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Abstract—Edge-based and region-based active contours are
frequently used in image segmentation. While edges characterize
small neighborhoods of pixels, region descriptors characterize en-
tire image regions that may have overlapping probability densities.
In this paper, we propose to characterize image regions locally by
defining Local Region Descriptors (LRDs). These are essentially
feature statistics from pixels located within windows centered on
the evolving contour, and they may reduce the overlap between
distributions. LRDs are used to define general-form energies based
on level sets. In general, a particular energy is associated with an
active contour by means of the logarithm of the probability den-
sity of features conditioned on the region. In order to reduce the
number of local minima of such energies, we introduce two novel
functions for constructing the energy functional which are both
based on the assumption that local densities are approximately
Gaussian. The first uses a similarity measure between features
of pixels that involves confidence intervals. The second employs
a local Markov Random Field (MRF) model. By minimizing the
associated energies, we obtain active contours that can segment
objects that have largely overlapping global probability densities.
Our experiments show that the proposed method can accurately
segment natural large images in very short time when using a fast
level-set implementation.

Index Terms—Active contours, image segmentation, local
statistics.

I. INTRODUCTION

OMPUTER vision requires the automated segmentation

of images for automatic object detection and object
tracking. This goal is pursued in our work in a framework of
variational methods for image and video segmentation known
as active contours. In active contour methods, a contour is
usually associated with an energy that is minimal when the
contour coincides with the real boundary of the segmented
object. Widely used energy types depend on the smoothness of
the boundary curve and on image features. Image features may
refer to the strengths of edges, yielding edge-based active con-
tours, or to the characteristics of the regions occupied by objects
in the processed image, yielding region-based active contours.
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The segmentation process starts with an initial contour obtained
automatically or with the help of user interaction; this contour
is evolved toward object boundaries under the action of forces
derived from the energy, and energy minimization is often
accomplished by gradient descent.

The first active-contour methods were edge-based. They used
functionals that depended on the response of the image to an
edge filter [1]-[6] such that the magnitude of motion forces de-
rived from these functionals is small when the strength of the
edge is large. Segmentation with an edge-based active contour is
affected by problems of edge detectors. Weak or undetected per-
ceptual edges cause an active contour to pass over real bound-
aries, while undesired strong edges stop the contour. Conse-
quently, a classical drawback of edge-based active contours is
their small range of capture, which requires the initial contour
to be placed in the close vicinity of objects to be segmented.

Intensity information gained from image regions delimited
by a contour can be added to an edge-based energy functional
in order to make active contours more robust [7], [8]; further
results for energies based on a linear combination of edge and
region terms can be found in [9] and [10]. Zhu and Yuille [11] as-
sumed it to be sufficient to consider only the region information
and designed a more general energy functional for the purpose
of segmenting an image in N regions.

For region-based energies, it is crucial to capture the informa-
tion that best distinguishes between different objects. The infor-
mation about a region is named region descriptor (in similarity
with [12] and [13]). An obvious region descriptor is one that
characterizes the variation of color (intensity) within a region.

Recently, many other types of information have been included
in the energy functional: a vector field, as the optical flow field
[14], [15], motion detection [16], [17], texture filters [17]-[19],
image description by vectors of features [20], measures of shape
similarity [21], [22], or the geometry of the active contour [23].

Image features that describe a region usually vary within
this region and the goal of a region descriptor is to formalize
and measure the variation. This is commonly achieved by
interpreting the varying values of a feature as realizations of a
random variable with a probability density function (pdf) that
needs to be determined. Some methods approximate region
pdfs before the active contour segmentation is started: in [7],
[9], and [24], image intensities are modeled as a Gaussian
mixture and its parameters are learned beforehand with an
expectation maximization (EM) algorithm; in [25], the user se-
lects image samples, thus making it possible to compute a mean
and a variance for each region. Other methods [11], [26]-[28]
approximate the parameters of the pdf at each evolution step,
and for each region.
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Arbitrary densities of real world objects can be approximated
by nonparametric kernel density estimators (KDEs) [20], [29].
With an appropriate choice of kernel window width, nonpara-
metric KDEs can describe the data closely, but because of this,
new data points not present in the learning set may have low
probabilities. Two regions described nonparametrically may be
compared in order to decide if they belong to the same object by
computing a statistical divergence, like the Kullback-Leibler di-
vergence or the Battacharya distance [30].

Generally, a region descriptor is estimated from all samples
within the region delimited by the active contour (e.g., [17],
[24], [26]), i.e., they are global region descriptors. Active con-
tours based on global region descriptors are negatively affected
when the support of distributions of different regions overlap.
In this situation, values which fall on the tail of the distribution
might be classified based on the maximum likelihood criterion
into the wrong region. This is an omnipresent problem in clas-
sification tasks; however, an overview of possible solutions is
beyond the scope of this paper. In our work, we use the idea that
the overlap is likely to decrease if only samples from around the
contour are the basis for density estimation.

In this paper, regions are described only locally, due to the
fact that local processing may minimize the overlap of pdfs de-
scribing regions. For this purpose, the concept of local region
descriptors (LRDs) computed from samples within windows
centered on the active contour is introduced along with a for-
malism for constructing energy functionals from LRDs. These
functionals have many local minima. This issue is addressed in
our work by changing the function that takes LRD quantities
as argument, such that the number of local minima is reduced.
First, a balloon force is added to a region competition equation
defined via the function “logarithm-of-pixel-probability” with
pdf determined from a LRD. Second, we introduce two novel
functions based on a Gaussian similarity measure and on local
modeling of the image as a Markov Random Field (MRF). We
name all these functions segmenter functions. LRD-based active
contours can be used for object segmentation, for example, for
interactive object selection for enhancement and photographic
processing of digital images; the method could also be used for
medical image segmentation. In our ongoing work, it is used to
track the contours of surgeons’ hands in video streams recorded
while they accomplish a simple suturing task.

In the remainder of the paper, a short review of region-based
functionals and their properties is presented for completeness
in Section II. Novel LRD-based active contours and segmenter
functions are introduced and their properties explored in
Section III. Their implementation is accomplished with the
fast level-set method [31]; low computation times are impor-
tant, especially for tracking applications. The proposed active
contours are tested on various synthetic and real, gray, and
color images by placing initial contours inside the objects to
be segmented and letting them grow toward object boundaries.
In experiments, objects with visual characteristics that create
the impression of an approximately uniform appearance can
be segmented correctly and rapidly, even when they are neigh-
bored by objects similar in appearance. The paper concludes
with a discussion and comments on future work.
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II. AcCTIVE CONTOURS EVOLUTION BASED ON
REGION DESCRIPTORS

Active contour methods have been studied intensely in re-
cent years; we present a short overview of these methods as to
allow for the placement of our method in the active contours
framework.

