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ABSTRACT

This paper presents an extension of the ACDC algorithm in-
troduced by Yeredor for the instantaneous mixing problem
to the more general convolutive mixing problem with non-
white sources. Further assumptions made on the source sig-
nals are their mutual statistical independence, nonstationar-
ity and smoothness of their power spectra. The algorithm
iterates the estimation of the mixing system (AC step) and
the source statistics (DC step) until convergence is achieved.
The proposed algorithm operates in the frequency domain,
but unlike most frequency domain algorithms, it carries out
some of the operations jointly for all frequencies. This al-
lows us to overcome frequency dependent permutation and
scaling problems.

1. INTRODUCTION

Blind system identification and blind source separation re-
fer to estimating the system functions of linear muttiple-
input multiple-output systems and their inverses, respec-
tively, from observations made only at the system out-
put. Apart from some basic assumptions about the source
statistics, the input signals are considered to be unknown.
Overviews of the topic can, for example, be found in [1,2].

We consider a linear mixing process where N source
signals s, (n}, ..., sn{n) are mixed in a convolutive man-
ner into M > N observable signals =, (n),..., za:(n).
This operation can be expressed in matrix notation as

P—1

x(n) = Z H(m)s(n —m) 4y

m=0
with s(n) = [si{n),...,sn(m)T, x(n) =
[z1(n),...,zp(n)]", and [H(n));; = hij(n). The

terms f; j(n) denote the impulse responses from input j
to output ¢ of the mixing system. The aim is to identify
the impuise responses h; ;(r) on the basis of the observed
signals &, (n), ..., zar(n) up to the well known scaling and
permutation ambiguities that are inherent to all blind iden-
tification and separation algorithms {1, 2]. The assumptions
made about the input signals are their mutual statistical
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independence and quasi-stationarity over short periods of
time, but nonstationarity in a more general sense, similar
to [3-7], and smoothness of their power spectra. These
assumptions are for example well justified for independent
speech signals. In particular, the assumption of nonstation-
arity of the sources allows us to solve the problem based on
second-order instead of higher-order statistics [2,3,5-7].

Approaches to solve the above mentioned blind iden-
tification problem can be divided into time and frequency
domain methods. In this work, we use a frequency do-
main approach to transfer the convolutive time-domain mix-
ing process (1) into instantaneous mixing processes in the
frequency domain, Let ®(w), H(w), and s(w) denote the
Fourier transforms of the sequences x(n), H(n), and s(n),
respectively. Assuming that a total number of K frequen-
cies wy, = 2nk/K, k = 0,1,..., K — 1 are observed, we
may replace (1) with K instantaneous mixing processes of
the form

x(wg) = H{w)s(wy). )

The aim is to find estimates H (wy.) such that the remaining
ambiguities can be expressed as

H(w) = Hw)PD(w) Yw 3)
where P is a permutation matrix and D(w) is a (possibly
frequency dependent) diagonal scaling matrix. Thus, we es-
sentially look at a setting that is similar to the one in [6].
Differences between our approach and the one in [6] are
that we assume colored instead of white source signals and
that we use a different approach to determine the unknown
mixing system. Our method can be seen as an extension of
the ACDC algorithm that was introduced in [7] for instanta-
neous mixing. We transfer the ACDC algorithm to the fre-
quency domain and optimize some of the involved parame-
ters for all frequencies simultancously. This joint optimiza-
tion allows us to overcome the frequency dependent scal-
ing and permutation ambiguity preblems that occur with all
frequency-domain approaches.

A few comments on the notation. Vectors and matrices
are printed in boldface. The superscript {-} ¥ means trans-
position and complex conjugation of a matrix or vector. The
superscript {-}T denotes the pseudoinverse, E {-} means



the expectation operation. ||-|| » is the Frobenius norm of
a matrix. The symbols © and © denote the Kronecker and
Hadamard products, respectively. The term v = diag[u]
denotes the formation of a diagonal matrix v from a set of
values w as well as forming a column vector v from the di-
agonal elements of a matrix 2. If the argument is a set of
matrices, then the result is a block diagonal matrix.

