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ABSTRACT

The purpose of room impulse response (RIR) reshaping or
shortening is to accelerate the attenuation of the original RIR
so that the reverberation effect will be weakened and the intel-
ligibility of speech played in the associated room will be im-
proved. The unwanted energy of the RIR, which is captured
with the help of a window function defined according to the
average masking effect of the auditory system, is minimized
with the temporal constraint of keeping the infinity norm of
the global impulse response constant. Compared with some
well known approaches, this new method demonstrates ex-
cellent performance in terms of the effectiveness of reshap-
ing/shortening the impulse response while closely retaining
the frequency response of the room.

Index Terms— room impulse response, reshaping, short-
ening, least mean squares, infinity norm, optimization

1. INTRODUCTION

It is well known that reverberation has different effects on
music and speech played in a room. If the reverberation time
of a room is too short, it will be listening “too dry” for music
playing, but in contrary, if speech is played in the room, a
short reverberation time is preferred for good intelligibility.

For the enhancement of speech intelligibility in reverber-
ant rooms and for new applications in audio-visual commu-
nications and virtual acoustics, a suitable pre-processing of
loudspeaker signals is needed to compensate room reverber-
ation, namely, the listening-room-compensation or room re-
verberation compensation [1][2][3]. Similarly, for improving
the quality of far-field microphone recordings, a post-filtering
stage may be introduced for the received signals. Both prob-
lems are mathematically equivalent.

Room-reverberation compensation is somewhat different
from channel equalization. For channel equalization, the aim
is to exactly recover the original signal from the received one
and thus to invert the channel [4]. Room-reverberation com-
pensation, on the other hand, only needs to compensate the
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channel in such a way that signals are perceived without re-
verberation. In other words, it would be sufficient to par-
tially equalize a RIR [5][6], so that all audible echoes are
removed and the inaudible ones remain. Such a relatively re-
laxed requirement is not only possible according to the tem-
poral masking effect of the human auditory system but also
will greatly alleviate the pressure of designing a compensa-
tion system.

Investigations into the properties of the human auditory
system have shown that echoes will not be heard when they
are lower than a masking limit which is induced by the direct
sound [7][8]. This is known as the temporal masking effect.
While the masking effects of the human auditory system are
signal dependent in general [9][10], we concentrate on linear,
signal-independent filtering of the RIR, where our optimality
criterion is based on an average masking curve that has been
found a good compromise between masking curves obtained
for various signals [7]. We will show that a window function
constructed from such an average masking limit can be used
to control the attenuation behavior of the reshaped impulse
response.

2. PROBLEM STATEMENT

Let c(n) denote the impulse response of a room, and let Lc

be the length of c(n). Moreover, let h(n) denote the impulse
response of a prefilter with length Lh. The global impulse
response of this prefilter-loudspeaker-room system is as fol-
lows, where we have subsumed the loudspeaker response as
a part of the room impulse response:

g(n) = h(n) ∗ c(n) = Ch (1)

with C being an Lg-by-Lh convolution matrix made up of se-
quence c(n). The length of g(n) is Lg = Lc+Lh−1. Our aim
is to design a prefilter that makes the global impulse response
g(n) not only attenuate faster than the impulse response of
the room but also allows it to satisfy certain psychoacoustic
conditions so that there will be no audible echoes.

In this paper, for filter reshaping/shortening, we use win-
dows wu(n) and wd(n) to derive an unwanted part gu(n) =
wu(n)g(n) and a wanted part gd(n) = wd(n)g(n) from the
global impulse response g(n). Our goal is to minimize some
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function of |gu(n)| while keeping the infinity norm of the
global impulse response g(n) or gd(n) constant with respect
to the prefilter h(n), which should enable a reshaping of g(n)
without significantly affecting the magnitude frequency re-
sponse of it.

3. APPROACH DEVELOPMENT

The purpose of filter reshaping/shortening is to accelerate the
decreasing of the original impulse response c(n) or shorten
its effective duration, so that the reverberation time will be
shortened and the intelligibility of speech will be enhanced.
From this point of view, it is straightforward that we prefer
under a given condition to keep the global impulse response
as close as possible to a delayed unite impulse δ(n − d).

It is intuitive if we minimize under some measure the un-
wanted part of the global impulse response g(n) while keep-
ing the maximal absolute value of the desired part of g(n).
This is just exactly what we do in the inverse filter design, but
here we have extended this idea to the reshaping/shortening
problem. Accordingly, we define the following optimization
problem in terms of least mean squares and infinity norm,

{
MINh : f(h) = gT

u gu = hTAh
S. T. : ‖gd(n)‖∞ = |g(lmax)| = 1 , (2)

where |g(lmax)| is the maximal absolute value of g(n) and
A = CTdiag[w2

u]C.
Before we get the optimal h(n), the problem is how to

determine the maximal absolute value position lmax of g(n).
From the point of view of reducing the global impulse re-
sponse delay, the maximal absolute value of g(n) should ap-
pear as early as possible, so it is a natural way to suppose that
the maximal absolute value of g(n), i.e., |g(lmax)|, will ap-
pear after optimization at the same position as that of c(n),
i.e., lmax = lmaxc, where lmaxc represents the maximal ab-
solute value position of c(n).