The appearance of many objects in the world can be described
by their color (or intensity), while their shapes are mostly com-
posed of smooth surfaces rather than of randomly connected
points. An image of an arrangement of such objects is often
the union of homogeneous regions delineated by smooth bound-
aries. As early as 1985, Mumford and Shah have formulated this
observation mathematically. In their work [32], a region in an
image I may be approximated by a piecewise smooth function
u(x) = u(x,y) defined on the domain R C R? and discon-
tinuous at the set of boundary points C'; the boundary is con-
sidered to be parametrized by the arc length s; the best-approxi-
mating piecewise smooth function is determined by minimizing
the functional

E(u,C):/|u—I|2dx+u /
) .

|Vu|2dx—|—1//ds. (1)
R-C c

The parameters 1 and v weigh the contributions of smooth-
ness of the approximating function and the smoothness of the
boundary set, respectively. Textures, however, cannot be de-
scribed by smooth functions; instead, their visual characteris-
tics may be modeled as random variables. One may consider
that the value of a feature, e.g., the image intensity I(x), at an
image pixel x = (z,y) in a region R; is drawn from a pdf
p(I(z,y)|0;) = pi(x), where §; denotes the parameters of the
probability density in region R;. Assuming N regions and that
the pixels in each region are independent random variables, Zhu
and Yuille introduce a functional that depends on the probabili-
ties of image pixels and the image’s division into regions

N
Iz

B0, N)=3 4 [ 4 [as) - [ [1ospixix-+ 5

=1 c R,

2

In order to minimize this energy, an initial boundary Cj ; is
evolved between two regions I?; and R; and its motion is de-
rived using Green’s theorem and the Euler—Lagrange equations
[11]

9C;

o = it + (log pi (1)) = logp, (160) 7 ©)

with k; the curvature of the curve C; ; and 7; its normal pointing
in the direction of the region I2;. The first half of the second term
may be interpreted as a force, with the magnitude depending on
the region descriptors R;, pushing the curve outward or inward.

Finding the minimum of the energy involves the unknown
parameters ¢;. They are determined according to the EM prin-
ciple [33]. First, the regions R; are considered to be fixed, and
the parameters of their probability densities p; are computed.
Second, the previously computed probability densities are con-
sidered constant, time is introduced as an artificial parameter
t, and the equation of motion is determined by computing the

Authorized licensed use limited to: Alfred Mertins. Downloaded on January 20, 2009 at 02:47 from IEEE Xplore. Restrictions apply.



DAROLTI et al.: LOCAL REGION DESCRIPTORS FOR ACTIVE CONTOURS EVOLUTION

gradient of the energy with respect to the contour’s variation in
time.

The algorithmic implementation of the above equation of mo-
tion may rely on parametric curves known as snakes [1], [11],
[34], [35]. Handling snake points may be a daunting task, espe-
cially when more image objects are to be detected or when the
topology of the contour changes. The level-set method intro-
duced by Osher and Sethian [36] is an alternative that can deal
with these issues easily. The level-set method has thus become
a very popular method for numerically evolving curves in the
direction of their normal. To this end, an evolving curve C(t),
can be embedded as the zero-level set of a function ®

C(t) = {(,y)|®(2,y,t) = 0}) with @(z,9,0) = Co  (4)

where () is the initial curve. ® is very often a signed distance
function taken to be positive on the inside and negative on the
outside of the curve. The outward normal 7 of C and its cur-
vature k£ can be expressed with the gradient V& of the new
function. An equation of motion of the form C; = k7 can
be rewritten as ®;, = div(V®/|V®|)|V®|, with @, the time
derivative of function ®.

Level sets were introduced into the variational approach to
image segmentation with edge-based functionals [5], [6], [37],
where @ is the signed distance transform of the active contour.
For region-based contours, a contour’s energy and motion were
formulated with the help of level sets in [26] and [27]

E(®,p1.pa) = / / H(®)logp + (1 — H(®))logps
"R

— u|VH(¢)| dxdy (5)

=H'(®) (logpy — log p»

() e

The domain of the entire image is denoted here with R. The
energy equation obtained with this formulation is equivalent to
(2) for the special case of two regions. The function H is the
Heaviside function

0P
ot

1, >0,

H(x):{d <0 )

Since this function is discontinuous, its derivative H'(x) needs
to be defined; commonly, it is defined as the Dirac delta distri-
bution: H'(z) = é(x). Alternatively, to avoid introducing an
infinite term at ®(z,y) = 0, one can use a regularized versions
H., of the Heaviside function and obtain its derivative H! = 6.,
similar to [26], with a small ¢ > 0. The Dirac delta is then ob-
tained for ¢ — 0.

Recently, some authors have been concerned with level-set
based functionals that must be optimized over multiple regions,
i.e., when more than two objects are to be segmented in an image
[12], [13], [24], [29], [38], and [39]. If each of N regions is
represented by its own level set ®;, the functional in (5) and its
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corresponding equation of motion can be written by analogy as
follows [29]:

N

E(‘Pi;Pi;N)ZZ //H(q’i)logpi

~CIVH@)]dx | ®)

09,
LoH(®;
5 ~H'(®:)

X (logpi — max o logp; +uki> &)
>

376, H(®;)

where we have denoted k; = (div(V®;/|V®;|)). In (9), the
statistics force generated by a region R; at a contour point com-
petes with the strongest of the statistic forces generated by all
other regions neighboring the point.

In [12] and [13], shape derivatives are introduced. With shape
derivatives, region descriptors are variables that depend on ®;
and thus introduce additional terms to the evolution equation.
These terms may improve the segmentation, increasing at the
same time the complexity of the implementation and its com-
putational cost. We prefer a fast method and rely on LRDs for
good segmentation results, and so growing contours draw upon
(8) and (9), as will be seen later in the next section.

III. LocAL REGION DESCRIPTORS FOR ACTIVE CONTOURS

Probability densities that strongly overlap usually lead to poor
segmentation results. The extreme example of an image with
two regions having normal distributions with the same mean but
different variances, as shown in Fig. 1(a), has been discussed in
[11]. The authors correct the evolution equation by analyzing
two sets of parameters in order to solve the problem. One set
of parameters is computed for each region from all pixels in
this region. The other set is computed from the pixels within a
window W (x,y) centered on each pixel on the evolving curve.
The probability of a boundary pixel is then replaced with the
probability of the window considered to have m independent
pixels in the energy functional (2). The motion force then in-
cludes a term that compares the mean and variance over sam-
ples in the window with the global region mean and variance in
a statistic-test-like manner.

Global region descriptors decouple pixel intensities from
their spatial positions. Visually, more elements form a group
not only if they look alike, but also if they are in close proximity
of each other, whereas similar elements which are further away
will not belong to the group. For a very large number of objects,
their visual properties change in a relatively slow manner; a
comparatively sudden change in color and texture is very often
accounted for by the presence of a boundary between objects.
For our method, we assume that this situation exists in the
image to be segmented.

