HIGHLY SCALABLE IMAGE COMPRESSION BASED ON SPIHT FOR NETWORK
APPLICATIONS

Habibollah Danyali and Alfred Mertins

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, Wollongong, NSW 2522, Australia
Email: {hd04, mertins} @uow.edu.au

ABSTRACT

In this paper we propose a highly scalable image compres-
sion scheme based on the Set Partitioning in Hierarchical Trees
(SPIHT) algerithm. Our algorithm, called Highly Scalable SPIHT
(HS-SPIHT), supports spatial and SNR scalability and provides
a bitstream that can be easily adapted (reordered) to given band-
width and resolution requirements by a simple transcoder (parser).
The HS-SPIHT algorithm adds the spatial scalability feature with-
out sacrificing the SNR embeddedness property as found in the
original SPIHT bitstream. HS-SPIHT finds applications in pro-
gressive web browsing, flexible image storage and retrieval and
image transmission over heterogeneous networks.

1. INTRODUCTION

Traditional image coding systems have only focused on efficient
compression of image data. The main objective of such systems
is optimizing image quality at given bit rate. Due to the explo-
sive growth of the Intemet and networking technology, nowadays
a huge number of users with different capabilities of processing
and network access bandwidth can transfer and access data easily.
For transmission of visual data on such a heterogenous network,
efficient compression itself is not sufficient. There is an increasing
demand for scalability to optimally service each user according to
his bandwidth and computing capabilities. A scalable image coder
generates a bitstream which consists of a set of embedded parts
that offer increasingly better signal-to-noise ratio (SNR) or/and
greater spatial resolution. Different parts of this bitstream can be
selected and decoded by a scalable decoder to meet certain require-
menis. In the case of an entirely scalable bitstream, different types
of decoders with different complexity and access bandwidth can
coexist.

Over the past decade wavelet-based image compression
schemes have become increasingly important and gained
widespread acceptance. Because of their inherent multiresolution
signal representation, wavelet-based coding schemes have the po-
tential to support both SNR and spatial scalability. For efficient
coding of wavelet coefficients, Shapire {1] introduced the Em-
bedded Zerotree Wavelet (EZW) coding scheme based on the
idea of grouping spatially related coefficients at different scales
to trees and efficiently predicting zero coefficients across scales.
An improved scheme, called Set Partitioning in Hierarchical Trees
(SPIHT), was developed by Said and Pearlman [2]. This coder uses
the spatial orientation trees shown in Fig, 1 and partitions them as
needed to sort wavelet coefficients according to magnitude. Fur-
ther improvements of SPIHT have been published in [3-8]. Al-
though the SPTHT coder is fully SNR scalable with excellent com-
pression properties, it does not explicitly support spatial scalability

0-7803-7622-6/02/$17.00 ©2002 IEEE

I-217

and does not provide a bitstream that can be parsed easily accord-
ing to the type of scalability desired by the decoder.

An improved version of the EZW algorithm that uses better
context modeling for arithmetic coding, an improved symbol set
for zerotree encoding, and proper syntax and markers for the com-
pressed bitstream to allow extracting various qualities and resolu-
tions was reported in [9]. However the decoder needs some addi-
tional side information to decede the bitstream. Tham et al. [10]
introduced a new zerotree structure called tri-zerotree and used a
layered coding strategy with the concept of embedded resolution
block coding to achieve some degree of scalability for video cod-
ing. A spatially scalable video coding scheme based on SPIHT was
reported by Kim et al. in [5}. Their coder produces a two-layer bit-
stream; the first layer is used for low resolution, and the second
one adds the extra information required for high resolution. Al-
though the first Jayer of this method is rate scalable, the bitstream
is not fully embedded for high resolution, Moreover, it is not pos-
sible to easily transcode the encoded bitstream to arbitrary spatial
tesolutions and SNR's,

In this paper, a fully scalable image coding scheme based on
the SPIHT algorithm is presented. We modify the SPIHT algo-
rithm to support both spatial and SNR scalability features. The
encoder creates a bitstream that can be easily parsed to achieve
different levels of resolution or/and quality requested by the de-
coder. A distinct feature of the presented coder is that the reordered
bitstreams for different spatial resolutions, which are obtained af-
ter parsing the main bitstream, are fully embedded (SNR scalable)
and can be truncated at any point to obtain the best reconstructed
image at the desired spatial resolution and bit rate. In other words,
our modified SPIHT algorithm provides spatial scalability without
sacrificing SNR scalability in any way.

