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ABSTRACT
In this paper, multi-modulation schemes (MMSs) are employed
to increase the rate of our two new Complex Orthogonal De-
signs (CODs) proposed for eight transmit antennas, namely C1 and
C2, corresponding to the Amicable Orthogonal Designs (AODs)
(8;1,1,2,2;1,1,2,2) and (8;1,1,1,4;1,1,1,4), respectively. In addition,
the optimal inter-symbol power allocation in the proposed codes in
single modulation as well as in MMSs in Additive White Gaussian
Noise (AWGN) channels is examined. It turns out that, in some
modulation schemes, equal power transmission per each symbol
time slot is not only optimal from the technical point of view, but
also optimal in terms of achieving the best symbol error probability.
The principles examining the MMSs in order to increase the rate of
space-time block codes (STBCs) and the optimal power allocation
for multi-modulated STBCs mentioned here can be generalized for
STBCs of other orders without any difficulty.

1. INTRODUCTION

It is well known that STBCs of complex signals for more than two
transmit antennas with full diversity cannot provide a full rate.
The maximum rates of those STBCs for 4 and 8 transmit antennas
are 3/4 and 1/2, respectively [1]. The STBCs for more than two
transmit antennas are attractive in the sense that they provide more
spatial diversity and temporal diversity for transmitted symbols,
and consequently, provide better bit error performance than those
for two transmit antennas. Additionally, they provide full spatial
diversity for a given number of transmit antennas. To date, the
existing STBCs for eight transmit antennas have comprised various
unused symbol time slots (50% of symbol time slots are unused
in the code mentioned in [1]), where no useful information is
transmitted. The number of unused symbol time slots in STBCs
should be limited since, during those slots, the transmit antennas
must be turned off. This is inconvenient from technical point
of views, especially for the systems transmitting a hight data
rate, i.e., the symbol time period is very small. In [2], two new
orthogonal STBCs based on the AOD theory [3] were proposed
for eight transmit antennas. In the proposed codes, namely C1
and C2, the number of unused symbol periods is only 25% and
12.5%, respectively (see next section), compared to 50% in the
conventional designs mentioned in literature, such as [1]. In
addition, limiting the number of unused symbol time slots results in
providing more space and symbol time slots for transmitting bits,
i.e., providing more spatial and temporal diversity for those bits,
and consequently, providing better bit error performance than the
conventional code. This is clearly shown in the simulation results
presented later in this paper. Moreover, the authors took advantage
of the property that, some symbols in the proposed codes appear
more often than the others, in order to increase the code rate by
utilizing higher level modulation schemes with higher transmission
power for those symbols appearing more times in the codes. In
this paper, the authors provide further research on these codes.
Particularly, we utilize an 8-ary Quadrature Amplitude Modulation
(8 QAM) scheme to further improve the bit error performance
of the proposed codes. In addition, we examine the optimal

inter-symbol power allocation in our proposed codes with various
modulation schemes. It is a simple task to generalize the principles
of the MMSs increasing the rate of STBCs and the optimal power
allocation in multi-modulated STBCs mentioned in this paper to
apply for STBCs of other orders, and therefore, we do not carry out
this task here.

The paper is organized as follows. In Section 2, the two new
STBCs proposed for eight transmit antennas are derived. In
the next section, the MMSs increasing the rate of the proposed
codes are examined. The optimal ratios of symbol power in
different modulation schemes for C1 and C2 in AWGN channels
are examined in Section 4. Simulation results are presented in
Section 5 and the paper is concluded by Section 6.

2. TWO NEW ORTHOGONAL STBCS FOR EIGHT
TRANSMIT ANTENNAS

Orthogonal STBCs that can be used with complex signal constella-
tions can be constructed by using CODs defined as follows:

Definition 1 A complex orthogonal design (COD) X of order n is an
n× n matrix on the complex indeterminates s1, . . . ,st , with entries
chosen from 0, ±s1,. . . ,±st , their complex conjugates ±s∗1,. . . ,±s∗t ,
or their product with i =

√−1, such that:

XHX =
[ t

∑
k=1

|sk|2
]
In (1)

where XH denotes the Hermitian transposition of X and In is the
identity matrix of order n.