Global descriptors may hamper an active contour. In the ex-
ample in Fig. 1(a), regions are well characterized by their re-
spective variances, but this need not alway be the case when
distributions overlap. Consider the synthetic image in Fig. 2(a).
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Fig. 1. Example of segmentation of a synthetic image. (a) Synthetic image
showing two regions with mean 128 and variances 10 and 35 and (b) its seg-
mentation by (12) (using the segmenter function ¢, ¢ of LRDs). The segmenta-
tion is initialization invariant, as long as an initial contours is placed inside each
region.

(2) (b)

Fig. 2. Example of segmentation of a synthetic image. (a) Synthetic image
showing two regions with the same discrete uniform distributions and (b) seg-
mentation obtained with LRDs plus balloon force according to (12). The seg-
mentation is initialization invariant, as long as an initial contours is placed inside
each region.

(@

It shows two rectangles filled with the same color gradient that
clearly are two separate regions. The intensities in the two rect-
angles not only overlap, they even follow the same discrete uni-
form distribution. However, we see two rectangles because the
intensity varies slowly within a rectangle and the sudden change
responsible for boundary perception occurs between rectangles.

Describing each region only locally is more appropriate for
this image. In the following, we show how both synthetic and
natural images can be correctly segmented by minimizing en-
ergies given by different segmenter functions that depend on
LRDs only. First, LRDs are defined, then the concept of seg-
menter functions is introduced along with different segmenter
functions.

A. Local Region Descriptors

A region descriptor is defined by choosing or computing fea-
tures that quantify the visual characteristics of a region and by
choosing a probability model to express the variation of those
features within the region. Features may be chosen from inten-
sity, color and quantities that measure texture properties, e.g.,
values obtained with Gabor filters. Probability distributions on
features may be modeled parametrically or nonparametrically.

Local region descriptors are region descriptors with proba-
bility distributions computed from feature samples within re-
gions that lie inside windows centered on an active contour. At
each pixel on the contour, statistics that describe a region are
computed only from samples in this region. The LRD is defined
by specifying the size of the window, the features that describe
a region and the type of pdf underlying the feature samples in
the window. Features may be computed by either taking into ac-
count the position of the contour or not. Choosing the window’s
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Fig. 3. [Initial contour separating the image in an inside region R;, and an out-
side region Ro.¢, and two windows W4 («, y) and Wa(«, y) centered on con-
tour pixels. Region patches included in each window are highlighted. Each in-
cludes the pixels for computing the LRDS 11 in, 721 out, M2,in, and M2 ous.

shape is also part of an LRD’s definition. Most obvious choices
for the shape of a window with the purpose of describing the
image locally are squares (as in [11] and [40]) or circles (as in
[11] and [41]).

Two square-shaped windows used for computing LRD values
are depicted in Fig. 3. The initial curve of circular shape di-
vides the image into two regions: R;, and R,,;. Each window
includes patches from both regions. We observe that a LRD
value describing R;,, for example the mean pixel intensity, can
vary significantly along the contour; the same is true for an
LRD describing R,y¢. For example, the inside mean my j, in
the window on the left of the image is closer in value to the out-
side mean 1m oy in the same window than to inside mean ms ;,
in the window on the right.

We were inspired by Pappas’ adaptive clustering algorithm
[40] in our decision to determine the statistics of each region
separately. That algorithm estimates the local pdf of a class of
pixels only from pixels that already belong to this class with
very promising results.

Samples within a window are assumed to follow a Gaussian
distribution in [11], but the position of the contour is not taken
into account when computing statistics. Unlike in [11], pdfs for
LRDs are computed for each region in the window separately;
another difference to [11] is that here global descriptors are
not computed. The position of the true boundary is considered
uncertain to a degree depending on the window size [11]; in
other words, processing within local windows over real bound-
aries blurs those boundaries. Windows too small do not include
enough samples to reliably compute statistic forces. Windows
too large are associated with large uncertainty about real
boundary positioning. With LRDs the boundary is generally
accurate when it is found. The window size influences the result
minimally, as long as it contains enough samples from each
region and the assumptions about the local pdfs are true; this
can be seen in the results of experiments with different window
sizes (Figs. 8 and 12). These results are due to the fact that,
as the contour approaches the boundary, only samples from
one image regions are used to compute the statistics for this
region. In [34], the possibility of separately describing patches
of regions is theoretically mentioned, but experimentally tested
is a method that compares all samples in a window centered on
a snake point with region patches outside and inside the point.

A method that involves local region processing and takes into
account the contour’s position has been presented very recently
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in [42]; an independent development, the method is based on
a special type of LRD. The feature used to describe the region
is the local weighted average of the intensity inside the region.
This feature is obtained at every pixel by convolving the image
with a Gaussian kernel that is strictly positive only inside the
region containing the pixel. The window W is reduced to a pixel
and there is no probability distribution model involved.

In [43], it has been demonstrated that the Mumford—Shah en-
ergy based on piecewise smooth approximations of an image
is equivalent to a likelihood-based energy, like the one in (8),
formulated with LRDs. With LRD, the authors refer to is the
intensity feature with normal pdf with constant o = /0.5, and
a given window size W. This is an alternative interpretation of
the LRD in [42]. Another LRD for which the feature is pixel in-
tensity is used in [41] to formulate a hybrid region-edge-based
active contour; the local statistics computed for this feature are
the local region sample mean and variance. For the images seg-
mented in this paper, we choose simple region descriptors that
rely on intensity or color and we assume the distributions of
these features are locally Gaussian; intensity is modeled with
univariate normal distributions and color with multivariate ones.
We make this choices because we want to emphasize the advan-
tages that come from local modeling.

IV. SEGMENTER FUNCTIONS

The majority of energies associated with active contours have
either a form similar to (1) or to (8); (1) expresses the assump-
tion that the image can be approximated with piecewise smooth
functions, while for (8) it is assumed that each pixel is assigned a
region label and the energy represents the logarithm of the joint
pdfs of pixel features conditioned on their region label. Both
energy types thus include a double integral over the image do-
main of functions of values depending on pixel features. This
suggests that we can introduce general-form energies based on
LRDs by allowing a flexible form for the function under the
double integral.

Formally, consider a LRD composed of a feature vector
f(z,y) = (filty,. .., filtpr) and a pdf model with a different
set of parameters §" (»¥)NR: = shortly ¥, in each window
W (z,y) centered on a contour pixel (z,y). Also consider
a real-valued function g. Each region R; is represented by
a level-set function ®;. We propose the minimization of the
following energy functional, considering the number N of
regions known

p=3— [ [ (@0 (00,07~ 191 (@) ) oy
1=1 R

(10)
The equation of motion for the level set function ®; can be de-
rived from the associated Euler-Lagrange equation (as shown
in the Appendix)

00,
ot
We denote function g as segmenter function.