For the simplicity of expressions, we suppose that c(n) is
normalized so that the maximal value of c(n) is also its max-
imal absolute value and has the value one, i.e., |c(lmaxc)| =
c(lmaxc) = 1. Moreover, we suppose without the loss of gen-
erality that |g(lmax)| = g(lmax) = 1. So the optimization
problem is simplified as:

{
MINh : f(h) = hTAh
S. T. :

∑k=lmaxc

k=0 h(k)c(lmaxc − k) = 1
(3)

or in matrix form:
{

MINh : f(h) = hTAh
S. T. : cT

maxch = 1 , (4)

where cmaxc = [1, c(lmaxc − 1), ..., c(0), 0, ..., 0]T is the
transpose of the lmaxcth row of the convolution matrix C.

Applying the Lagrange multiplier method to (4), we have

[
A cmaxc

cT
maxc 0

] [
h
λ

]
=

⎡
⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎦ , (5)

where λ is Lagrange multiplier. Because of the special form
of the coefficient matrix and the right-hand-side vector of the
linear equation system (5), h is obtained as

h =
A−1cmaxc

cT
maxcA−1cmaxc

. (6)

In practice, in most cases the direct sound is the strongest
and arrives at microphone earliest, which implies that the
vector cmaxc has the special form cmaxc = [1, 0, ..., 0]T, this
enables us to further simplify the solving for h. Firstly, if
cmaxc = [1, 0, ..., 0]T, it is easy to see that in (5) h(0) = 1;
secondly, let

B =

⎡
⎢⎣

a22, · · · , a2Lh

...,
. . . ,

...
aLh2, · · · , aLhLh

⎤
⎥⎦ (7)

and q = [a21, a31, ..., aLh1]T, where aij (i, j = 1, 2, ..., Lh)
are the elements of matrix A. Then the components of h,
except h(0), are the solution of the following equation:

Bhb = q, (8)

where hb = [h(1), h(2), ..., h(Lh − 1)]T and h = [1,hT
b ]T.

In addition to the above methods, we also propose the
following constrained optimization problem for reshap-
ing/shortening filter design with a constraint that is different
from the one in (2):{

MINh : f(h) = hTAh
S. T. : h(0) = 1 . (9)

The solution of this problem is exactly the same as that of (4)
for the special case cmaxc = [1, 0, ..., 0]T, i.e., h = [1,hT

b ]T

and hb is the solution of (8), whatever the true cmaxc of prob-
lem (9) is.

4. A SUMMARY OF TWO RELATED ALGORITHMS
BY OTHER AUTHORS

For comparison purposes, two related algorithms are summa-
rized here. Firstly, a well-known approach for filter shorten-
ing is to optimize h(n) under the least-squares error criterion,
i.e. [11][12],

{
MINh : f(h) = hTAh
S. T. : gT

d gd = hTBh = 1 , (10)

where A is the same as that in (3) and B = CTdiag[w2
d]C.

The approach is definitely suitable for filter reshaping/shortening
through well-defined windows wu(n) and wd(n).



This problem is equivalent to the following generalized
eigenvalue decomposition and the optimal h is the eigenvec-
tor corresponding to the smallest generalized eigenvalue:

Ah = λminBh. (11)

In [12], the window wd(n) is defined as a rectangular win-
dow, and wu(n) the complement of wd(n). The position of
window wd(n) is optimized at the same time so as to get the
optimally shortened global impulse response g(n).

Unfortunately, a prefilter h that is optimal in the least-
squares sense (10) will usually make great distortion in the
frequency domain, moreover, the temporal shape of |g(n)|
will typically cause obvious late diffuse echoes. Although
some measures have been taken to overcome such drawbacks
[1], further improvement is needed in practice.

Secondly, the following optimization problem was pro-
posed in [12]:{

MINh : f(h) = hTAh
S. T. : hTh = 1 . (12)

The optimal solution is the eigenvector corresponding to the
smallest eigenvalue of the following eigenvalue problem:

Ah = λminh. (13)

5. SIMULATIONS

A simulated RIR has been used in the experiments, where
basic parameters were selected as fs = 16kHz, Lc = 2000,
and Lh = 1500. Different windows have been designed for
the filter reshaping and shortening tasks, respectively.