CODs are strongly connected to the AODs [3]. The detailed the-
ory of AODs, including limitations on the number of different vari-
ables for a given design order can be found in [4]. Drawing from
the presented theory of the existence of AODs, we found two new
CODs of order 8, namely C1 and C2 (see Figure 1), corresponding
to the AOD(8;1,1,2,2;1,1,2,2) and AOD(8;1,1,1,4;1,1,1,4), respec-
tively. It is easy to realize that, C1 and C2 satisfy the following

equation: CH
i Ci =

[
∑4

j=1 |s j|2
]
I8, i=1,2. With single modulation,

the proposed codes provide a code rate of 1/2 as the conventional
one.

3. MMS TO INCREASE THE CODE RATE

It is visible that, in C1 and C2, some symbols are transmitted in more
than a single time slot per given antenna. In fact, in C1, symbols s3
and s4 are transmitted twice as often as s1 or s2. In C2, the symbol s4
is transmitted four times as often as s1, s2 or s3. Thus, by associat-
ing s3 and s4 in C1 and s4 in C2 with symbols from multilevel com-
plex modulation schemes and the remaining symbols in each of C1
and C2 with QPSK symbols, the overall code rates can be increased
(there is, certainly, a tradeoff between the rate increase and the bit
error performance). Particularly, if the MMSs (QPSK+8 PSK) and
(QPSK+16 QAM) are used, then the code rate increases from 1/2
to 5/8 and 3/4 for C1, and to 9/16 and 5/8 for C2, respectively [2].
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Figure 1: Two new STBCs proposed for eight transmit antennas.

Figure 2: 8 QAM signal constellation and bit mapping scheme.

The transmission power in each symbol time slot is equally allo-
cated and normalized to 1. It means that, s3 and s4 in C1 are derived
from a 2-power 8 PSK or 16-QAM signal constellation, while s4 in
C2 is derived from a 4-power 8 PSK or 16-QAM signal constella-
tion. All other symbols modulated by a QPSK signal constellation
in the codes have unit power. Additionally, the MMS employing a
QPSK signal constellation associated with an 8 QAM constellation
(see Figure 2) can be utilized to further improve the bit error per-
formance of the proposed codes C1 and C2 at the same bandwidth
efficiency (same code rate) as when an 8 PSK signal constellation
is used. Particularly, the symbols s3 and s4 in C1 are modulated by
a 2-power 8 QAM constellation, while s4 in C2 is modulated by a 4-
power 8 QAM constellation. Other symbols in the codes are derived
from a unitary QPSK constellation. The coordinates of the 8 QAM
signal points, presented as functions of the factor A, are given in the
figure. It is easy to realize that, if the Euclidean distance between
the two closest symbols in the constellation is Dmin=2A then the av-
erage transmitted signal power is Pav=4.73A2 [5]. For the 2-power
and 4-power constellations, the value of A in Figure 2 is 0.65 and
0.9196, respectively. An 8 QAM signal constellation provides a bet-
ter error property than an 8 PSK one, because, in order to have the
same average power per symbol as in the former case, the Euclidean
distance between the closest signal points in the later case dmin is
smaller than that of the former case. Specifically, dmin=1.665A, i.e.,
dmin
Dmin

=0.83. Clearly, the orthogonality of the signals has been par-
tially relaxed in the 8QAM constellation to increase the Euclidean
distance between the closest signal points.

