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ABSTRACT

The effects of vocal tract length (VTL) variation are of-
ten approximated by linear frequency warping of short-time
spectra. Based on this relationship, we present a method for
generating vocal tract length invariant features. These new
features are computed as translation invariant, correlation-
type features in a log-frequency domain. In phoneme
classification experiments, their discrimination capabilities
turned out to be considerably better than for Mel-frequency
cepstral coefficients (MFCCs). The best results are obtained
when VTL-invariant (VTLI) features and MFCCs are com-
bined. The superiority of the combined feature set and its
resilience to VTL variations is also shown for word recog-
nition, using the TIDIGITS corpus and the HTK recognizer.

1. INTRODUCTION

Vocal tract length normalization [1, 2] has become an in-
tegral part of many automatic speech recognition engines.
The background behind the normalization is basically the
fact that the short-time spectra of two speakers A and B,
when uttering the same vowel, are approximately related as
XA(ω) = XB(αω), where α is related to the vocal tract
length ratio of both speakers. The frequency warping itself
is typically carried out by warping the Mel filters when pro-
ducing Mel-frequency cepstral coefficients (MFCCs). The
factor α usually lies in the range between 0.8 and 1.2, rel-
ative to an average speaker. More recent approaches even
normalize the utterances from the same speaker with opti-
mal α on a frame-by-frame basis, in order to even better
match the standard realizations of the phonemes [3]. The
value of α is often selected as the one that yields the high-
est likelihood scores in a subsequent hidden Markov model
(HMM) based recognizer, when testing a number of given
values in the above mentioned range [2, 3]. However, de-
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termining the optimal α is, in general, a computationally
expensive task.

Besides warping of short-time spectra, also the compu-
tation of warping-invariant features has been proposed in
form of the scale transform [4]. For the scale transform, the
magnitude spectra of two signals x(t) and 1√

α
x(t/α) are

the same. In this paper, we also aim at producing warping-
invariant features. However, in contrast to [4], we base
our analysis on the wavelet transform, which naturally rep-
resents a signal with respect to a logarithmized frequency
axis. The initial frequency resolution of the wavelet trans-
form used in this paper is much higher than the resolution
obtained in typical Mel filterbanks or that of the scale trans-
form, as computed in [4]. This allows us to obtain highly se-
lective, warping independent features in form of correlation
sequences or nonlinear functions thereof. These features
will be referred to as vocal tract length invariant (VTLI) fea-
tures henceforth.

Experimental results for different recognition and clas-
sification tasks show that the produced features are robust
and complementary to standard MFCCs, so that both sets
can be combined in order to obtain highly selective and yet
robust feature sets. For frame-wise phoneme classification
using simple linear classifiers, the results for the combined
feature set are significantly better than for MFCCs. Also
in digit recognition, especially when the training data does
not match the test conditions or in the presence of back-
ground noise, the combined set is significantly superior to
the MFCCs alone.

The paper is organized as follows. In the next section,
we discuss the scale and the wavelet transforms and their ca-
pabilities of producing warping-independent features. Sec-
tion 3 then presents the proposed features that are computed
as functions of the wavelet coefficients. In Section 4 we
describe the experimental setup and the method of feature
combination. Experimental results on phoneme classifica-
tion and word recognition are given in Section 5. Finally,
Section 6 gives some conclusions.

308 ASRU 20050-7803-9479-8/05/$20.00  2005 IEEE



2. TRANSFORMS THAT LEAD TO
WARPING-INVARIANT FEATURES

In this section, we discuss two signal representations that
naturally enable the extraction of features which are robust
to vocal tract length variations. The first one is the scale
transform, introduced by Umesh et al. [4] in order to gener-
ate features that are independent of linear frequency warp-
ing and thus to vocal tract length variations. The second
one is the integral wavelet transform, implemented in its
discretized version.