2. HIGHLY SCALABLE SPIHT (HS-SPIHT)

In general, an NV level wavelet decomposition allows at most N +1
levels of spatial resolution. To distinguish between different reso-
lution levels, we denote the lowest spatial resolution level as level
N + 1. The full image then becomes resolution level 1. The three
subbands that need to be added to increase the resolution from
level k to level kX — 1 are referred to as level k — 1 resolution sub-
bands (see Fig. 1). An algorithm that provides full spatial scalabil-
ity would encode the different resolution levels separately, allow-
ing a transcoder or the decoder to directly access the data needed to
reconstruct with a desired spatial resolution. The original SPIHT
algorithm, however, encodes the entire wavelet tree in a bitplane
by bitplane manner and produces a bitstream that contains the in-
formation about the different spatial resolutions in no particular
order.

IEEE ICIP 2002

£ Coarsest (lowent) wevclet band (LL3)

Fig. 1. Orientation of trees across wavelet bands.

The HS-SPIHT algorithm proposed in this paper solves
the spatial scalability problem through the introduction of a
resolution-dependent sorting pass that uses (compared to SPIHT)
one additional list, called the list of delayed insignificant sets
(LDIS). The HS-SPIHT coder first encodes all bitplanes for a given
(low) resolution level and then moves to the next higher resolution
level. Sets encountered during the sorting pass that lie outside the
actually considered spatial resolution are temporarily stored in the
LDIS. They are moved back from the LDIS intc the LIS when they
are required for encoding the next higher resolution. According to
the magnitude of the coefficients in the wavelet pyramid, coding of
higher resolution bands usually starts from lower bitplanes. There-
fore, during the encoding process of resolution level k&, the encoder
keeps the number of coefficients that went to the LDIS for each
quantization level, After finishing the encoding process for all bit-
planes of resolution level k, the encoder knows which entries in
the LDIS belong to which bitplane. To encode the additional three
subbands for resolution level & — 1, it moves the related entries of
the LDIS that belong to the actual bitplane to the LIS and carries
out the sorting of LIS with the same procedure as before. Alto-
gether, the total number of bits belonging to a particular bitplane
is the same for SPIHT and HS-SPIHT, but HS-SPIHT distributes
them differently among the different spatial resolution levels,

The definitions for terms required by HS-SPIHT are the same
as for SPTHT and are therefore not listed here. The reader is re-
ferred to [2]. In the following we list the entire HS-SPIHT coding
algorithm:

1. Initialization
Setn = [max(; j}{|ci,7|}] and output it. Set the LSP and
LDIS as empty lists. Put the coordinates of all roots in H
into the LIP. Put the roots in H which have descendants also
into the LIS as type A entries. Set k = ke where kroz
is the maximum level of spatial scalsbility supported by the
encoder(1 <k <N +1).

2, Resolution-Dependent Sorting Pass

2.1 foreach entry (4, §) in the LIP do:

2.1.1. output $,.(i, j)
2.1.2. if 8x(1,) = 1 then move (1, j) to the LSP and
output the sign of ¢; ;;
2.2, for each entry (i, j) in the LIS do:

2.2.1 if the entry is of type A then
» if all coordinates in the D(1, §) are located out-
side of the spatial resolution level k then move
(4, #) to the LDIS as type A, else:

* output Sy, (D("l J))'

