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ABSTRACT

We present a spatio-temporal analysis of motion at occlud-
ing boundaries as an extension of previous results for trans-
parent motions. We show how these new results generalize
alternative approaches derived in the Fourier domain that are
limited by assuming straight occlusion boundaries. Further-
more, we derive a novel hierarchical algorithm that can deal
with single, multiple-transparent, and occluded motions.

1. INTRODUCTION

Here we extend earlier results on transparent motions, first
presented in [6], to the case of occluded motions. The model
of occlusion that we use here is due to Fleet and Langley [4].
They also analyzed the problem of occlusion in the Fourier
domain. This type of analysis was further developed in [2,
9]. Alternative spatial approaches have been developed in [5]
and [3].

2. THEORETICAL RESULTS

2.1. From one to multiple transparent motions and oc-
clusions

The well known brightness constancy constraint equation

α(u)f = 0 (1)

has been extended for the case of transparent motions by
Shizawa and Mase [7]:

α(u)α(v)f = 0. (2)

f(x, t) is the image-sequence intensity for coordinatex =
(x, y) and timet. α(u) = ux

∂
∂x +uy

∂
∂y + ∂

∂t is the derivative
in the direction of the vector(ux, uy, 1). Here we will extend
this motion model to include the case of occlusions.
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Suppose that two signalsg1, g2 describe motions with
velocitiesu,v respectively, i.eα(u)g1 = 0 andα(v)g2 = 0,
and that we use a blending signalh, i.e. 0 ≤ h(x, t) ≤ 1,
with velocityu to form a new signal. We write [4]

f = (1− h)g1 + hg2. (3)

The above equation describes a single motionu for the case
that h = 0, two transparent motions forh = 1/2, two
translucent motions forg1 = 0, and two occluded motions
for h = 1 − χ, where the binary maskχ definesg1 as the
occluding signal. To reveal the non-linear nature of a general
algorithm for motion estimation, we note that ifα(u)f never
vanishes and the motionsu andv vary only slowly, we have
α(u)α(v) log |α(u)f | = 0. In what follows, we will ana-
lyze the case of occlusions and refer to [6, 1, 8] for the case
of transparent motions.

2.1.1. Occluded motions

The above mentioned case of occlusion defined byh =
1 − χ expands to:

f(x, t) = χ(x− tu)g1(x− tu)+
(1− χ(x− tu))g2(x− tv). (4)

By applying the operatorα(u)α(v) to the previous equation
we obtain

α(u)α(v)f = −α(v)χ(x− tu)α(u)g2(x− tv). (5)

We first note that−α(v)χ(x − tu) = (u − v) · ∇χ(x −
tu) where the derivatives of the discontinuous maskχ were
taken in the sense of distribution theory. In what follows,
all derivatives will be taken in this sense. First, we evaluate
the distribution defined by the right-hand side of the above
equation. Letφ be a Schwartz test function, then

〈(u− v) · ∇χ, φ〉 =
∫

(u− v) · ∇χ(x)φ(x) dx = (6)∫
χ(x)∇φ(x) · (v − u) dx =

∫
Ω

∇φ(x) · (v − u) dx
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whereΩ is the support ofχ. To make use of Gauss’ theorem
in the plane, we denote byB the boundary ofΩ, by N the
unit normal toB, and byds the arc-length element ofB. We
finally obtain the following equality:

〈(u− v) · ∇χ, φ〉 =
∫

B

φ(x)(v − u) ·N(x) ds. (7)

Remember that a Dirac distribution with support onB can
be defined by the line integral

〈δB , φ〉 =
∫

B

φ(x) ds. (8)

By comparing Equations (7) and (8), we find

(u− v) · ∇χ = (v − u) ·NδB , (9)

and therefore Equation (5) becomes

α(u)α(v)f = (v−u) ·NδB(x− tu)α(u)g2(x− tv)
(10)

Thus, motion estimation fails at occlusions because both
Equations (1) and (2) are not valid at points on the occluding
boundary and should be replaced by Equation (10). There-
fore, to estimate two occluding motions we either (i) use
Equation (2) but do not integrate at occlusion points where
we have motion discontinuities, or (ii) solve equation (10) to
perform the estimation.

