our objective is to maximize pẑ|y(ẑ|y). Ac-
cording to the Bayes theorem

pẑ|y(ẑ|y) = py|̂z(y|ẑ)pẑ(ẑ) 1

py(y)
, (3)

the objective can be seen as maximizing py|̂z(y|ẑ)pẑ(ẑ). Under the
assumption of equal probability for all z our problem can be stated
as

ẑ = arg max
z

py|z(y|z), (4)

which is the formulation of the maximum likelihood estimation.
Given the model in (2) with v being white Gaussian noise the likeli-
hood can be written as

py|̂z(y|ẑ) =

N1·N2∏
i=1

1√
2πσ2

i

exp

(
− (yi − ẑi)

2

2σ2
i

)
. (5)

Consequently the log likelihood yields

L(ẑ; y) ∝−
N1·N2∑

i=1

(
(yi − ẑi)

2

σ2
i

)
= −(y − ẑ)T W(y − ẑ). (6)
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with W = diag[σ2
1 , σ2

2 , ..., σ2
N1N2 ]

−1 containing the weights. Equa-
tions (2), (4), and (6) lead to a solution for the problem of estimating
x:

x̂ = arg min
x

[
(y − Hx)T W(y − Hx)

]
(7)

3.2. Super resolution data fusion

Let us assume we have several downsampled, blured, and geomet-
rically transformed images yk. The goal of superresolution is to re-
construct the high-resolution image x from the observations yk. The
full model (1) applies and (7) becomes

x̂ = arg min
x

p∑
k=1

[
(yk − DHFkx)T W(yk − DHFkx)

]
. (8)

In [3] it is shown that for a given pixel in x̂, (8) leads to the mean
value of all pixels in yk contributing to that single high-resolution-
pixel.

3.3. Regularization

Since image reconstruction in general and super resolution in par-
ticular is an ill-posed problem [1], the solution of (8) will give in
most cases a highly unwanted and unstable result. There is simply
not enough information available to complete the task. This is when
regularization comes into play. Its task is to incorporate prior knowl-
edge of the desired solution in the minimization problem. This prior
knowledge is usually expressed by a penalty term in the objective
function:

x̂ = arg min
x

p∑
k=1

[
(yk − DHFkx)T W(yk − DHFkx)

]
+ λΦ(x)

(9)

where Φ(·) penalizes unexpected solutions and factor λ weights the
trade off between the measured data and the expected solution.

One of the most-widely referenced regularization cost functions
is the Tikhonov ([4], [5]) cost function

Φ(x) = ||Γx||22, (10)

where Γ is a matrix incorporating some kind of filter. The intention is
to limit the total energy in the image (when Γ is the identity matrix),
or the Energy of a particular frequency band. For instance a high
pass filter would lead to a smooth solution, since energy in the high-
frequency band would be penalized.

Another very successful method in image reconstruction is the
total variation (TV) method [6]. It penalizes the total amount of
gray-level changes in an image, which is measured by the L1 norm
of the gradient:

Φ(x) = ||∇x||1. (11)

The TV method has the advantage over other cost functions that it
tends to preserve edges in the image, since steep edges do not count
as much as they would in a quadratic cost function.

Based on the bilateral filter [7] and its link to the weighted least-
squares method [8], Farsiu et al. proposed a robust regularizer called
bilateral total variation (BTV) [3]. It combines the robustness of the
L1 norm against noise with the basic idea of the bilateral filter to
decay filter coefficients not only with the geometric distance to the

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of denoising with spatially variant variances. (a)
Original Image. (b) Noisemap (black: σ2 = 0 white: σ2 = 0.01).
(c) Noisy image. (d) Reconstruction with Tikhonov regularization.
(e) Reconstruction using total variation. (f) Reconstruction using
bilateral total variance.

center, but also with the distance of the gray-levels to the center. The
regularization term they use is

Φ(x) =
P∑

l=−P

P∑
m=0︸ ︷︷ ︸

l+m≥0

α|m|+|l|||x − Sl
xSm

y x||1, (12)

where the matrices Sl
x and Sm

y are shift operators in x and y di-
rection by an amount of m and l pixel respectively. Therefore the
difference in (12) represents different scales of derivatives of x, and
α ∈ [0, 1] is used to weight them.

Fig. 1 shows results for the previously mentioned methods ap-
plied to a noisy image. Clearly the BTV criterion gives the best
results in terms of edge preservation and noise reduction.

4. TIME-OF-FLIGHT PRINCIPLE AND NOISE MODEL

Each time-of-flight camera is equipped with its own source of light.
An object in a distance d from the camera (and its light source) re-
flects photons stemming from the modulated light source. They are
collected by the time-of-flight pixel as

s(t) = a0 cos(ω0t − φ) + B, (13)

where s(t) is the average number of photons per unit time at given
time t, φ is the phase shift resulting from photons traveling to the
object and back to the camera

(
φ = 2ω0

d
c

)
, with c being the speed

of light. Thus the phase shift has a linear dependency from the dis-
tance of the reflecting object. The average incident light is taken into
account by B.