* if 5.(DP(,j)) = | then for each (p,q) €
O(i, j) do:
- output Sn(p,q):
-if Sn(p,q) = | then add (p, g} to the LSP
and output the sign of ¢p,¢:
else add {p, ¢} to the end of the LIP;

* if L(i, 5} # @ then move (i, 7) to the end of
the LIS as an entry of type B and go to step
2.2.2; else, remove entry (i,) from the LIS;

2.2.2. if the entry is of type B then
o if all coordinates in the L(i, §) are located outside

of the spatial resolution level k then move (i, 7)

to the LDIS as type B; else:

* output S, (L(3, 1))

* if §u(L(i,) = 1 then
- add each (p, ¢) € O(i, j) to the end of the

LIS as an entry of type A;
- remove (£,) from the LIS.

3. Refinement Pass
for each entry (i, 7) in the LSP, except those included in the
last sorting pass (i.e. the ones with the same n), output the
n*? most significant bit of |e; ;|

4. Quantization-Step Update
® decrement n by 1
o if n is greater or equal to the minimum bitplane then
* if & = kmas then go to step 2 else go to step 5.1.

5. Resolution Scale and Lists Update
s if & > 1 then:

* decrement k by 1

* set the LIS, LIP and LSP as empty lists

* set n with the maximum quantization level related
to the first entry that was moved from the LIS 1o the
LDIS during resolution-dependent sorting pass for
resolution level & + 1.

5.1. move back all entries in the LDIS which were
moved to the LDIS during quantization level n of
the sorting pass for resolution level £+ 1, to the LIS
and go to step 2.

e clse: end of coding

To support bitstream parsing by an image server/transcoder,
some markers are required to be put into the bitstream to identify
the parts of the bitstream that belong to the different spatial res-
olution levels and bitplanes, This additional information does not
need to be sent to the decoder.

3. BITSTREAM FORMATION AND PARSING

The bitstream generated by the encoder can be sorted in different
ways, however it can exist in one specific order at a time only.
Fig. 2 shows the bitstream structure generated by the encoder. The
bitstream is divided into different parts according to the different
spatial resolution levels. Inside each resolution level the bits that
belong to different bitplanes are separable. A header at the begin-
ning of the bitstream identifies the number of spatial resolution
levels supported by the encoder, as well as information such as the

I-218

Bitstream

e

i B Pl

Fig. 2. Scalable bitstream which is made up of different parts ac-
cording to spatial resolution and quality.

Reordered Bitstrezm
T T PRy
o, Diglee ufor . Blglesw-llw Bitgturs: 0 o
ﬂmbn‘l lhr] mh;ua» ?’I.”[Teswhaion evels ke ¢ I
(o] Sl [=]
+ T a Fron

Fig. 3. Reordered bitstream for spatial resolution level »

image dimension, number of wavelet decompeosition levels, and
the maximum quantization level. At the beginning of each reso-
lution level there is an additional header that provides the infor-
mation required to identify each bitplane. In Fig. 2, mx_ is the
first Chighest) bitplane used for coding of the level k — 1 spatial
resolution subbands.

After encoding the original image at high bit rate, the bit-
stream is stored on an image server. Different users with differ-
ent requirements send their request to the server and the server
or a transcoder within the network provides them with a properly
tailored bitstream that is easily generated by selecting the related
parts of the original bitstream and ordering them in such a way that
the user request is fulfilled. To carry out the parsing process, the
image server or transcoder does not need to decode any parts of
the bitstream.

There are two principal ways of manipulating the encoded bit-
stream by the image server or transcoder to meet the user requests:

1. The bitstream gets truncated to the required resolution level,
and in addition, some of the lower bitplanes may be re-
moved. This yields a reselution embedded, but not a fully
SNR cmbedded bitstream, To enable decoding, the headers
introduced by the encoder need to be kept.

2. The bitstream is reordered bitplane by bitplane for the re-
quested resolution level. This form of reordering results in
a fully SNR embedded bitstream for the desired resolution.
Fig. 3 shows an example of a reordered bitstream for spatial
resolution level r. All header information for identifying the
individual bitplanes is only used by the image parser and
does not need to be sent to the decoder.