2.2. Fourier analysis of motion at occluding boundaries

We will now use our results to analyze occlusion in the Fou-
rier domain for the simplest case of a straight occluding
boundary. To do so, we start with the simplest case of one-
dimensional motion where the boundary is just one point.

2.2.1. One-dimensional motion

Suppose that the support ofg1 is the positive half-line of real
numbers. In this caseχ(x) = 1 if 0 ≤ x and0 otherwise.
The unit normal to the boundary isN(x) = 1, and equa-
tion (10) becomes

α(u)α(v)f = (v − u)α(u)g2(x − tv)δ(x − tu) (11)

In the Fourier domain we obtain

2πj(uξ + ξt)(vξ + ξt)F =
(u− v)δ(uξ + ξt) ∗ (uξ + ξt)G2(ξ)δ(vξ + ξt), (12)

denoting the transformed functions with the corresponding
capital letters and the transform variables with(ξ, ξt). By
evaluating the right-hand side, we find

2πj(uξ + ξt)(vξ + ξt)F =

(u− v)(uξ + ξt)G2(
uξ + ξt

u− v
) (13)

Remembering that for a distributionT we haveξT = 0 ⇐⇒
T = cδ for some complex constantc, after a forward and
backward change of coordinates, we conclude that there ex-
ist two functionsA(ξ) andB(ξ) such that

F = A(ξ)δ(uξ + ξt) + B(ξ)δ(uξ + ξt)

+
u− v

2πj(vξ + ξt)
G2(

uξ + ξt

u− v
) (14)

We therefore conclude thatF (ξ, ξt) is the superposition of
two Dirac lines with orientations in the directions of the mo-
tions and an additional distortion function. A similar result
had been previously obtained by analyzing the Equation (4)
- see [2]. The profile of the distortion function is hyperbolic
along the linesuξ+ξt = c and, along the linesvξ + ξt = c,
has the same profile as the occluded signal.

2.2.2. Two-dimensional motion

Assume thatΩ is an half-plane. In this caseχ(x) = 1 if 0 ≤
N · x and0 otherwise. We transform Equation (10) to the
frequency domain, nowξ = (ξx, ξy), and obtain

2πj(u · ξ + ξt)(v · ξ + ξt)F =
(u− v) ·NG2(θ)(u · ξ + ξt) (15)

Note thatN has not transformed since it is constant due
to the assumption of an extended straight boundary.θ =
θ(ξ, ξt) is the solution of(u− v) · θ = u · ξ + ξt, N⊥ · θ =
N⊥ · ξ and therefore

F = A(ξ)δ(u · ξ + ξt) + B(ξ)δ(v · ξ + ξt)

+
(u− v) ·N

2πj(v · ξ + ξt)
G2(θ) (16)

where

θ =
(u · ξ + ξt) ·N + ξ ·N⊥(u− v)⊥

(u− v) ·N
(17)

Thus, in a way similar to the one-dimensional case, we con-
clude thatF (ξ, ξt) is a superposition of two Dirac planes
with orientations in the directions of the motions and an ad-
ditional distortion function. A similar result has been ob-
tained in [9]. Again, the profile of the distortion function is
hyperbolic along lines with orientationsN + u · Net and,
along the planesv · ξ + ξt = c, has the same profile as the
occluded signal.et is theξt axis defined aset = (0, 0, 1).

2.3. Hierarchical algorithm

We now summarize previous results [6] that we need to de-
fine our algorithm. We expand Equation (2) to

∑
I cIfI = 0
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whereI ∈ {xx, yy, xy, xt, yt, tt}, fI are the partial deriva-
tives off , andcI are the mixed-motion parameters. We ob-
tainLV = 0 whereL = (fI) andV = (cI)T . For the case
of n motions, this leads to a system of equations that can be
solved by finding the eigenvector to the zero eigenvalue of
Jn =