Note that the Mumford-Shah functional in (1) cannot be ex-
pressed, in general, as a particular case of this energy, since the

= H'(®) (g (fi,0]") — g (f;.0)) + pki) . (1D)
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Fig. 4. Spiral image presented in [27] (left) segmented with LRDs and seg-
menter function g = log par (right).

function smoothness term |’ r_c | Vuldx is missing; an excep-
tion is presented in [43] (discussion will follow shortly). To ob-
tain an energy similar to the energy in (8), we have to set the
segmenter function to ¢ = log p. The difference is that the pa-
rameters of p are not computed from all values in a region R;,
but as LRDs.

Very often, the result of applying a filter f;(x,y) to an image
region is considered to be normally distributed, and, thus, g is
the logarithm of a Gaussian pdf of a random vector (with more
components when more filters are employed), i.e., g = log py
with ppr ~ N (m}", $1") and where m}" is the mean and X}V
is the covariance matrix. The image of a spiral (the one pre-
sented in [27]) is initialized with a grid of circles. It is segmented
by a contour moving according to (11) with the segmenter func-
tion g = log par. The LRD is composed of the feature pixel-in-
tensity for which the probability model is a local normal distri-
bution; the result is shown in Fig. 4.

As in [11], contours are best initialized within real objects. If
a real boundary cuts through an initial patch, it still may be pos-
sible to obtain a correct segmentation by evolving the contour
according to the region competition equation (11); it is neces-
sary for this purpose that part of the object to be segmented oc-
cupies a larger area in the initial patches. This situation occurs
for the spiral in Fig. 4.

Energies based on LRDs are prone to have more local minima
than those based on global descriptors (depending on the degree
of separability between descriptors), especially when an initial
contour lies within a real object. Since LRDs characterize the
image locally, they are short sighted. They tend to be equal on
both sides of a contour making the motion force approximately
zero. Not being able to use information from image parts outside
the windows, the contour cannot escape a local minimum.

One alternative is to rely on the curvature term to evolve the
contour when it lies in a homogeneous region, as in [42]. This
alternative requires balancing the influence of the data term and
the curvature term in the energy functional: the less homoge-
neous the regions, the larger i needs to be; however, this is
known to be an unreliable solution. Because of the large number
of local minima, the method in [42] is very sensitive to initial-
ization and so is the method in [41]. For both methods, local
image data must have unimodal distributions that are well char-
acterized by the local mean. The variance of the data is not taken
into consideration, but it can often be an important source of in-
formation (e.g., in the image in Fig. 1). Such probability models
are often not suitable for descriptors based on more than one
feature.
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In the previous section, we have noted that special cases of
LRDs are used to construct the energies in [41] and [42]; we
may now show the segmenter functions used there. We have
discussed in the previous section that the LRD in [42] can be
interpreted in two different ways. If the interpretation is that the
LRD relies on the feature intensity, the segmenter function that
needs to be used is g = log prr with ppr ~ N(m}V,/0.5). If
the LRD is considered to be based on the local weighted mean
intensity inside a region, denoted here by f(x), the energy pro-
posed by the authors is obtained with the segmenter function
g = (I(x)— f(x))?; 1(x) denotes image intensity at pixel x. In
this case, g resembles the term under the integral in the Mum-
ford—Shah functional from (1). The segmenter function in [41]
also resembles this term, since g = (I(x) — m!" (x))2, where
m}" (x) is computed as the local mean intensity inside region
R;. We note here that the function in [34] may also be seen as
segmenter function. It is based on the Ward distance and its role
is to decide whether a small rectangular patch around a snake
point should be merged with the foreground or the background.

Another known solution to the local minima problem involves
adding a small constant force term A to the motion of the level
set o,

0%;
ot

H'(®:) (9 (£:.0]) — g (£;.0) + X+ pki) . (12)

The parameter A can be seen as a maximal area constraint [26] or
plays the role of a balloon force [3]. In the context of LRD-based
contour evolution, it can be interpreted as follows: A indirectly
gives a measure of the minimal difference that needs to exist be-
tween two local image regions in order to consider that they de-
scribe the sides of a real image boundary. As such, it may reflect
the a priori knowledge about the smallest local image variations
created by real edges. Equation (12) describes a local region
competition equation with an added balloon force that yields a
method for segmenting images with strongly overlapping distri-
butions for foreground and background objects, as will be dis-
cussed in Section VII and exemplified in Fig. 5.

For the moment, we turn to the synthetic example in Fig. 2(a):
the segmentation in Fig. 2(b) is obtained according to (12). The
feature for the LRD is pixel intensity, which is assumed to be
normally distributed in local regions, and g = log p/; this par-
ticular form of (12) will be referred to as LRDs plus balloon
force. A circular initial contour is placed inside each region.
While the computed means and variances for the outside and
inside of the contour in each window are minimally different,
balloon forces drive each contour to grow. When the contour
reaches the bright-to-dark boundary, the local regions are dif-
ferent enough for the contour to stop. We may observe that at
the boundary, distributions of LRDs do not overlap. Since inten-
sity in a region varies linearly, the initial contours may be placed
anywhere inside the respective regions. However, if global de-
scriptors are computed, the result of the segmentation will de-
pend on the initialization: for example, if the initial circles are
centered within each region and include no dark pixels, the dark
pixels will remain in the background since their initial proba-
bility is larger in the background, a fact that does not change
when region histograms are reestimated at each iteration.
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Fig. 5. Segmentation of two images of hands. (a) Initial contours. In the top
image two regions with largely overlapping pdfs are marked with ellipses.
(b) Segmentation with LRDS and the constant speed A. (c) Segmentation with
the method described in [11].

V. NOVEL SEGMENTER FUNCTIONS

The search for other solutions to avoid local minima led us to
two novel segmenter functions as will be shown in the following.

Consider an initial contour included in an image object. In-
tuitively, it should grow as long as pixels just outside the con-
tour look similar to pixels just inside the contour; then, instead
of describing both sides of the contour for region competition,
only the objects need to be described, while a similarity test
checks whether outside pixels match the description. In order
to describe the intuition formally, we assume that the LRD has
a normal distribution and we define the segmenter function g to
be the confidence that a sample was drawn from this distribu-
tion. For a 1-D feature we know the percentage « of values that
fall within an interval of length ¢, around the mean m", mea-
sured in standard deviations s"V. Chosen a confidence level a,
the function g will be written

Jsim (Canfl(x)?HW) = Ca - SW - |f1(X) - mW| (13)

where |.| denotes the absolute value; we remind here that " =
(m",sW)and W = W (z, y) N Ryy. The smaller the difference
between the feature value and the window mean the higher is the
confidence that the pixel at the center of the window belongs to
the inside of the contour. For o = 0.68, the values accepted as
similar fall within one standard deviation from the mean (¢,
1). This means that if the difference is larger than one standard
deviation, the pixel is considered to belong to the outside.