4. OPTIMAL INTER-SYMBOL POWER ALLOCATION IN
SINGLE MODULATION AND MMSS

Allocating equally the power transmitted in each symbol period is
optimal in terms of equal transmission among transmit antennas.
However, in order to make sure whether the best error performance
of the codes in different modulation schemes can be achieved, the
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Figure 3: SER v.s. r in single modulation and MMSs depending on
γ in AWGN channels.

dependence of the error probabilities of the proposed codes on the
ratio between the power of the symbols in the codes must be ex-
amined. In this section, the symbol error rates (SERs) of QPSK
single modulation, (QPSK+8PSK) and (QPSK+16 QAM) MMSs
are examined. The SERs of QPSK, 8PSK and 16 QAM symbols in
AWGN channels are (see (5.2-59), (5.2-61) in [5] and (5.17), (5.18)
and (5.19) in [6]):

PQPSK = 2Q(
√

2γ)[1−0.5Q(
√

2γ)] (2)

P8PSK = 2Q(
√

6γ8sin
π
8

) (3)

P16QAM = 3Q(

√
4γ16

5
)+Q(3

√
4γ16

5
) (4)

where Q(x)= 1√
2π

∫ ∞
x e−

t2
2 dt; µ=

√
2γ

1+2γ ; γ , γ8 and γ16 are the

signal-to-noise ratio (SNR) per bit of QPSK, 8 PSK and 16 QAM
symbols, respectively.

Next, we calculate the SERs of C1 and C2 in different modu-
lation schemes. Let us consider the case where the symbols s1 and
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Table 1: The optimality of power allocation in single modulation
and MMSs

Modulation scheme Min. ropt
C1 C2

Single QPSK 2 2
QPSK + 8 PSK 6 4
QPSK + 16 QAM 12 8

s2 in the code C1 are QPSK modulated, while s3 and s4 are 8 PSK
modulated as an example. It is noted that, in each row (or column)
in C1, the power of the symbol s j (j=3,4) transmitted is |s j|2, i.e.,
only one symbol s j is transmitted, although, it may appear multiple
times. Therefore, among four transmitted symbols, the probability
when QPSK symbols are transmitted in C1 is 50%, and that when 8
PSK symbols are transmitted is 50%, and consequently, the average
SER of the code C1 is:

PQQ88 =
1
2

PQPSK +
1
2

P8PSK (5)

Let Esk be the average power of the symbol sk, (k=1. . .4) and r be
the inter-symbol power ratio of the proposed codes, which is defined

r=
Esi
Es j

, where i=3,4; j=1,2 for C1 and i=4; j=1,. . . ,3 for C2. Clearly,

in MMSs, r is the ratio between the power of the higher level modu-
lated symbols (8 PSK or 16-QAM) and that of the QPSK modulated
ones. If we denote N0 to be the variance of noise at the receive an-
tenna, γs the average SNR per symbol and γb the average SNR per

bit, then the power ratio can be rewritten as follows:r = Esi /N0

Es j /N0
= γsi

γs j
,

where γs=γblog2M for an M-ary modulated symbol. Particularly, in
the (QPSK+8PSK) MMS, r = γsi

γs j
, (i = 3,4; j = 1,2), or:

r =
3γ8

2γ
(6)

Therefore, if average symbol error probabilities are presented as
functions of r and γ (SNR per bit of QPSK modulated symbols),
then from (2), (3), (5) and (6), we have the average SER of C1 as
given below1:

PQQ88 = Q(
√

2γ)[1−0.5Q(
√

2γ)]+Q[
√

4rγsin(π/8)]
(7)

Similarly, the average SER for C2 is:

PQQQ8 = 1.5Q(
√

2γ)[1−0.5Q(
√

2γ)]

+0.5Q(
√

4rγsin(π/8))

Following this method to calculate symbol error probabilities,
we derive the average SERs of QPSK single modulation and
(QPSK+16QAM) MMSs in AWGN channels as:
• (QPSK+16QAM) multi-modulation:

PQQ1616 = Q(
√

2γ)[1−0.5Q(
√

2γ)]+

+ 1.5Q(
√

0.4rγ)+0.5Q(3
√

0.4rγ)

PQQQ16 = 1.5Q(
√

2γ)[1−0.5Q(
√

2γ)]+

+ 0.75Q(
√

0.4rγ)+0.25Q(3
√

0.4rγ)