The scale transform is defined as

Dx(c) =
∫ ∞

0

X(f)
e−j2πc ln f

√
f

df (1)

where X(f) is the signal spectrum with f being the fre-
quency in Hz and c is the scale parameter. This trans-
form exhibits the interesting property that the scale trans-
form of a frequency warped signal

√
αX(αf) is given by

D
(α)
x (c) = ej2πc ln αDx(c), so that its magnitude is inde-

pendent of the warping parameter α.
In addition to the scale transform itself, also a scale cep-

strum was introduced in [4]. This is defined as

Ds(c) =
∫ ∞

0

log |S(f)| e−j2πc ln f

√
f

df (2)

where S(f) is the Fourier transform of a short-time auto-
correlation estimate rxx(m). Again, the magnitude of the
scale cepstrum is invariant to linear frequency warping.

The wavelet transform of a continuous-time signal x(t)
is given by

Wx(t, a) = |a|− 1
2

∫ ∞

−∞
x(τ)ψ∗

(τ − t

a

)
dτ (3)

where ψ(t) is the so-called mother wavelet, a is the scaling
parameter, and the asterisk ∗ denotes complex conjugation.
By varying a, the center frequency, bandwidth, and effective
time-width of ψ(t/a) are changed according to the scaling
theorem of the Fourier transform.

In our context, the wavelet ψ(t) is assumed to be ana-
lytic, which means that it satisfies Ψ(ω) = 0 for ω ≤ 0
where Ψ(ω) is the Fourier transform of ψ(t). Such wavelets
can also be seen as impulse responses of analytic bandpass
filters.

To see the effect of frequency warping, we consider the
computation of Wx(t, a) from X(ω) (the Fourier transform
of x(t)), in the form [5]

Wx(t, a) = |a| 12 1
2π

∫ ∞

−∞
X(ω)Ψ∗(aω) ejωtdω. (4)

From this expression, we see that the wavelet transform
Wxα

(t, a) of a normalized, linearly frequency warped sig-
nal xα(t) = 1√

α
x( t

α ), α > 0, with spectrum Xα(ω) =

√
αX(αω) is related to Wx(t, a) as

Wxα
(t, a) = Wx

( t

α
,
a

α

)
(5)

The scaling of the time axis in (5) is inherent to frequency
warping and also applies to the scale transform. It is of no
concern here, as we are only interested in the short-time
behavior of signal spectra. The scaling of the parameter a
shows that a linear frequency warping of the signal by a fac-
tor of α results in a translation of the wavelet transform by
log α in the (log a)-domain. This is important, because the
wavelet transform is naturally computed for equally spaced
values of log a.

Now let us take the Fourier transforms of Wx(t, a) and
Wxα

(t, a) with respect to the parameter ν = log a, consid-
ering the relationship (5):

F (t, μ) =
∫ ∞

−∞
Wx

(
t, eν

)
e−jμν dν, (6)

Fα(t, μ) =
∫ ∞

−∞
Wx

( t

α
, eν−log α

)
e−jμν dν. (7)

Hence,

Fα(t, μ) = e−jμ log αF
( t

α
, μ

)
(8)

Thus, ignoring the time scaling, we see that the magnitudes
of the Fourier transforms are the same. Therefore, one ob-
tains features that are invariant to linear frequency warping.
The transforms Fα(t, μ) and Dx(c), although having simi-
lar frequency-warping properties, are very different in their
time-frequency resolution. While Fα(t, μ) inherently has
the zoom-in effect of the wavelet transform, the transform
Dx(c) has, due to the way it is computed, inherited the time
resolution of the short-time Fourier transform.

Note that taking the magnitude of the F (t, μ) is only
one of several possibilities to obtain features that are not af-
fected by linear frequency warping. More possibilities will
be discussed in the next section.

