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Abstract

This paper presents a fully scalable image coding scheme based on the Set Partitioning
in Hierarchical Trees (SPIHT) algorithm. The proposed algorithm, called Fully Scalable
SPIHT (FS-SPIHT), adds the spatial scalability feature to the SPIHT algorithm. It provides
this new functionality without sacrificing other important features of the original SPIHT
bitstream such as: compression efficiency, full embeddedness and rate scalability. The flex-
ible output bitstream of the FS-SPIHT encoder which consists of a set of embedded parts
related to different resolutions and quality levels can be easily adapted (reordered) to given
bandwidth and resolution requirements by a simple parser without decoding the bitstream.
FS-SPIHT is a very good candidate for image communication over heterogenous networks
which requires high degree of scalability from image coding systems.

Keywords: wavelet image coding, scalability, SPIHT, progressive transmission, multiresolu-

tion.

1 Introduction

The main objective of traditional image coding systems is optimizing image quality at given

bit rate. Due to the explosive growth of the Internet and networking technology, nowadays a

huge number of users with different network access bandwidth and processing capabilities can

easily exchange data. For transmission of visual data on such a heterogenous network, efficient

compression itself is not sufficient. There is an increasing demand for scalability to optimally

service each user according to the available bandwidth and computing capabilities. A scalable

image coder generates a bitstream which consists of a set of embedded parts that offer increas-
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ingly better signal-to-noise ratio (SNR) or/and greater spatial resolution. Different parts of this

bitstream can be selected and decoded by a scalable decoder to meet certain requirements. In

the case of an entirely scalable bitstream, different types of decoders with different complexity

and access bandwidth can coexist.

Over the past decade, wavelet-based image compression schemes have become increasingly

important and gained widespread acceptance. An example is the new JPEG2000 still image

compression standard [1, 2]. Because of their inherent multiresolution signal representation,

wavelet-based coding schemes have the potential to support both SNR and spatial scalability.

Shapiro [3] pioneered embedded wavelet-based image coding by introducing the Embedded

Zerotree Wavelet (EZW) coding scheme based on the idea of grouping spatially related coeffi-

cients at different scales to trees and efficiently predicting zero coefficients across scales. The

scheme provides an output bitstream that consists of data units ordered by their importance

and that can be truncated at any point without degradation of the coding efficiency. Many re-

searchers have since worked on variations of the original zerotree method [4–10]. An important

development of EZW, called Set Partitioning in Hierarchical Trees (SPIHT) algorithm by Said

and Pearlman [7] is one of the best performing wavelet-based image compression algorithms.

This coder uses the spatial orientation trees shown in Fig. 1 and partitions them as needed to sort

wavelet coefficients according to magnitude. Further improvements of SPIHT have been pub-

lished in [11–16]. Although almost all of the state-of-the-art zerotree-based image compression

methods are SNR scalable and provide bit streams for progressive (by quality) image compres-

sion, they do not explicitly support spatial scalability and do not provide a bitstream which can

be adapted easily according to the type of scalability desired by the decoder.

An improvement of the EZW algorithm called predictive EZW (PEZW) was reported in [8].

The PEZW improves the EZW through better context modelling for arithmetic coding and an

improved symbol set for zerotree encoding. It also uses proper syntax and markers for the com-

pressed bitstream to allow extracting bitstreams that represent various qualities and resolutions

of the original image. However the decoder needs some additional side information to decode

these bitstreams. Tham et al. [17] introduced a new zerotree structure called tri-zerotree and

used a layered coding strategy with the concept of embedded resolution block coding to achieve

a high degree of scalability for video coding. A spatially scalable video coding scheme based
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on SPIHT was reported by Kim et al. in [13]. Their coder produces a two-layer bitstream; the

first layer is used for low resolution, and the second one adds the extra information required for

high resolution. Although the first layer of this method is rate scalable, the bitstream is not fully

embedded for high resolution. Moreover, it is not possible to easily reorder the encoded bit-

stream to arbitrary spatial resolutions and SNR’s. However, the ability to reorder the bitstream

is an important requirement for access to images through heterogeneous networks with a large

variation in bandwidth and user-device capabilities.

In this paper, a fully scalable image coding scheme based on the SPIHT algorithm is pre-

sented. We modify the SPIHT algorithm to support both spatial and SNR scalability features.

The encoder creates a bitstream that can be easily parsed to achieve different levels of resolu-

tion or/and quality requested by the decoder. A distinct feature of the presented coder is that

the reordered bitstreams for different spatial resolutions, which are obtained after parsing the

main bitstream, are fully embedded (SNR scalable) and can be truncated at any point to obtain

the best reconstructed image at the desired spatial resolution and bit rate. In other words, our

modified SPIHT algorithm provides spatial scalability without sacrificing SNR scalability in

any way.