1The channel SNR, which is used to simulate in this paper and is defined

in Section 5 as SNR = ∑4
k=1 Esk

N0
, is a linear function of γ (for a given value

r). Additionally, the symbol error probability is a monotonically decreasing
function with respect to (w.r.t.) γ for a given value r (see (7) for instance).
Hence, if the best error performance w.r.t. γ is achieved, then that w.r.t. SNR
is also achieved. Based on these notes, in the paper, the authors search for
the optimal inter-symbol power ratio ropt w.r.t. γ , i.e., we search for the
optimal power of the higher level modulated symbols corresponding to a
given power of the QPSK modulated symbols.
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Figure 4: SER v.s. γ with the inter-symbol power ratio r=2 for C1,
r=4 for C2 and with the optimal values ropt .

• QPSK single modulation:

PQQQQC1 = Q(
√

2γ)[1−0.5Q(
√

2γ)]

+ Q(
√

2rγ)[1−0.5Q(
√

2rγ)]

PQQQQC2 = 1.5Q(
√

2γ)[1−0.5Q(
√

2γ)]

+ 0.5Q(
√

2rγ)[1−0.5Q(
√

2rγ)]

Figure 3 presents the theoretical relation between SERs and r de-
pending on γ for the above modulation schemes. In this figure, γ
runs from 2 dB to 10 dB. We can realize that, when r is small,
then the higher r is, the better the performance is. However, when
r increases, the curves become flat gradually. The value at which
the curves become flat is the (smallest) optimal power allocation
ratio ropt . The optimal inter-symbol power ratios ropt for C1 and
C2 in different modulation schemes are presented in Tables 1. It
is clear that the best symbol error performance can be achieved
by the code C1 in the QPSK single modulation, since, the power
ratio of this code is r=2, which is equal to the (smallest) optimal
power ratio ropt=2. Similarly, the best symbol error performance is
also achievable by the code C2 in the QPSK single modulation and
(QPSK+8 PSK) MMS, since, the power ratio of this code is r=4
while the (smallest) optimal power ratios are ropt=2 and 4, respec-
tively. For the remaining modulation schemes, r<ropt and, conse-
quently, there exists the gap between the error performance curves
corresponding to r and ropt , which is presented in Figure 4. From
that figure, we realize that, the potential improvements for the code
C1 in (QPSK+8PSK) MMS and (QPSK+16 QAM) MMSs are 2.5
dB and 4.5 dB, respectively. The potential improvement for C2 in
the (QPSK+16 QAM) MMS is 0.8 dB. The potential improvement
is evaluated at SER = 10−2. The potential improvement indicates
that the error performance of the proposed codes, specially for C1
in the (QPSK+16 QAM) MMS, can be much more improved by
selecting r closed to ropt with the penalty of unbalanced power
transmission per symbol time slot at a given transmit antenna. In
addition, it is observed from Figure 3 that, in the same MMS, the
code C1 may provide a higher code rate with a lower error probabil-
ity than C2 for large r (r ≥ 3 in (QPSK+8PSK) MMS and r ≥ 5 in
(QPSK+16QAM) MMS) at any γ in the considered range (2-10 dB).
Hence, it is preferable to select C1 if r is large enough, provided that
the balanced power transmission is not the necessary requirement of
the system.

5. SIMULATION RESULTS

In this section, the bit error properties of the codes C1 and C2
in single modulation as well as MMSs are presented. A system
comprising eight transmit antennas and one receive antenna is
considered. SNR here means the channel SNR, i.e., the ratio
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Figure 5: (a): Comparison between the proposed codes and the conventional one [1] with single QPSK modulation in AWGN channels; (b)
and (c): Bit error performance of the code C1 and C2 with different MMSs in AWGN channels.