If more features are observed, g can be formulated using the
value of the X?i distribution, with d degrees of freedom. For a
chosen confidence 1 — «, values similar to the curve’s inside
will fall within a given interval of size x%(«) around the mean.
Let f(x) € R? be the feature vector, m" its mean, and &% its
covariance matrix. gsim, 1S then written as

gsim (e, £,0") = x2(a)—(f—m" ) (ZV)H(f-m") (14)

and it can be interpreted similarly to the 1-D case. Only LRDs
which describe the inside of the object are computed, and let-
ting all the variables describe the object only, the energy to be
minimized is changed to

E(®,p)=— / / (H(@)guim (/). 6™) -5 [VH(®)])dx.
"’ (15)
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The energy is minimal when ggm(x) > 0 for each x with
H(®(x)) = 1, ie., each pixel in the segmented object must
be similar to its neighbors in the object, with similarity mea-
sured by gsim- The associated Euler—Lagrange equation for the
level-set function @ can be derived (see the Appendix), leading
to the following equation:

o® .
5 = H'(@) (gan(£.6™) + £k).

This equation can be interpreted as follows: the level set will
move to include a contour pixel x if gs;m(x) > 0 and the curve
stays smooth; it will do the opposite if gs;, < 0. Since only the
object is described, the background can be complex and have
any sort of empirical distribution as long as it does not match
the local description of the object to be segmented. It is thus
still possible to segment the object with gy, even if object edges
are weak (e.g., Figs. 7 and 9). This is not possible with local re-
gion competition plus balloon force that needs minimally strong
edges that are stronger than edges inside the object to be seg-
mented. Also, this method has difficulties when one of the ob-
jects separated by the boundary has a local probability distribu-
tion with multiple modes [see the incorrect segmentation of the
camera in Fig. 10(c)].

The similarity-based function gy, has difficulties to segment
objects that are very noisy (e.g., Figs. 1 and 15) or when a small
percentage of the pixels in a local window does not match the
local Gaussian description (e.g., the background of Fig. 7 is
slightly textured and there are some highlights in the arm and
racket in Fig. 14). Methods that deal with this type of problems
are often based on Markov Random Fields (MRF) and we will
now show how a more robust segmenter function can be ob-
tained by using MRF modeling.

A MRF models the intuitive idea that the intensity of a pixel
depends on the intensities of neighbored pixels. Let the current
segmentation of image I be C, i.e., C is the characteristic func-
tion of the current local segmentation. If this segmentation is
considered to be the realization of a MRF, the pdf for a pixel’s
segmentation label can be approximated by a Gibbs distribution
as follows (for an introduction on MREF, see, for example, [40])

Y (Va(e))

cleCI(x)

(16)

P(C(x)=c¢)= %ewp —%

a7
with Cl(x) the set of pairwise cliques that include pixel x, and
Vi(c) the potential of a clique ¢l of two 8-connected pixels x

and y
Votey = | =B ife(x) = c(y) and x,y € Cl(x)
a(c) = B, ife(x)# c(y)andx,y € Cl(x).

T is a parameter considered here constant. The original image is
assumed to be a noisy version of the segmented image. The goal
is to maximize the conditional pdf p(I(z,y)|C = ¢) assuming
that it is normally distributed with mean m " and standard de-
viation s!V. This is equivalent to minimizing the cost

—(I(x) — Z Val(e

2( ‘V) ('lECl (x)

It may be observed that minimizing (19) is equivalent to max-
imizing (13) if the potential term is ignored. One can conclude

(18)

Cost(x € R;) = (19)
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that it is possible to write a regularized version of (13) by taking
into account the potential term
> Val)

gmrf(ca 7f176VV:C) =Cq- SVV _| fl (X) -
cleCl(x)
(20)

Parameter v controls the influence of the regularization term.
The purpose of this regularization is to ensure a smooth segmen-
tation; from this point of view, it may be seen as a binarized ver-
sion of the smoothness constraint in the Mumford—Shah func-
tional in (1).

The MRF cost function gyt can replace g, in the energy
of a growing curve (15) and in the corresponding equation of
motion (16). It has been employed to segment the synthetic
example in Fig. 1(a). The image was first filtered to replace
each pixel’s intensity with the value of the standard deviation
of pixels in the 8-neighborhood; subsequently a Gaussian filter
was applied and the resulting image was segmented employing
the segmenter function gy,,s. The result is shown in Fig. 1(b).
An initial circular contour was placed inside each image region
and the two contours evolved independent of one another; one
can thus observe for each region a stable segmentation result,
independent of the other region.

Knowledge about the image can influence not only the choice
of the pdf model for computing LRDs, but the choice for the seg-
menter function g as well. A more detailed discussion follows in
Section VII, after mentioning one possible implementation for
the method presented in this paper.

VI. LoCAL REGION DESCRIPTORS FOR ACTIVE CONTOURS
AND THE FAST LEVEL-SET IMPLEMENTATION

The level-set method is a very powerful tool that offers an im-
plicit representation of image regions and is able to deal auto-
matically with topology changes. However, numerical schemes
for implementing level sets are computationally expensive; a
fair amount of research has been done to improve upon the issue,
for example, in [16] and [44].

The fast level-set method [31] has been shown to be two or-
ders of magnitude faster than a sparse field numeric algorithm.
It reduces the segmentation problem to classifying pixels to ei-
ther the inside or outside of the zero level set representing a
contour. The evolution algorithm can thus be greatly simplified
[31], [45]. The level-set function is integer valued. At all pixels
inside the curve the value is 3, except at border pixels where the
value is 1. At all pixels outside the curve the value is —3, except
at border pixels where the value is —1. Boundary smoothness
is incorporated into the implementation by applying a Gaussian
filter to the level-set function; the amount of smoothness is con-
trolled by filter size and the number of filtering operations.

Speed forces are computed only at pixels on the inner and
outer borders, and the level-set function is accordingly updated
to include or exclude the pixel in question. The speed of the
contour is always 1 pixel per time unit in this implementation.
Thus, to evolve the contour at a pixel, we only need to compute
the sign of the segmenter function; in fact, with this implemen-
tation, it suffices to have a segmenter function with codomain
{—1,0,1}. The advantage is that many computations can be ap-
proximated by integer computations and speed is increased. For
example, for g, computations are reduced to comparing the
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number of cliques assigned a positive 5 when the pixel belongs
to the contour’s inside with a threshold. Even with such a strong
approximation, segmentation results are very good as will be
seen in the next section.

In order to reduce the number of iterations needed for con-
vergence, several initial patches can be placed inside one object,
since level set methods can deal with topology changes automat-
ically. Finally, LRDs can be computed every few steps during
curve evolution, instead of every step; their values then deter-
mine motion forces not only for the center of the window, but
also for pixels in its immediate neighborhood. The algorithm
may be summarized as follows.

« Initialize contour C, level set ®, and select g and W

* For each pixel x on C"

— compute 0!V, the LRD for each neighboring region i;
— for each y € Ny(x), compute the sign of g(y,8}").
¢ Evolve C according to steps 2 and 3 of Table 1 in [31].
» Stop if convergence or maximum number of iterations
reached.
In these expressions, Ny is a neighborhood of range s; when
s = 0 the computation is carried out only for the contour pixel.
With this algorithm, short times for the segmentation of large
images have been observed, as will be shown in the following
section.