For reshaping, we define the window wu(n) proportional
to the inverse of the average temporal masking curve [13],

wu(n) = 10
3

log(N/N0) log( n
N0

)+0.5

where N0 = 196, N = 3332, and N0 ≤ n ≤ Lg for our case.
For shortening, the window wu(n) is defined in such a

way that it will allow us to suppress the late diffuse wave of
the global impulse response. So we propose the following
shortening window:

wu(n) = 3 ∗ sin2(ω(n − n0)/N) + 2,

where ω and n0 are adjustable to obtain a suitable window
wu(n) for any given RIR. In our examples, the selected pa-
rameters were ω = 0.99π, n0 = 200, N = Lg − lmaxc − ld,
where ld = 800 is the effective interval of the shortened filter
and lmaxc = 132, 0 ≤ n ≤ N .

Algorithms (2) and (9) give similar results when the vec-
tor cmaxc has the property cmaxc ≈ [1, 0, ..., 0]T, so the fol-
lowing comparisons are focused on (2), (10) and (12). The
same windows were used for all of the three algorithms.
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Fig. 1. The original (Top) and reshaped (Bottom, for compar-
ison purpose, only the first 2000 samples are presented) room
impulse responses with algorithm (2).
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Fig. 2. The reshaped impulse responses with algorithms (10)
(Top) and (12) (Bottom).

5.1. Reshaping performance comparison

For room impulse response reshaping, informal listening tests
show that algorithm (2) outperforms algorithms (10) and (12).
Almost no echoes are heard from the output signal with our
new approach, moreover, the room characteristic sounds quite
natural. On the contrary, both of the output signals with ap-
proaches (10) and (12) are even worse than those before re-
shaping. We can refer this to both of the time-domain and
frequency-domain characteristics of the reshaped impulse re-
sponses given with different methods. The time-domain char-
acteristics are shown in Figs. 1 and 2, and the frequency do-
main effects are depicted in Figs. 3 to 6 for the different meth-
ods. These figures show that algorithm (2) keeps the reshaped
global impulse response as close as possible to the original
room impulse response in both time and frequency domains
while accelerating the decay of the global impulse response,
so the reverberation effects can be obviously improved. How-
ever, algorithms (10) and (12) can not effectively accelerate
the decay of the global impulse response, and furthermore,
they also strongly distort the frequency-domain characteristic
of the global impulse response. For further illustration, the
time-domain attenuation characteristics of the original and
the reshaped impulse responses are also shown as plots of
20 log10(|g(n)|) in Figs. 7 to 10.
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Fig. 3. The magnitude frequency response of the original
room impulse response.
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Fig. 4. The magnitude frequency response of the reshaped
room impulse response with algorithm (2).

5.2. Shortening performance comparison

For impulse response shortening, the newly proposed algo-
rithm (2) shows also a better performance in both time and
frequency domains than the other two approaches. This can
be seen clearly in Figs. 11 to 17. Although the least-squares
measures always result in late diffuse echoes, as a result of the
carefully designed window wu(n), the unwanted parts of the
global impulse responses are obviously improved for all of the
three approaches. After shortening with our new method, the
global impulse response g(n) seems as if it were the truncated
version of the original response c(n), plus some noise. Most
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Fig. 5. The magnitude frequency response of the reshaped
room impulse response with algorithm (10).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10

20

30

Normalized Frequency

M
ag

nit
ud

e (
dB

)

Magnitude frequency response of g(n)

Fig. 6. The magnitude frequency response of the reshaped
room impulse response with algorithm (12).
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Fig. 7. Magnitude of the original room impulse response in
dB. The dashed curve represents the average masking limit.

of its energy is concentrated in one dominating tap. However,
for the approaches (10) and (12) the energies of the g(n)’s are
almost uniformly distributed over the desired parts of them.
This can be clearly seen in Fig. 11 and Figs. 12, 13, and 14.
In addition, our new approach causes less frequency-domain
distortion to the global system than the algorithms (10) and
(12), see Figs. 15, 16, 17 and 3.
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Fig. 8. Magnitude of the reshaped impulse response with al-
gorithm (2). The dashed curve represents the average mask-
ing limit.
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Fig. 9. Magnitude of the reshaped impulse response with al-
gorithm (10).

6. CONCLUSIONS

In this paper, for room impulse response reshaping and short-
ening, we have presented an analytical solution of the least
squares minimization problem under infinity norm constraint.
The optimal reshaping/shortening filter is solved under some
simplification of the infinity-norm constraint. Simulations
prove that this method possesses some attractive character-
istics and outperforms some known approaches.
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Fig. 15. The magnitude frequency response of the shortened
room impulse response with algorithm (2).
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Fig. 16. The magnitude frequency response of the shortening
room impulse response with algorithm (10).
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Fig. 17. The magnitude frequency response of the shortened
room impulse response with algorithm (12).