between the total power of the received signals and the power
of noise during each symbol time slot. Channels are assumed
to be AWGN ones. In all simulations, the power of the signal
transmitted in each symbol time slot in C1 and C2 is normalized
to one. Figure 5(a) indicates that, at bit error rate BER=10−3,
C1 provides 0.4 dB bit error performance better than C2, and
0.65 dB better than the conventional code [1], when QPSK single
modulation is considered. This is intuitively interpreted as follows.
Code C1 provides more diversity (temporal and spatial) for four
bits embedded in the symbols s3 and s4, while C2 provides more
diversity for only two bits in s4. In other words, C1 has a higher
resistance to burst errors than C2. Therefore, it is preferable to
select C1 for the case when QPSK single modulation is utilized for
eight transmit antennas.

Figures 5(b) and 5(c) present the BERs of C1 and C2 in
(QPSK+8PSK), (QPSK+8QAM) and (QPSK+16 QAM) MMSs.
As mentioned in Section 3, for the same MMS, C1 provides a
higher code rate than C2. The performance of the conventional
code [1] with those MMSs is presented here as the reference to
evaluate the superiority of our codes (evaluation must be carried
out in the same MMS, i.e., at the same bandwidth efficiency). It is
noted that, for the conventional code, both symbols s3 and s4 are
8PSK or 16 QAM modulated in Figure 5(b), while only the symbol
s4 is 8PSK or 16 QAM modulated in Figure 5(c). The power
transmitted per each symbol time slot is also normalized to one.
Clearly, the MMS using an 8 QAM signal constellation provides
better bit error performance than other schemes. Particularly, for
the proposed codes, the SNR gains achieved by the (QPSK+8
QAM) MMS are 0.15 dB for C2, and 1 dB for C1, respectively,
to have the same BER=10−4 as in the (QPSK+8PSK) MMS.
Additionally, at the same code rate, the proposed codes provide
better bit error performance than the conventional code by around
3 dB in both (QPSK+8PSK) and (QPSK+16 QAM) MMSs for
case of C1, and around 4.5 dB in (QPSK+8PSK) MMS and 5.7
dB in (QPSK+16 QAM) MMS for case of C2, respectively, at
BER=10−4. Therefore, at BER=10−4, the SNR gains achieved by
the (QPSK+8QAM) MMS are 4.65 dB for C2 and 4 dB for C1,
compared to the conventional code with the (QPSK+8PSK) MMS.

6. CONCLUSION

In this paper, the MMSs are examined to increase the rate of our
proposed codes for eight transmit antennas. In addition, the authors
derive the optimal inter-symbol power ratios for the proposed codes
in various modulation schemes. Based on the above consideration,
the following conclusions can be derived. Firstly, when QPSK sin-
gle modulation is utilized, it is recommended to select the code C1

for eight transmit antennas as it provides the best BER. Secondly,
the (QPSK+8 QAM) MMS can be used to improve the performance
of the codes proposed for eight transmit antennas, especially for C1.
Thirdly, it turns out that selecting the power ratio r=2 for C1 (r=4
for C2) is not only optimal in terms of equal power transmission per
each symbol time slot, but also optimal in terms of achieving the
best symbol error property in QPSK single modulation (QPSK sin-
gle modulation and (QPSK+8 PSK) MMS for C2) in AWGN chan-
nels. Fourthly, the performance of the proposed codes can be re-
markably improved, especially for the code C1 in (QPSK+16 QAM)
MMS, if the power ratio r is selected close to the optimal ratio ropt ,
with the penalty of unbalanced power transmission per symbol time
slot at a given transmit antenna. Fifthly, in the same MMS, the code
C1 may provide a higher code rate with a better error performance
than C2 if the inter-symbol power ratio is large enough, provided
that the balance power transmission per each symbol time slot is
not necessary property of the system. Finally, the principles ex-
amining the MMSs in order to increase the rate of STBCs and the
optimal power allocation for multi-modulated STBCs mentioned in
this paper can be generalized for STBCs of other orders, such as for
the 4-ordered STBC in [1][7], without any difficulty.
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