We now consider the computation of the wavelet trans-
form for a discrete-time signal x(n). We assume K
octaves, using M voices per octave, which means that
the scaling parameter a takes on values ak = 2k/M,
k = 0, 1, . . . ,MK−1. Moreover, we consider the compu-
tation of the wavelet transform with time shifts of N . By
discretizing (3) we then obtain the values

wx(n, k) = 2−k/(2M)
∑
m

x(m)ψ∗
(m − nN

2k/M

)
(9)

Due to the constant sampling rate in all frequency
bands, the wavelet transform (9) does not suffer from the
same shift-invariance problem as the discrete wavelet trans-
form (DWT). Rather than implementing (9) directly, which
means a significant computational load, one may use the à
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trous algorithm [6], implemented separately for each of the
M voices.

The wavelet analysis will have better time resolution at
higher frequencies than needed for producing feature vec-
tors every 5 to 15 ms. Direct downsampling of features will
therefore introduce aliasing artifacts. Since we are mainly
interested in the signal-energy distribution over time and
frequency, we may take the magnitude of wx(n, k) and filter
it with a lowpass filter in time direction before final down-
sampling. For the wavelet transform, the final primary fea-
tures will then be of the form

yx(n, k) =
∑

�

h(�) |wx(nL − �, k)| (10)

where h(�) is the impulse response of the lowpass filter, L
is the downsampling factor introduced to achieve the final
frame rate fs/(N · L), and fs is the sampling frequency.
To avoid that the filtered values yx(n, k) can become neg-
ative, we assume a strictly positive sequence h(n) like, for
example, the Hanning window.

3. GENERATION OF WARPING-INVARIANT
FEATURES

From the discussion in the previous section it is evident
that a linear frequency warping leads to a complex, unit-
magnitude prefactor for the scale transform and a transla-
tion for the wavelet transform. Therefore, for the wavelet
transform, any translation-invariant features will automati-
cally be invariant to linear frequency warping.

In the following, we will consider the primary features
yx(n, k), which already occur in the final frame rate, in or-
der to generate warping-invariant features. Taking the mag-
nitude of the Fourier transform with respect to frequency
parameter k has already been mentioned as an example in
Section 2.

Other possibilities include, but are not limited to cor-
relation sequences with respect to the log-frequency index
k, between transform values or nonlinear functions thereof
at two time instances n and n − d. In particular, we here
consider

rx(n, d,m) =
∑

k

yx(n, k)yx(n − d, k + m) (11)

and

cx(n, d,m) =
∑

k

log(yx(n, k)) · log(yx(n − d, k + m)).

(12)
A feature vector for time index n can then contain any col-
lection of the above mentioned features computed for the
same index n. For d = 0 these features will give informa-
tion on the signal spectrum in time frame n. For d �= 0
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Fig. 1. Example of wavelet analysis and autocorrelation fea-
tures. (a) Time signal. (b) Wavelet spectrum yx(n, k). (c)
Autocorrelation features rx(n, 0,m) for m ≥ 0.

they will give information on the development of short-time
spectra over time.

Any linear or nonlinear combination and/or transform
or filtering of rx(n, d,m) and cx(n, d,m), including tak-
ing derivatives (i.e., delta and delta-delta features) will also
yield warping invariant features.

To give an illustration of the properties of the
correlation-based features, we consider the set rx(n, d,m)
for d = 0 (i.e., autocorrelation features). Fig. 1 shows an ex-
ample in which the waveform x(n), the spectra yx(n, k) and
the autocorrelation rx(n, 0,m) are plotted. It is interesting
to see that the autocorrelation, although it is in some sense
phase-blind, still retains the formant structure. This is due to
the fact that noticeable correlation values are achieved when
the high-energy pitch component is shifted and multiplied
with the formant components during the correlation opera-
tion. Under the assumption that the linear warping model
is true for vocal tract length variations, these format-related
structures will indeed be independent of the warping factor.
For real speech, of course, this is only an approximation [7],
but it leads to formant-like structures that are robust to vocal
tract length variations.
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4. EXPERIMENTAL SETUP AND FEATURE
COMBINATION