The rest of this paper is organized as follow. The next section, Section 2, describes the FS-

SPIHT algorithm. The bitstream formation and parsing are explained in Section 3. Section 4

shows some results on the rate-distortion performance for our codec and provides comparisons

with the SPIHT coder. Finally some conclusions are presented in Section 5.

2 Fully Scalable SPIHT (FS-SPIHT)

In this section, we first give a brief description of the SPIHT algorithm, then explain our mod-

ification of SPIHT (FS-SPIHT) for fully supporting SNR and spatial scalabilities. The SPIHT

algorithm consists of three stages: initialization, sorting and refinement. It sorts the wavelet co-

efficients in three ordered lists: the list of insignificant sets (LIS), the list of insignificant pixels

(LIP), and the list of significant pixels (LSP). At the initialization stage the SPIHT algorithm

first defines a start threshold due to the maximum value in the wavelet coefficients pyramid, then

sets the LSP as an empty list and puts the coordinates of all coefficients in the coarsest level
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of the wavelet pyramid (i.e. the lowest frequency band; LL band) into the LIP and those which

have descendants also into the LIS. Fig. 1 shows the parent-child relationships used within the

wavelet tree. The pixels in the coarsest level of the pyramid are grouped into blocks of 2 � 2

adjacent pixels, and in each block one of them has no descendants. In the sorting pass, the algo-

rithm first sorts the elements of the LIP and then the sets with roots in the LIS. For each pixel in

the LIP it performs a significance test against the current threshold and outputs the test result to

the output bitstream. All test results are encoded as either 0 or 1, depending on the test outcome,

so that the SPIHT algorithm directly produces a binary bitstream. If a coefficient is significant,

its sign is coded and then its coordinate is moved to the LSP. During the sorting pass of LIS, the

SPIHT encoder carries out the significance test for each set in the LIS and outputs the signif-

icance information. If a set is significant, it is partitioned into its offspring and leaves. Sorting

and partitioning are carried out until all significant coefficients have been found and stored in

the LSP. After the sorting pass for all elements in the LIP and LIS, SPIHT does a refinement

pass with the current threshold for all entries in the LSP, except those which have been moved

to the LSP during the last sorting pass. Then the current threshold is divided by two and the

sorting and refinement stages are continued until a predefined bit-budget is exhausted.

In general, an N level wavelet decomposition allows at most N + 1 levels of spatial resolu-

tion. To distinguish between different resolution levels, we denote the lowest spatial resolution

level as level N + 1. The full image then becomes resolution level 1. The three subbands that

need to be added to increase the resolution from level k to level k � 1 are referred to as level

k � 1 resolution subbands. An algorithm that provides full spatial scalability would encode the

different resolution levels separately, allowing a parser or the decoder to directly access the data

needed to reconstruct with a desired spatial resolution. The original SPIHT algorithm, however,

encodes the entire wavelet tree in a bitplane by bitplane manner and produces a bitstream that

contains the information about the different spatial resolutions in no particular order.

In [18] we modified SPIHT to support both spatial and SNR scalability by adding a new

list to the SPIHT lists and modifying the SPIHT sorting pass. The FS-SPIHT algorithm pro-

posed in this paper solves the spatial scalability problem through the introduction of multiple

resolution-dependent lists and a resolution-dependent sorting pass. For each spatial resolution

level we define a set of LIP, LSP and LIS lists, therefore we have LIPk, LSPk, and LISk for
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k = kmax; kmax� 1; : : : ; 1 where kmax is the maximum number of spatial resolution levels sup-

ported by the encoder. In each bitplane, the FS-SPIHT coder starts encoding from the maximum

resolution level (kmax) and proceeds to the lowest level (level 1). For the resolution-dependent

sorting pass of the lists that belong to level k, the algorithm first does the sorting pass for the

coefficients in the LIPk in the same way as SPIHT and then processes the LISk list. During

processing the LISk, sets that lie outside the resolution level k are moved to the LISk�1. Af-

ter the algorithm has finished the sorting and refinement passes for level k it will do the same

procedure for the lists related to level k � 1. According to the magnitude of the coefficients in

the wavelet pyramid, coding of higher resolution bands usually starts from lower bitplanes. The

total number of bits belonging to a particular bitplane is the same for SPIHT and FS-SPIHT, but

FS-SPIHT arranges them according to their spatial resolution dependency.

In the following we first define the sets and symbols required by FS-SPIHT. These are the

same as for the original SPIHT algorithm. Then we list the entire FS-SPIHT coding algorithm.

Definitions:

� c(i; j): wavelet transformed coefficient at coordinate (i; j)

� O(i; j): set of coordinates of all offspring of node (i; j)

� D(i; j): set of coordinates of all descendants of node (i; j)

� L(i; j): set of coordinates of all leaves of node (i; j). L(i; j) = D(i; j)� O(i; j).