Since the phase shift can not be measured directly, many time-
of-flight systems use a pixel structure that performs some correlation
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Fig. 2. Cross section of a single time-of-flight PMD pixel containing
two wells.

Fig. 3. Light intensity “seen” by a pixel over time. Correlation Volt-
age Um(t) is shifted by 0◦ to the modulation of the light source.

of the optical received signal with an electrical reference source. The
pixel structure used for our experiments is shown in Fig. 2. The
modulation signal Um(t) (see Fig. 3) directs electrons (caused by
incoming photons) to either of two wells (a and b). To measure the
phase shift of incoming light, four images (each taken with Um(t)
shifted by 90◦ to its predecessor) have to be acquired. Fig. 3 shows
the light intensity integrated by a pixel using Um(t) shifted by 0◦

to the emitted modulated light. Each pixel provides two voltages Ua

and Ub. The differences (ΔU = Ua−Ub), sampled at the four phase
shifts, are used to calculate the modulation amplitude a0 and phase
shift φ of the optical echo [9]:

a0 =
1

2

√
(ΔU270 − ΔU90)2 + (ΔU0 − ΔU180)2 (14)

φ = arctan

(
ΔU270 − ΔU90

ΔU0 − ΔU180

)
. (15)

The number of photons collected during integration is under-
lying a Poisson distribution (even with perfectly constant intensity)
[10]. In practice, when collecting several hundreds of photons, the
distribution can be approximated by the normal distribution with the
same value for mean and variance. This photon shot noise is respon-
sible for the fact that a pixel collecting more light also outputs more
noise (even though the SNR gets better). Since the phase shift of
the optical echo does not depend on the total amount of light (but
phase noise does), the phase SNR lowers when the nonmodulated
light (B − a0) gets brighter or the modulated light (a0) gets darker.
The dependency of phase noise is derived in [11]:

σ2
depth ∝ B

a2
0

, (16)

where σ2
depth is the variance of the depth signal.

5. RESULTS

In this section the theory of the sections above is tested on real data.
In our experiments we used the time-of-flight camera PMD[vision]
19k. All measurements were taken without any nonmodulated light.
The test objects were a white colored styrofoam form and two forks
mounted on an aluminum beam.

Taking equation (16) and setting B = a0 (no nonmodulated
light) the amplitude image should be proportional to the reciprocal
of the depth-variance image, which can be seen in Fig. 4.

(a) (b) (c)

Fig. 4. Correlation between depth variance and amplitude image. (a)
Single depth image. (b) Single amplitude image. (c) Reciprocal of
variance image of 50 depth images.

With the theory of Sections 3 and 4 we optimize the super
resolution and denoising for time-of-flight depth images by adding
spatially dependent noise variance to the data-fidelity term in [3]
( see (9) ). In Fig. 5 our method of noise consideration is compared
to the method of Fasiu et al. [3], which was also used in [12] to
perform super resolution on depth images. In two experiments, four
and 16 shifted low resolution images were taken and combined to
an image with twice the resolution in both dimensions, see Fig. 5.
Registration was performed using the algorithm in [13] on the ampli-
tude images. Both experiments show that our method successfully
combines the prior knowledge of variance distribution with the well
studied SR method from [3]. The standard deviation is measured
over three regions marked in Figs. 5(c) and (d). The results are
presented in Table 1. The top region with low illumination shows
a significant reduction of standard deviation for our method. Also
in the middle and bottom region, where low noise is present in the
measured depth images, the standard deviation of our method is still
better.

Regions in which more noise is present due to poor illumination
are reconstructed with stronger emphasis on the used regularization
term, whereas in regions of good illumination the measured data are
favored.

Table 1. Distance to object, measured with a tape measure, and
standard deviation of regions marked in Figs. 5(c) and (d).

method in [3] proposed method
Region distance [cm] stddev (c) [cm] stddev (d) [cm]

top 122 1.463 0.343
middle 111 0.338 0.324
bottom 103 0.230 0.227

1187

Authorized licensed use limited to: Alfred Mertins. Downloaded on July 28,2010 at 13:52:05 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5. Example of resolution enhancement and denoising of a depth
image. Input depth images are used to gain a resolution enhancement
by factor 2 in both directions. (a) One of four depth images. (b)
Single amplitude image. (c) Reconstruction with the method in [3].
(d) Reconstruction of our method. – (e) One of 16 depth images
(zoomed). (f) Single amplitude image. (g) Reconstruction with the
method in [3]. (h) Zoom to fork spikes. (i) Reconstruction of our
method. (j) Zoom to fork spikes for our method.

6. CONCLUSIONS

In this paper we introduced a new algorithm for enhancing resolution
of time-of-flight depth images with respect to spatially variant noise
variance. The noise intensity is estimated from the gray value image,
which is always provided by the camera beside the depth image. We
addressed different regularization terms for image denoising, where
we chose to use the one with best results for typical depth images.
For the purpose of comparison, evaluations on real-world time-of-
flight images were made with a well established algorithm and our
new one.
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