In our experiments, we used the linear-phase wavelet trans-
form based on the Morlet wavelet [5] given by

ψ(n) = ejω0n e
− n2

2σ2
n (13)

with ω0 = 0.9π and σ2
n = 100. The transform was carried

out for M = 12 voices per octave and K = 6 octaves for
data sampled at 16kHz and K = 5 octaves for data sam-
pled at 8 kHz. This yields 72 and 84 wavelet coefficients
at sampling rates of 8 and 16 kHz, respectively. The initial
downsampling factor N was chosen as N = 10. The low-
pass filter h(n) was designed as a Hanning window, and the
final downsampling was done to obtain a frame every 12.5
ms.

The following warping-invariant features were used:

• the first 20 coefficients of the discrete cosine trans-
form (DCT) of log(r(n, 0,m)) with respect to para-
meter m for m = 0, 1, . . . , 84.

• the first 20 coefficients of the DCT of c(n, 2,m) with
respect to parameter m with m = −84, . . . , 84.

• log(r(n, 2,m)) for m = −2,−1, . . . , 2

Because the warping-invariant features are mainly of
interest for the classification of vowels, they were also
amended with 13 classical MFCC features, produced with
the same frame rate and a frame length of 25 ms. Moreover,
the first 15 DCT coefficients of the logarithmized wavelet
features log(yx(n, k)) were used for feature set amendment
as well (DCT with respect to frequency parameter k).

For all static features, also the delta and delta-delta co-
efficients were computed.

To reduce the size of the feature vectors, the collected
features (maximally 219 in our case, when all the above
mentioned features were used) were fed into a linear dis-
criminant analysis (LDA) [8] that was set up to deliver re-
duced feature vectors which yield the best results for free
phoneme classification on the basis of individual frames, us-
ing a linear classifier. Thus, a given feature vector X , con-
taining the above mentioned features, was transformed into
a new vector x = UT X where the columns of matrix U
are the eigenvectors of a matrix S = [S−1

w Sb], where Sw is
the within-class scatter matrix, averaged over all phonemes
under consideration, and Sb is the between-class scatter ma-
trix.

5. EXPERIMENTAL RESULTS

In this section we present results for two different tasks. The
first one is phoneme classification where decisions are made
on the basis of single feature vectors. The second one is

Table 1. Accuracies in % for frame-wise phoneme clas-
sification. In all cases, delta and delta-delta features were
included prior LDA. ”ST”, ”WT”, and ”VTLI-F” stand for
scale transform, wavelet transform, and VTLI features, resp.

Original features
number
of used
features

Training
set

Test
set

13 MFCC 39 34.37 34.66
45 VTLI-F 39 39.59 39.36

45 VTLI-F, 13 MFCC 39 43.05 42.95
45 VTLI-F, 13 MFCC, 15 WT 39 44.10 44.01

45 VTLI-F 55 40.01 39.64
45 VTLI-F, 13 MFCC 55 44.00 43.64

45 VTLI-F, 13 MFCC, 15 WT 55 45.19 44.75
128 ST 55 32.30 31.51

128 ST, 13 MFCC 55 40.42 39.19

word recognition. In all experiments, the sampling rate for
the speech waveforms was 8 kHz.

For the LDA-based feature combination and subsequent
phoneme classification, the TIMIT corpus was used. By
merging differently labeled types of silence and removing
unused phone labels, the original 62 labels were mapped
onto 56 different possible phoneme labels. The LDA was
carried out to find the P best features for linear phoneme
classification. Frames for which the 25 ms window for
MFCC calculation covered two differently labeled sections
were not considered.

The value of P was chosen as 39 and 55, respec-
tively.1 For phoneme classification, the classifier was a
single-layer perceptron [9]. Such a simple classifier cannot
deliver recognition results as good as a Gaussian mixture
model (GMM) based classifier or a complete HMM-based
phoneme recognizer, but the results still give an indication
of the quality of a feature set. In frame-wise phoneme clas-
sification, especially confusion between long and short ver-
sions of the same phoneme have to be expected, as the dif-
ferences cannot be seen from a single frame.