The decoders required for the two parsing methods are dif-
ferent. For the first method the decoder directly follows the en-
coder with the output command replaced by an inpul command,
similar to the original SPIHT algorithm. The decoder for the sec-
ond method additionally needs to keep track of the various lists
(LIS, LIP, LSP) for all resolution levels greater or equal to the
required one. It can recover all information for updating the lists
during sorting pass of each quantization level (bitplane) at each
spatial resolution level. The only additional information required
by the decoder is the maximum number of spatial scalability lev-
els (kmaz) supported by the encoder. Note that it is also possible to

modify the encoder to directly produce the bitstream for the second
decoding method,

4. EXPERIMENTAL RESULTS

In this section we present some numerical results for the HS-
SPIHT algorithm. All results were obtained with 8 bit per pixel
(bpp) monechrome images of size 512 x 512 pixels. We first ap-
plied five levels of wavelet decomposition with the 9/7-tap filters
of [11} ard symmetric extension at the image boundaries. The HS-
SPIHT encoder was set to produce a bitstream that supports the
maximum number of spatial scalability levels.

After encoding, the HS-SPIHT bitstream was fed into a
transcoder to produce progressive (by quality) bitstreams for dif-
ferent spatial resolutions. This is the second type of transcoding
described in Section 3. The bitstreams were decoded with differ-
ent rates and the fidelity was measured by the peak signal-to-noise
ratio defined as

2
PSNR = 10log, % dB

where MSE is the mean squared error between the original and the
reconstructed image, and PEAK is the maximum possible magni-
tude for a pixel inside the image. The PEAK value is 255 for an 8
bpp original image (level 1) and 255 x 2*~* for resolution level k.
The bit rates for all levels were calculated according to the number
of pixels in the original full size image.

Fig. 4 compares rate-distortion results for HS-SPIHT and orig-
inal {level 1) test images against SPTHT. Prior to the decoding pro-
cess, the HS-SPIHT compressed bitstreams were transcoded in or-
der to produce the proper bitstreams for spatial resolution level 1
decoding. The results in Fig. 4 clearly show that the HS-SPIHT
completely keeps the progressiveness (by SNR) property of the
SPIHT algorithm. The very small deviation between HS-SPTHT
and SPIHT is due to a different order of coefficients within the
bitstreams. All the results are obtained without extra arithmetic
coding of the output bits. As shown in [2], an improved coding
performance (about 0.3-0.6 dB) for SPIHT and consequently for
HS-SPIHT can be achieved by further compressing the binary bit-
streams with an arithmetic coder.

Fig. 5 shows the results obtained for decoding the resolu-
tion levels 2 and 3 by the SPIHT and HS-SPIHT coders. The
HS-SPIHT decoder obtained the proper bitstreams tailored by the
transcoder for each resolution level while for the SPIHT case we
first decoded the whole image at each bit rate and then compared
the requested spatial resolutions of the reconstructed and original
images. All bits in the transcoded HS-SPIHT bitstream for a partic-
ular resolution belong only to that resolution, while in the SPEHT
bitstream, the bis that belong to the different resolution levels are
interwoven. Therefore, as expected, the performance of HS-SPIHT
is much better than for SPIHT. As the tesolution level increases,
the difference between HS-SPIHT and SPIHT becomes more and
more significant.

5. CONCLUSIONS

We have presented a highly scalable SPIHT algorithm that pro-
duces a bitstream which supports spatial scalability and can be
used for multiresolution transcoding. This bitstream not only has
spatial scalability features but also keeps the full SNR embed-
dedness property for any required resolution level after a simple
reordering which can be done in a transcoder without decoding
the bitstream, The embeddedness is so fine granular that almost

I-219

ffr
? %wmr

]

PSNR (B}
g
AN
L

» /]
2004
m0 6z 04 068 08 1 1.2 14 18 18 2
Rate (bop)