2. OBJECTIVE FUNCTION AND ADAPTATION
PROCESS

We assume the signals x;(n) to be observed during T dif-
ferent time epochs and rewrite the model (2) as

= H{wg)s{we,t), t=12,...., 7. &
Given the observations x{wy,t) it is straightforward to
find estimates for the cross-power spectral density matrices
R, : = E{x(wk,t)x (w,t)}, and based on the model
(4), these can be described as

x(wr, t)

Ry = H(wp)Auy  H () ®)
where A, are the cross-power spectral density matrices
of the nonstationary input processes 8(wg,t). Because the
different sources are assumed to be statistically indepen-
dent, the matrices A, . are diagonal.

The criterion to find estimates for the mixing systems
H(wy) and the unknown input power spectra A, ¢ is de-

fined as
K—1

minimize C = z Cun ©
k=0
with
T 2
Z |Ruv e — Hwi)Aw  H W)} - ()

The minimization involves two steps that are repeated
until convergence. First, we carry out a so-called AC step,
where the criterion is minimized with regard to individual
columns of H {wy), while matrices A, ; remain constant
(cf. [7]). This step is carried out repeatedly for all columns
of H (wy}, until convergence. In the second step, the DC
step, C is minimized with respect to A, ;. Then, another
AC step is carried out, and so on, until the final minimum
is reached. In order to minimize the effect of different scale
factors and permutations at different frequencies, a projec-
tion procedure is included in the AC step that ensures that
the identified time-domain impulse responses do not signif-
icantly exceed a maximum, pre-determined length.

AC Step (Part 1)

In this step, we minimize C,, with respect to the fth
column of H (w;) for each frequency wy, separately. Using
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the equality
H (i) A HY () = ZAM'%% ey ®)
. (e t)
where h,, n is the nth column of H{w), Ay
{Awy t]n,n are the diagonal elements of A, +, and
(0 o
Ry =Rue— D MNPhoahll . @
n=1,n#f
we can write
K ~”
S BN LR Vot S S A P (L)
k=1

Similar to [7] for instantanecus mixing, this criterion can be
rewritten as

Cuy = Cuy —2RE (Poy thuy o + Puy e(RE tho )
(an
with
(ew ,t) (€ .
Pue=3 ZA R RY ] an
and
T
Pup,t = Z[AELJI:,!‘)]? (]3)
t=1
The optimal vector h,,, ¢ is given by
h’wk,ﬂ = bwk,E ﬁu,‘:,hf (14)

where 3, , is the unit-norm eigenvector of P, ¢ that cor-
responds to the largest positive eigenvalue g, ¢ [7]. The
optimal prefactors b, ¢, computed separately for each fre-

quency, are given by by, ¢ = {pio, £/ Deay £) /2.

AC Step (Part 2)

Minimizing the objective criterion for each frequency
separately does not allow us to resolve any of the permuta--
tion and scale ambiguities. Therefore, at this stage, we em-
ploy a projection technique that is similar to the one in [6)
in order to jointly compute the prefactors b, ¢ that result
in time domain responses h; j(n) of given, arbitrary length
P. The vectors 3, , remain the ones computed in Part |
of the AC step. Note that concentrating ; ;(n) in time will
also yield smooth frequency responses H; ;(w), which are
characteristic for most real-world mixing systems.

Let

Bg(n) — [ejwonﬁwu'b ej'unnﬁw]‘g e eij—ln’@
Then, the time-domain impulse responses hy(n)
(A1 e(n), ..., hare(n)]T that correspond to h,,, ¢ are given

by

uK_l,E]'

(s)

he(n) = % Bg('n) (47} (16)



with oy = T The vector ar, that

maximizes

3

n=0

[bwo,h buu,h sy wa—l,f]

—1
Yhe(n) subject to Zh”

n=0

Yhe(n) =1

is the one that maximizes o ¥, subject to af Qay = 1
with

P-1

¥ = Z B (n)Be(n), Q= E BI(n)By(n).
=0 n=0

This optimal vector e, is given by the eigenvector that

corresponds to the largest eigenvalue p of the generalized

eigenvalue problem Yo, = p§loy, normalized such that

o Qo = 1.