� H: set of coordinates of all nodes in the coarsest level of wavelet coefficients pyramid

� Sn(i; j): significance test of a set of coordinates f(i; j)g at bitplane level n

Sn(i; j) =

�
1 If maxf(i;j)gfjc(i; j)jg � 2n

0 otherwise

� Type A sets: for sets of type A the significance tests are to be applied to all descendants

D(i; j).

� Type B sets: for sets of type B the significance tests are to be applied only to the leaves

L(i; j).

� nmax: maximum bitplane level needed for coding
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nmax = blog2(maxf(i;j)gfjc(i; j)jg)c

� kmax: maximum level of spatial scalability to be supported by the bitstream (1 � kmax �

N + 1).

� �k: A set of subbands in the decomposed image that belong to spatial resolution level

k (1 � k � kmax) of the image.

FS-SPIHT coding steps:

1. Initialization

� n = nmax, and output n;

� LSPk = ; , 8k; 1 � k � kmax;

� LIPk =

�
; for 1 � k < kmax

f(i; j)g; 8(i; j) 2 H k = kmax

� LISk = ; , 8k; 1 � k < kmax;

� LISkmax = f(i; j)g as type A, 8(i; j) 2 H which have descendants;

� k = kmax;

2. Resolution-Dependent Sorting Pass

� SortLIP(n; k);

� SortLIS(n; k);

3. Refinement Pass

� RefineLSP(n; k);

4. Resolution Scale Update

� if (k > 1)

– k = k � 1;

– go to step 2;

� else, k = kmax;

5. Quantization-Step Update

� if (n > 0)
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– n = n� 1;

– go to step 2;

� else, end of coding.

Pseudo Code:

SortLIP(k; n)f

� for each entry (i,j) in the LIPk do:

– output Sn(i; j);

– if (Sn(i; j) = 1), then move (i; j) to the LSPk, output the sign of c(i; j);

g

SortLIS(n; k)f

for each entry (i; j) in the LISk

� if the entry is of type A

– if (8(x; y) 2 D(i; j) : (x; y) =2 �k), then move (i; j) to LISk�1 as type A;

– else

� output Sn(D(i; j));

� if (Sn(D(i; j)) = 1) then for each (p; q) 2 O(i; j)

� output Sn(p; q);

� if (Sn(p; q) = 1), add (p; q) to the LSPk, output the sign of c(p; q);

� else, add (p; q) to the end of the LIPk;

� if (L(i; j) 6= ;), move (i; j) to the end of the LISk as an entry of type B;

� else, remove entry (i; j) from the LISk;

� if the entry is of type B

– if (8(x; y) 2 L(i; j) : (x; y) =2 �k), then move (i; j) to LISk�1 as type B;

– else
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� output Sn(L(i; j));

� if (Sn(L(i; j)) = 1)

� add each (p; q) 2 O(i; j) to the end of the LISk as an entry of type A;

� remove (i; j) from the LISk.

g

RefineLSP(n; k)f

� for each entry (i; j) in the LSPk, except those included in the last sorting pass (i.e. the

ones with the same n), output the nth most significant bit of jc(i; j)j.

g

Note that the total storage requirement for all lists LIPk, LSPk, and LISk for k =

kmax; kmax � 1; : : : ; r is the same as for the LIS, LIP, and LSP used by the SPIHT algorithm.

To support bitstream parsing by an image server/parser, some markers are required to be

put into the bitstream to identify the parts of the bitstream that belong to the different spatial

resolution levels and bitplanes. This additional information does not need to be sent to the

decoder.

3 Bitstream Formation and Parsing

Fig. 2 shows the bitstream structure generated by the encoder. The bitstream is divided into

different parts according to the different bitplanes. Inside each bitplane part, the bits that belong

to the different spatial resolution levels are separable. A header at the beginning of the bitstream

identifies the number of spatial resolution levels supported by the encoder, as well as informa-

tion such as the image dimension, number of wavelet decomposition levels, and the maximum

quantization level. At the beginning of each bitplane there is an additional header that provides

the information required to identify each resolution level.

A single encoded bitstream for the full-resolution image is stored on an image server. Differ-
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ent users with different requirements send their request to the server and the server or a parser

within the network provides them with properly tailored bitstreams that are easily generated by

selecting the related parts of the original bitstream and ordering them in such a way that the

user requests are fulfilled. Fig. 3 illustrates the principle. To carry out the parsing process, the

image server or parser does not need to decode any parts of the bitstream.