VII. RESULTS AND DISCUSSION

In this section, we present results for the proposed method
and discuss the effects of different choices for parameters and
window sizes. The method was implemented in C++ and all
computations have been reduced to integer arithmetic. Contour
initialization is started by the user, by selecting a few pixels in
each object to be segmented and a circular contour is generated
around each selected pixel.

A. Experiment Settings

In our experiments, natural gray-level and color images were
segmented. Features for LRDs are pixel intensity or color un-
less otherwise specified and their local pdfs are assumed to be
Gaussian. We have experimented with LRDs, g = log par and
balloon forces according to (12), and with the two novel seg-
menter functions. The properties of evolution based on LRDs
plus balloon forces are discussed together with the influence of
the magnitude of the balloon force in Section VII-C. For the
novel segmenter functions, ¢, was set to 1 for all images. Ex-
perimentally it was found that a smaller value of 0.75 will often
create holes in the segmentation, and a larger value of 1.5 or 2
will cause leakage, especially for regions with large variances.
Both gsim and gp,,¢ use only information about the object. Due
to this fact, the boundary between background and silhouette in
Fig. 7 can be segmented although the hair and shirt contain the
intensities present in the background because these regions do
not fit the local normal distribution for the background close to
the boundary. Starting from the silhouette, with an initialization
that is just-as-far away from the boundary, we could not achieve
this segmentation because there are too many edges present.

With a few exceptions, boundary smoothness was imple-
mented by filtering the level-set function with a Gaussian filter
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of 5 x 5 pixels (standard deviation of 1.5), because a larger
filter can better prevent leakage; it also prevents the formation
of small holes in the segmentation (e.g., of noisy images).
However, a larger filter does not allow for an accurate segmen-
tation of corners and for such regions it is better to employ a
smaller filter. For example, due to sharp corners in the woman’s
shirt and the table, a 3 x 3 pixels filter has been employed to
segment images in Figs. 14 and Fig. 15.

The size of the window W and the magnitude of the balloon
force were varied in the experiments; segmentations change
gradually as these parameters are varied; in some situations,
these changes are minimal. The parameter 3 introduced to
compute g, has also been varied. It was found that it has a
much larger influence on the segmentation result, since it is
Vvery coarse.

B. Comparison With the Method From [11]

LRDs plus balloon force (with window side length of 11 px
and A = 5) were used to segment and track the hands shown
in Fig. 5; the difficulty of these images lies in the overlapping
support of the histograms for the hands and the background
(intensities between 50 and 75). For illustration purposes, two
such regions are marked with ellipses in Fig. 5. Edge detectors,
like Canny and Sobel yield edge maps that lead to leakage or
false boundaries. The lightest patches in the hands, as shown
in Fig. 5, are detected with an adaptive-threshold segmentation
of the background-subtracted image. The binary image is re-
peatedly eroded to ensure that the initial contour is well inside
the hands; using connected components, only the largest two
patches from the eroded image are kept and used to initialize
the contour. Subsequent frames are initialized by combining the
information from the background-subtracted current frame and
optical flow computed for pixels on the final contour in the pre-
vious frame.

The images of hands in Fig. 5 have also been segmented with
a fast level set implementation of the method introduced in [11],
starting with the same initial contours. Since neighbored regions
on the arms and sleeves are not well characterized by their vari-
ances, the method [11] cannot achieve an accurate segmentation
of the hands, as shown in Fig. 5(c). Dark pixels are mostly in the
background and such pixels on the hand also get assigned to the
background.

With the method in [11], further segmentation problems cre-
ated by overlapping global distributions can be seen in Fig. 6.
For the image in Fig. 6(e), the initial contour grows to include
all dark objects, instead of stopping at the silhouette. All build-
ings are included in the background of Fig. 6(f). One can ob-
serve that many contours in segmentations in Fig. 6(g) and (h)
are correct; however, the segmentation has leaked in Fig. 6(g),
and it stops before reaching the boundary in Fig. 6(h). In this
last image, pixels in the face region distort the PDF of part of
the background region. Combined with the intensity gradient in
the background itself and the noise in the image, this creates the
conditions for the contour to stop prematurely. These problems
are not present in the segmentations obtained with the method
presented in this paper, as can be seen in Fig. 6(1)—(1).
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Fig. 6. Comparison of two segmentation methods. (a)—(d) Initial contours for
both segmentation methods. (e)—(h) Segmentations obtained with the method in
[11] (superimposed on initial images). (i)—(1) Segmentations obtained with the
proposed method (superimposed on initial images).

Fig. 7. Segmentations obtained with different initializations. (a)—(c) Different
positions of initial contours for a popular image. (d) Segmentation with the func-
tion g, (8 = 5) for initialization (a) and W = 21 px; the other initializations
result in contours within a few pixels difference from the one in (d).

C. Influence of Parameter Choices and Initialization

In Fig. 7, we show the influence of different initializations for
the Miss America image. We employ the segmenter function
gmrf because the background is slightly textured;! the lighter

IDetails can be seen by zooming in the electronic version.
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() (d)
Fig. 8. Segmentations obtained with gm,r and 3 = 5 and different window
side lengths: (a) 11 px, (b) 15 px, (c) 25 px, (d) 31 px. Initialization as in Fig. 7(a).

pixels are outliers to a local normal distribution with very small
variance. The segmentation in Fig. 7(d) has been obtained by
setting the initial contour as depicted in Fig. 7(a) and using a
window side length of size 21 x 21 pixels, W = 21 px. Setting
the contour as depicted in Fig. 7(b) and (c) yields segmenta-
tions that are within few pixels from the contour presented in
Fig. 7(d).

For the same image, the influence of the window size is shown
by varying the length of the window side from 11 px to 31 px.
The corresponding segmentations are shown in Fig. 8. Here,
one can observe that larger windows are more prone to forming
stable holes. Altogether, we may conclude that initialization and
window size have little influence on the final segmentation. In-
accuracies at the image boundaries are partly due to pixels that
do not match the interior LRD, e.g., pixels become lighter at the
top of the image, and partly due to boundary effects. Critical
pixels in boundary regions have less neighbors in their corre-
sponding windows than those in the interior. The latter problem
can be solved when the image is extended by repeating border
pixels prior to segmentation and, after segmentation, cropping
the result to the original size.

We now compare segmentations with g,,,s and LRDs plus
balloon force, still looking at the Miss America image. The
background in Fig. 7 has a homogeneous texture; the lighter
pixels in the texture can be included in the curve due to gp,¢-
The background, shirt and arm are all dark; these regions have
quite similar values, but locally they are slightly different. The
differences can be detected with g,.f, as shown in Fig. 7(d).
LRDs plus balloon force in (12) do not rely as much on repre-
senting the region locally with the correct model, but on what
we perceive as strong edges; this motion cannot detect the dif-
ference between the two regions, as can be observed in Fig. 9(b)
[initialization as in Fig. 7(a)].