For a first experiment, the TIMIT corpus was divided
into two equally sized portions. Only one of them was used
for training the LDA and the linear classifier. Results for
different feature selections are listed in Table 1. From these
results we see that the warping-invariant features alone are
already better than MFCCs. The combination of both sets
yields an additional improvement, and the best results are
obtained when all wavelet, MFCC, and invariant features
are linearly combined to a final feature set of 55 features.2

These results also show the complementariness of invariant

1Using more than 55 features after LDA is not useful, because the rank
of Sb can only be 55 when 56 classes are used.

2The fact that the error rates on the training and test sets are similar
shows that no overfitting of the classifier has occurred.
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Table 2. Accuracies in % for frame-wise phoneme clas-
sification. The training was done on male data only. In
all cases, delta and delta-delta features were included prior
LDA.

Original features
number
of used
features

Male Female

13 MFCC 39 36.93 28.08
128 ST 55 37.58 27.27

128 ST, 13 MFCC 55 42.77 31.00
45 VTLI-F 39 41.45 32.10

45 VTLI-F, 13 MFCC, 15 WT 55 47.45 36.38

features and classical ones like MFCCs. A small degrada-
tion is seen when only 39 instead of 55 combined features
are used. The scale transform yields about the same perfor-
mance as the MFCCs, and in combination with MFCCs, the
performance is comparable to that of our invariant features
alone.

In a second experiment, the TIMIT corpus was split into
male and female recordings. The training was done only on
the male data, and the tests were performed on both sets.
Table 2 shows the results for various feature selections. In
all cases we can observe a degradation for the female data.
However, the results for female tests using the proposed
combination of 55 features are even better than those for
the MFCCs in mixed training in Table 1, and they are com-
parable to the MFCC male results. Again, the scale trans-
form performs comparable to the MFCCs, and in combina-
tion with MFCCs, it can improve slightly.

In addition to phoneme classification, the proposed fea-
tures have been tested on a word recognition task in a setting
where the training conditions do not match the test condi-
tions. For this, we have taken ”man” and ”woman” data
from the TIDIGITS corpus for training a word recognizer
based the hidden-Markov-Toolkit (HTK). Tests were then
performed on ”man” and ”woman” data that was not seen
in the training as well as on the ”boy” and ”girl” data con-
tained in TIDIGITS. The features used in this experiments
were MFCCs and MFCCs together with the first five DCT
coefficients of log(r(n, 0,m)), respectively. In both cases,
the delta and delta-delta coefficients of the static features
were added. The results of the experiment are listed in Ta-
ble 3. We can clearly see that the inclusion of the warping-
invariant features significantly improves the robustness of
the recognizer. For the ”girl” data, the error rate approxi-
mately halves due to the inclusion of the new features.

6. CONCLUSIONS

We have proposed a technique for the extraction of features
which are independent of linear frequency scaling and thus
robust to vocal tract length variations. The performance of

Table 3. Word recognition accuracies in % for the TIDIG-
ITS corpus. The training was done on 847 male and 924
female files. The invariant features are the first five coef-
ficients of the DCT of log(r(n, 0,m)) with respect to the
frequency lag m. In all cases, delta and delta-delta features
were included.

13 MFCC 13 MFCC + 5 VTLI-F
Man 98.08 98.39

Woman 99.19 99.31
Boy 94.47 96.62
Girl 91.29 95.41

the new features has been demonstrated in both phoneme
and word recognition tasks. The results have shown that the
new features are complementary to the well-known MFCCs
and that they can be used to construct combined feature sets
which are robust to speaker variations, especially when the
training conditions do not match the test conditions. Fu-
ture work will be directed toward investigating the noise ro-
bustness of the proposed features, taking more context into
account during the feature extraction, and optimizing the
primary time-frequency (i.e., wavelet) analysis.
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