∫
L(x)T L(x)ω(x) dx, thegeneralized structure ten-

sor for n motionsof order m = (n + 2)(n + 1)/2. The
eigenvector defines the mixed-motion parameters that are
then separated by interpreting the motion vectors as complex
numbers that are the roots ofQn(z) = zn − An−1z

n−1 +
· · ·+(−1)nA0. To compute the coefficients, we just note that
Ai are homogeneous symmetric functions of degreen− i of
v1, ...,vn. For example, the coefficients ofQn(z) for two
motions are [6]A1 = cxt + jcyt andA0 = cxx−cyy + jcxy.
The confidence measure is based on the sumS of the diago-
nal minors ofJn and the determinantK of Jn. Our hierar-

Algorithm 1 Hierarchical motion estimation
1: ComputeJn

2: if K1/m < εnS1/m−1 (high confidence)then
3: Compute the mixed motion parameters based onJn

4: if n = 1 then
5: v = (Vx, Vy)
6: else
7: u,v are the roots ofQ2(z)
8: Append treated pixelx0 to list L
9: for all x0 /∈ L do

10: Repeat steps1 to 11 with ω(x − x0) = 0, ∀x /∈ L.
In addition, the size of the kernelω is increased such
as to include an number ofM locations that are not in
L.

chical algorithm first evaluates the confidence in one motion
and estimates that one motion in case of high confidence.
Otherwise, the confidence for two motions is evaluated and
two motions are estimated. Moreover, motion at locations
with low confidence is recomputed with a convolution ker-
nelω that integrates only locations with high confidence.

3. EXPERIMENTAL RESULTS

The results have been obtained for natural textures by pla-
cing and translating a square of one texture over a back-
ground with a second texture. In Figure (1), (a) shows the
middle frame of the occlusion test sequence. The back-
ground is moving with velocityv = (0, 1) and the occluding
square withu = (1, 0). The estimated motion vectors after
the first iteration of Algorithm 1 are depicted in (b). Evi-
dently, in a large area around the occluding boundary the es-
timation of the motion vectors did not fulfill the confidence
criterion. The occluding boundary has been marked by a
rectangle for convenience. After completing the iterations,
we obtain the results shown in image (c). The number of

iterations varies from pixel to pixel and depends on the cri-
terionM and the confidence measure for that location. The
size of the kernelω was7×7×3 and it was increased in space
up to a criterion ofM = 15. Note that the correct motion
vectors are found on both sides of the boundary. Also note,
that at some locations on the boundary we obtain the correct
two motion vectors at that one location. This, however, be-
comes a problem only at the corners where one should use
additional criteria for choosing the appropriate motion vector
out of the two.

Figure (2) depicts results obtained for a stationary back-
ground. The same textures as in the previous example are
used but the square is now moving with velocityu = (1, 1).
In (a) we show results obtained by estimating only one mo-
tion without a confidence criterion. Note that in the boundary
region all motion vectors are wrong. Image (b) depicts the
results obtained after the first iteration of Algorithm 1 and
image (c) the final result. The results are similar to the previ-
ous example. We first find a large area around the bounding
box where the the confidence criterion is not matched but
the initial result is much improved by iteration. In this case
we used a criterionM = 150 (this number seems large but
it corresponds roughly to a full window of size7 × 7 × 3).
Note that we therefore obtained a somewhat stronger blur-
ring of the occluding boundary, i.e. a small but more signifi-
cant area where we obtained two motions that are, however,
correctly estimated to be the zero motion of the background
and the motion of the square respectively. In all cases first-
order derivatives have been estimated using Gaussian ker-
nels with a sigma of1 pixel in all three directions(x, y, t)
and second-order derivatives by iterating the first-order oper-
ations accordingly. The confidence criterion was in all cases
defined by the valuesε1 = 0.1 andε2 = 0.2.

4. SUMMARY AND CONCLUSIONS

We have presented a general framework for estimation of
single and multiple motions for both cases of transparency
and occlusion. By linearizing a problem that is nonlinear in
the spatial domain, and can therefore not be transferred to the
Fourier domain, our approach is more general and includes
Fourier-based approaches as a special case. Moreover, we
have presented new results for the estimation of motions at
occlusions and a hierarchical algorithm that can deal with
both transparent and occluded motions.
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(a) (b) (c)

Fig. 1. Two occluding motions - see text for details.

(a) (b) (c)

Fig. 2. Stationary background - see text for details.
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