In Fig. 10, we show the result for segmenting the cameraman
image with g¢s, and LRDs plus balloon force, respectively,
starting from two different initializations. All segmentations
were obtained with W = 11 px; the balloon force was A = 5.
The segmentations with gg;,, are practically the same, while
results for the two initializations for LRDs plus balloon force
differ very little.
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() b

Fig. 9. Intermediary step (a) and segmentation obtained with LRDs plus bal-
loon force, W = 11 px and A = 5 (b) [initialization as in Fig. 7(a)].

Fig. 10. (a) Two different initializations. (b) Corresponding segmentations ob-
tained with ¢.im and W = 11 px. (c) Corresponding segmentations obtained
with LRDs plus balloon force and W = 11 px and A = 5.

Looking at the results in Fig. 10, one may compare the prop-
erties of g4, and LRDs plus balloon force. ggiy, is able to de-
tect the faint edges between the sky and the buildings because
the function is sensitive to subtle image changes in regions with
small local variances; this also explains the hollow around the
camera man. LRDs plus balloon force (A = 5) is less sensitive,
but more accurate in finding boundaries: the contour around the
camera man is very accurate, but part of the camera was seg-
mented into the background and some of the building edges are
not detected [Fig. 10(c)].

The number of detected building edges depends on the value
of \. The influence of this parameter is shown in Fig. 11. The
window width was W = 11 px and A\ was varied from 2 to 10
[initialization as in Fig. 10(a) top]. Fig. 11(a) shows segmenta-
tion with A = 2; observe that more building edges are found. As
A increases, more of the buildings are segmented into the back-
ground. For A\ = 8, 9 the segmentation is very similar to the one
for A = 10 shown in Fig. 11(d).

Fig. 12 shows the influence of window size on segmenting the
background in the cameraman image. The top row shows seg-
mentations with ggin,, and window side lengths of 13 px, 17 px,
and 21 px. The source of the differences in segmentation is the
color gradient in the sky. For a larger window, the differences
between bright outside pixels and the LRD are larger than for
a smaller window. The part of the luminous sky center not in-
cluded in the final contour grows with the window size.

The bottom row in Fig. 12 shows segmentations with LRDs
plus balloon force with A = 5 and window side lengths of 7 px,
13 px, and 17 px. In this situation, the larger the window the
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(d)

Fig. 11. Segmentation results for different values of A: (a) A = 2, (b) A = 6,
() A =T7,(d)A = 10 [with W = 11 px and initialization as in Fig. 10(a) top].

Fig. 12. Top row: Segmentation with window side lengths of 13 px, 17 px, and
21 px and ¢gs;m . Bottom row: Segmentation with window side lengths of 7 px,
13 px, and 17 px and LRDs plus balloon force [initializations as in Fig. 10(a)].

more inaccurate the segmentation and more of the buildings are
assigned to the background, because parts of different buildings
are represented with the same region descriptor. This decreases
the sensitivity to small changes, like the ones between the sky
and the buildings. Since the difference between grass and build-
ings is large enough, that the boundary can still be found.

Fig. 13 shows the influence of the threshold g for gy,,¢. This
threshold is set to 4 for most images: if 4 or more cliques have
positive 3 for the inner region, the speed is positive. Setting
this threshold to 3 usually causes leakage, as can be seen for
the background in Fig. 13(a) and for the racket in Fig. 13(c).
Setting it to 5 usually prevents the contour in reaching ob-
ject boundaries, as can be seen looking at the arm shown in
Fig. 13(c). However, there are exceptions. Setting this threshold
to 5 may prevent leakage as in Fig. 7(d); this is due to the fact
that dark pixels in the hair, with intensities similar to those
in the background, can be excluded from the segmentation
since many have 5 or more neighbors that have intensities that
do not match the background. In some situations, it may be
useful to set the threshold to 3; highlights on the arm initial-
ized as in Fig. 13(d) are better segmented with § = 3 than 4

Authorized licensed use limited to: Alfred Mertins. Downloaded on January 20, 2009 at 02:47 from IEEE Xplore. Restrictions apply.



DAROLTI et al.: LOCAL REGION DESCRIPTORS FOR ACTIVE CONTOURS EVOLUTION

Fig. 13. Influence of varying the threshold value for g,...¢: (a) 3 = 3, (b) 3 =
4, and (c) 3 = 3, for the racket and table, and 3 = 5 for the arm; the background
contours were not evolved so that the over- and under-segmentations can be
observed. Initializations: for (a) and (b) as in Fig. 7(a), for (c) as in (d). For
parameters leading to correct segmentations see the other figures.

Fig. 14. Segmentations of a table tennis scene. (a) Two initializations for the
table tennis scene. (b) Corresponding segmentations with g,,,¢ for the arm,
racket and table; g,.r Was chosen to deal with the highlights on these objects;
gsim Was sufficient in dealing with the background. (See text for parameters).
(c) Corresponding segmentations with LRDs plus balloon force (W = 11 px,
A =5).

(segmentation in Fig. 14(b) bottom). In Fig. 14, when using
LRDs plus balloon force, two different initializations result in
different segmentations for the arm, but not for other objects.
This is due to the lighter crease in the shirt not included in the
initial contour. This crease has a smooth shape and forms an
edge—pixels on the inside of the final contour are darker, pixels
on the outside lighter. This fits the definition of a real boundary,
and, thus, the final contour stops at this crease. When the novel
segmenter functions are used, the different initializations lead
to very similar segmentations.

From our first experiments, we conclude that, for LRDs plus
balloon force, a window side length of 11 px and A = 5 are
good candidates for starting the segmentation of a gray image.
Segmentations in Figs. 14(c) and 15(c) were obtained with these
values. For the novel segmenter functions, a good candidate for
the window side length is 21 px. Objects in Figs. 14(b) and 15(b)
were segmented with this window size. An exception was the
racket; since this object is small, a smaller window had to be
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(b)
Fig. 15. Segmentations of a noisy image. (a) Initialization for a noisy image
called Claire. (b) Its segmentation with the segmenter function gp,r, W =

21 px and 3 = 4. (c) Its segmentation with LRDs plus balloon force, W =
11pxand A = 5.

Fig. 16. Frame from the color sequence Akyio segmented with LRDs plus bal-
loon force (W = 11 px and A = 350) taking the RGB vector as feature.
Initialization (left) and final segmentation (right).

Fig. 17. Frame from the color sequence Erik segmented with LRDs plus bal-
loon force (W = 11 px and A = 350) taking the RGB vector as feature.
Initialization (left) and final segmentation (right).

chosen in order to keep the size of the window comparable to
the initial patch. The visual characteristics of the background in
Fig. 14(b) change minimally such that the pdf remains constant
over large image patches; the segmentation of the background
with W = 21 px is thus very similar to the segmentation with
W = 41 px.