DC Step

In this step, we minimize C with respect to A, . We
first rewrite the criterion for cach t and frequency wy as a
squared Euclidean norm of a difference vector (cf. [7]):

kav!' = ”awk,t - Hkawmi'”g (17)
with
Awk,t = diag [Awk,t]S
@+ = vec{Ry, ), (18)
Ho, = (HGn)91)0 (16 Hwp))

Computing the optimal vectors A, ; for each frequency
separately is straightforward: Ay, = HJ a.,, ... However,
such an approach has the drawback that the large degree of
freedom may make the tradeoff between the spectral proper-
ties of the sources and the mixing system too easy to allow
for an accurate estimation of the true underlying random
processes on the basis of a finite number of observations.
Therefore, algorithms like the one in [6] simplify the source
modeling to white sources and absorb all coloration into the
mixing system. In practice, however, one often has some «
priori knowledge about the source signals, which could be
exploited during the blind identification process. In the fol-

lowing, we assume that the power density spectra Alwet)
are smooth functions of frequency and that spectral samples
Aewot) B — 1,2,..., K can be well approximated in the
form

Al = Byl®
= Ao Ak

19

with A% ,where B isa
T x Q matrix with @ < T whose columns contain appro-
priate smooth basis functions.

We now consider the simultaneous optimization of all
unknown values A5 for a given ¢ using the approxima-
tion (19). For this, we first define the cost function

’)‘1("!41:(-1.1)]7‘

K-1
Cr=Y Cupr = llar — HA}

k=0

(20)
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where
AWOJ Quig,t
Ar = . y @ = )
Aw}(—l)t (NP
H = dlag [Huo:ﬂwp' . }Huu(_]] -

Equation (19) can be rewritten as

A= Bvy,, B=[B®Innl @
and hence we can write
Cy = ||!1t - ﬂv:”i 22)

with # = #{ B. The vector v, that minimizes (22) is given
by

ve=H" (23)

Q.

Given v, the vector A, containing all values Apet) o
quired to set up the matrices A, ; for the next AC step, are
found from (21). Depending on the basis B used, it is not

assured that all A%**) turn out positive. Therefore, we in-

clude one more step where any negative values Alest) are
set to zero.

3. EXPERIMENTAL RESULTS

We consider the case where two nonstationary, colored
source signals are mixed with a two-input two-output
mixing system. The autocosrelation sequences of the
sources were randomly generated for each time epoch as
riE (m) 07 i t{m) * ¢ 1(—m) where o7, are uni-
form random variables and c;(m) are length-3 sequences
of real-valued Gaussian random variables. The mixing sys-

tem was chosen as
1 111
2 211 1]
This is a paraunitary system, and its inverse, delayed to
become causal, is given by G(0) H(l), G(1)
H(0). For the cascade of both systems we have C{n)
Y o Gm)H(n —m) = é,, L

In the tests, ' = 64 frequency points were considered.

The basis sequences included in the columns of matrix B
for the DC step were chosen as

1 -1

H(0) 11

}, H(1) =

|

21 ij _ V2T, je{o
B,v’j:*yjcos( T ), v = i
Vv 1/T, otherwise

24

with § = 0,1,...,J and J = 4. Note that this exactly de-
scribes Jth order moving average source modeling.

Initial values for the estimated mixing system were ran-
domly generated by adding Gaussian random variables with



standard deviation ¢ = 0.1 to the coefficients of the true
system. Fig. 1 shows the convergence behavior for 20 dif-
ferent starting points and the same input statistics. As the ex-
amples show, in most cases the value of the objective func-
tion decreased to extremely low values. Only three times out
of 20 the algorithm got trapped in a local minimum with a
relatively high value for C.

In all cases where the final value C' was below —200
dB the power spectra of the sources were perfectly esti-
mated, and also the mixing system was identified up to per-
mutations and scaling. For cases where the final value was
around —14dB the estimates were close to the true values.
For one of these cases, four pairs of the identified source
power spectra are depicted in Fig. 2 togther with the true
ones. As can be seen, even for these cases the estimated
source power spectra are very close to the true ones. Also
the cascades of the estimated mixing systems and the in-
verse to the true one were near-perfect, as can be seen in the
following example:

C(0) = | 00007 0.0002
0.0007 0.0002
cay=| ~t 00008
0.0009 -1
Cl)=| 00012 ~0.0002
~0.0012  0.0002

4. CONCLUSIONS

A new method for the blind estimation of convolutive mix-
ing systems in the presence of colored sources has been pre-
sented. The results show that the algorithm estimates both
the source spectra and the mixing system with little variance
if it converges to a low value of the objective function. Fur-
ther work will be directed toward automatic initialization
of the algorithm and optimization for recorded data such as
speech and audio.
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