Fig. 4 shows an example of a reordered bitstream for spatial resolution level r. In each bit-

plane only the parts that belong to the spatial resolution levels greater or equal to the requested

level are kept and the other parts are removed. Note that all header information for identifying

the individual bitplanes and resolution levels are only used by the image parser and does not

need to be sent to the decoder.

The decoder required for decoding of the reordered bitstream follows the encoder with the

output command replaced by an input command, similar to the original SPIHT algorithm. It

needs to keep track of the various lists (LIS, LIP, LSP) only for resolution levels greater or

equal to the required one. It can recover all information for updating the lists during the sorting

pass of each quantization level (bitplane) at each spatial resolution level. The only additional

information required by the decoder is the maximum number of spatial scalability levels (kmax)

supported by the encoder.

4 Experimental Results

In this section we present some numerical results for the FS-SPIHT algorithm. All results were

obtained with 8 bit per pixel (bpp) monochrome images of size 512�512 pixels. We first applied

five levels of wavelet decomposition with the 9/7-tap filters of [19] and symmetric extension at

the image boundaries. The FS-SPIHT encoder was set to produce a bitstream that supports six

levels of spatial scalability.

After encoding, the FS-SPIHT bitstream was fed into a parser to produce progressive (by

quality) bitstreams for different spatial resolutions. The bitstreams were decoded with different

rates and the fidelity was measured by the peak signal-to-noise ratio (PSNR). The bit rates for

all levels were calculated according to the number of pixels in the original full size image.
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Figs. 5 and 6 compare rate-distortion results of FS-SPIHT and SPIHT at different spatial

resolution levels for test images. For spatial resolution level 1, the bitstream needed by the

FS-SPIHT decoder can be obtained by simply removing the bitplane headers from the encoder

output bitstream. The results clearly show that the FS-SPIHT completely keeps the progres-

siveness (by SNR) property of the SPIHT algorithm. The small deviation between FS-SPIHT

and SPIHT is due to a different order of coefficients within the bitstreams. For resolution levels

2 and 3, the FS-SPIHT decoder obtained the proper bitstreams tailored by the parser for each

resolution level while for the SPIHT case we first decoded the whole image at each bit rate

and then compared the requested spatial resolutions of the reconstructed and original images.

All bits in the reordered FS-SPIHT bitstream for a particular resolution belong only to that

resolution, while in the SPIHT bitstream, the bits that belong to the different resolution levels

are interwoven. Therefore, as expected, the performance of FS-SPIHT is much better than for

SPIHT for resolution levels greater than one. As the resolution level increases, the difference

between FS-SPIHT and SPIHT becomes more and more significant. All the results are obtained

without extra arithmetic coding of the output bits. As shown in [7], an improved coding per-

formance (about 0.3-0.6 dB) for SPIHT and consequently for FS-SPIHT can be achieved by

further compressing the binary bitstreams with an arithmetic coder.

5 Conclusions

We have presented a fully scalable SPIHT algorithm that produces a bitstream which supports

spatial scalability and can be used for multiresolution parsing. This bitstream not only has spa-

tial scalability features but also keeps the full SNR embeddedness property for any required

resolution level after a simple reordering which can be done in a parser without decoding the

bitstream. The embeddedness is so fine granular that almost each additional bit improves the

quality, and the bitstream can be stopped at any point to meet a bit budget during the coding or

decoding process. The algorithm is extendable for combined SNR, spatial and frame-rate scal-

able video coding and also for fully scalable coding of arbitrarily shaped still and video objects.

The proposed multiresolution image codec is a good candidate for multimedia applications such

as image storage and retrieval systems, progressive web browsing and multimedia information

transmission, especially over heterogenous networks where a wide variety of users need to be
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differently serviced according to their network access and data processing capabilities.
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Figure 1: Orientation of trees across wavelet bands.
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Figure 5: Comparison of rate-distortion results for the Goldhill test image at different spatial
resolution levels. Top: level 1 (original image size 512 � 512); middle: level 2 (256 � 256);
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bottom: level 3 (128� 128).

16



Figure Captions

Fig. 1. Orientation of trees across wavelet bands.

Fig. 2. Structure of FS-SPIHT encoder bitstream which is made up of different parts according

to spatial resolution and quality.

Fig. 3. An example of an image server and a parser in a network for providing various bitstreams

for different resolutions or/and quality levels requested by different users.

Fig. 4. Reordered FS-SPIHT bitstream for spatial resolution level r decoding.

Fig. 5. Comparison of rate-distortion results for the Goldhill test image at different spatial reso-

lution levels. Top: level 1 (original image size 512�512); middle: level 2 (256�256); bottom:

level 3 (128� 128).

Fig. 6. Comparison of rate-distortion results for the Barbara test image at different spatial reso-

lution levels. Top: level 1 (original image size 512�512); middle: level 2 (256�256); bottom:

level 3 (128� 128).
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