A good candidate threshold for gyt is # = 4. This threshold
has been used to obtain the segmentations for the arm, racket
and table in Fig. 14(b) top and the racket and table in Fig. 14(b)
bottom; for the arm in this last image § = 3. For Fig. 15(b),
[ was also 4. g s wWas chosen for the arm racket and table in
Fig. 14(b) in order to deal with the highlights on these objects;
Jsim Was sufficient in dealing with the background.

D. Examples of Color Image Segmentation

We have also tested the proposed method on color images.
Figs. 16 and 17 present the initial contour and the result of
the segmentation of frames from two color video sequences,
commonly referred to as Akyio and Erik. For these images,
the LRD is considered to be a normally distributed RGB color
vector. Both segmentations were achieved by LRDs plus bal-
loon force, with a 5 x 5 px smoothing filter, the size of the
window W was 11 px and A = 350. These images cannot be
segmented correctly with the function g, Or g, ¢ because the
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Fig. 18. Image of a squirrel segmented with with ¢gsim and gm,¢ taking the
RGB vector as feature. Initialization (left) and final segmentation (right).

local regions that include the eyes and eyebrows have two modes
with different basins of attraction (one represents skin, the other
eyebrows and eyelashes and iris). This type of distribution is
badly approximated by a normal distribution. The eye regions
are close to the real object boundaries, and the large variances
of the Gaussians fitted to those regions cause background pixels
to be segmented into the foreground. The contour leaks around
the eyes.

The multivariate version of g+ was used to segment the
grass in Fig. 18(a); a similar result can be obtained with ggiy,,
with the difference that more small holes are formed in the
segmentation. The image was first smoothed to decrease the
variance in the grass. Otherwise, the variance of the window
sample is too large and causes the contour to leak into the region
occupied by the squirrel. In the regions around the squirrel’s
bottom and tail, grass overlaps fur and there is not a clear smooth
boundary. Both local regions include many light pixels. The
variance in the local region in the fur is larger than in the grass,
and, thus, if we start the segmentation from the squirrel, it will
leak into the grass at the bottom.

E. Computation Time

Our implementation is fast: the 397 x 499 noisy Claire image
and the 409 x 518 table tennis scene have been segmented in
under 5 s to obtain each of the two results in Figs. 14(b) and (c)
and 15(b) and (c), respectively. The faces in the 409 x 500 and
327 x 400 color images in Figs. 16 and 17 were both segmented
in under 0.5 s. The number of computations for the algorithm
depends the number of evolution steps, the number of contour
pixels at each step and the square of the window side length. The
first two variables make up for the largest amount of computa-
tion time. The Cameraman image is segmented in 0.61 s with
W =11 px and in 0.71 s with W = 21 px, with the initializa-
tion from Fig. 10(a), top. The image in Fig. 15 is segmented in
5swith W = 11 px and in 7 s with W = 21 px, with the ini-
tialization from Fig. 15(a). However, if the background of this
image is initialized with 4 instead of 2 circles, the computation
time can be reduced to under 1 s, because the number of evo-
lution steps decreases considerably. The C++ application runs
single threaded (it uses only one of the processor cores) on an
Intel(r) Core 2 Duo E6600.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have concentrated on region-based active
contours and region descriptors. Specifically, we have suggested
that overlap of pdfs for different regions is problematic, and it
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can be reduced if pdfs are computed locally. We have thus pro-
posed to replace global region descriptors with local ones in the
framework of active-contours segmentation. For this purpose,
we have defined LRDs by choosing representative region fea-
tures and selecting a probability model to represent their varia-
tion. Parameters of the local pdf are computed from samples that
lie in a region within a window centered on the active contour.
We have proposed to associate energies based on LRDs to active
contours by defining segmenter functions for a general-form en-
ergy. This procedure has been exemplified with three segmenter
functions. We have obtained a region competition equation and
an object-oriented approach that proved to have different prop-
erties in our experiments. The segmentation results proved to
be accurate in situations where the global distributions of fore-
ground and background overlap, and other methods fail. Results
could be obtained very fast by reducing calculations to integer
arithmetics and choosing a fast level-set algorithm.

Formulating the joint motion of multiple growing contours
guided by LRDs gives hope for a more robust method. Ro-
bustness could also be improved with the help of texture, dif-
fusion and other image filters, since in our experiments we have
only used the pixel intensity/color as feature. Filters cannot help
when an object is occluded by other objects; shape priors are
needed in this situation and some of our efforts are channeled in
this direction. The speed of the algorithm can also be improved;
at present only one processor core is used, but since memory
requirements are modest, LRDs can be computed in parallel for
different windows; we would expect the speed to increase with
the number of cores almost linearly.

APPENDIX

In this appendix, we give a solution for finding the minimum
of the following energy:

B(@) =~ [ [ (H@)(.6") - u|VH(@)) dedy.

2D
To find the optimum @, the Euler-Lagrange equations for
the level set function must be derived. For this purpose, it is
common to assume that the parameters of g do not depend on
®. To derive the variation of ®, consider replacing ® by ® + ey
where € is a very small number. Since £ is minimized by &,
OE(® + e))/0e = 0 for e = 0. Because of H'(z) = §(z), we
have |[VH (®)| = §(®)|V®|. According to the chain rule, this
partial derivative can be written by simultaneously substituting
€ = 0 (and thus obtaining OF /0P)

G%w)z—/gw@w

—n (s@Ivepy + o) 2T

9 ) dzdy. (22)

The last partial derivative is written by substituting € = 0

0|V(® + e)] 1

3 - 2|V(® + et)]

2 ((Po + €12)” + (Dy + €t)y)?) (23)

Oe
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1 VoV
= Dyrhy + Pyap) = ~——
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By plugging this term into (22) and integrating it by parts, we
obtain

(%w) —— [[ st

R

. (24)

- n(o@Ivals+a(@)

- //95(‘1>)1/J

R

VOV
—— )dxd
|V<1>|>‘”

- u(6'(<1>>|vq>|w—dw (6@)%)1/})

6(®)
+ / qu’m/)ds (25)
OR

where n is the outward normal vector to 0 R. We can write
Vi

div <5(¢)W) = % (6(<I>)|(Vb—fm> + 8% <6(<I>)|$i11>|>
:y@asiy+“@§2<%%a
+8'(®) |$?p| + 5((1))% <%>
Vo

By substituting (26) in (25)

6%7):_/Z<M@Hwa®m«%%0>wmy
+M/%Z_‘j¢d& 27)

OR
This partial derivative must be zero for all 1, and, thus, we
must have §(®)(g + pk) = 0, where we denote by k the term

div(V®/|V®|). The gradient descent in time for ® can then be
written

@, = H'(2)(g + pk) (28)

’

with ®(x,y,0) = ®o(z,y), (z,y) € R and boundary condi-
tions (6(®)/VP)(0P/On) = 0 on OR.
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