42
|- /

_ % SPH e

g T HS-SPIHT

% E 3 / e
2 /

i AnNun——

-]

i i
0D 02 D4 06 08 1 12 14 16 18 2
Rate {opp)

Fig. 4. Comparison of rate-distortion results for maximum spatial
resofution (level 1) of 512 x 512 test images: top: Lena; bottom:
Goldhill

each additional bit improves the quality, and the bitsiream can be
stopped at any point to meet a bit budget during the coding or
decoding process. The proposed multiresolution image codec is a
good candidate for multimedia applications such as image storage
and retrieval systems, progressive web browsing and multimedia
information transmission, especially over heterogenous networks
where a wide variety of users need to be differently serviced ac-
cording to their network access and data processing capabilities.

6. REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotree of
wavelet coefficients,” JEEE Trans. Signal Processing, vol.
41, pp. 3445-3462, Dec. 1993,

[2] A.Said and W. A. Pearlman, “A new, fast and efficient image
codec based on set partitioning in hierarchical trees,” IEEE
Trans. Circ. and Syst. for Video Technology, vol. 6, pp. 243
250, June 1996.

{3] B.-L.Kim and W. A. Pearlman, “An embedded video coder
using three-dimensional set partitioning in hierarchical trees
(SPIHT),” in proc. IEEE Data Compression Conf.,, Mar.
1997, pp. 251-260.

[41 J. Karlenkar and U. B. Desai, “SPIHT video coder,” in Proc.
1EEE Region 10 International Conference on Glaobal Con-
nectivity in Energy, Computer, Communication and Control,
TENCON'98, 1998, vol. L, pp. 45-48.

m T

B T G T e i N e s
8 el 5 MR
i tevel 2 .-wsey vvvvv
5 O R
f ,,r‘/ Lovel 2, SPIHT]
’}7’ —

\\‘\.\:‘1

PSNR {ciB]
¥ B H B S 2B HS

PSNR {CIB)

2 B KB 8 & k& 320 8 8

g2 04 06 08 1 12 14 16 18 2
Rate (0pp)

(=]

Fig. 5. Comparison of rate-distortion results for spatial resolution
levels 2 (256 x 256) and level 3 (128 x 128) of 512 x 512 test
images: top: Lena bottom: Goldhilt

[5] B.-J. Kim, Z. Xiong, and W. A. Peariman, “Low bit-rate
scalable video coding with 3-d set partitioning in hierarchical
trees (3-D SPIHT),” IEEE Trans. Circ. and Syst. for Video
Technology, vol. 10, no. 8, pp. 1374-1387, Dec. 2000.

[6] J. Zho and S. Lawson, “Improvements of the SPIHT for im-
age coding by wavelet wansform,” in Proc, IEE Seminar on
Time-scale and Time-Frequency Analysis and Applications
(Ref. No. 2000/019), 2000, pp. 24/1 -24/5.

[7] E. Khan and M. Ghanbari, “Very low bit rate video coding
using virtual spiht” IEE Electronics Letters, vol. 37, no. 1,
pp. 4042, Jan. 2001,

[8] H.Caiand B. Zeng, “A new SPIHT algorithm based on vari-
able sorting thresholds,” in Proc. IEEE [nt, Symp. Circuits
and Systems, May 2001, vol. 5, pp. 231-234.

91 1. Liang, “Highly scalable image coding for multimedia ap-
plicaticans,” in Proc. ACM Multimedia 97, Nov. 1997, pp.
11-19.

{10} 1. Y. Tham, S. Ranganath, and A. A. Kassim, “Highly scal-
able wavelet-based video codec for very low bit-rate envi-
ronment,” IEEE J. Select. Areas Commun., vol. 16, no. 1, pp.
12-27, Jan. 1998.

[11] M. Anionini, M. Barlaud, P. Mathieu, and 1. Daubechies,
“Image coding using wavelet transform,” [EEE Trans. Im-
age Processing, vol. 1, pp. 205-220, Apr. 1992,

I-220

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

