
Audio Engineering Society

Convention Paper
Presented at the 118th Convention

2005 May 28–31 Barcelona, Spain

This convention paper has been reproduced from the author’s advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and
remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also seewww.aes.org. All
rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from theJournal of
the Audio Engineering Society.

An Efficient, Fine-Grain Scalable Audio
Compression Scheme

Huan Zhou1, Alfred Mertins1, and Stefan Strahl1

1Signal Processing Group, Department of Physics, University of Oldenburg, 26111 Oldenburg, Germany

Correspondence should be addressed to Alfred Mertins-Author (alfred.mertins@uni-oldenburg.de)

ABSTRACT
To address the fine-grain scalable audio compression issue, a novel combined significance tree technique is
proposed for high compression efficiency. The core idea is to dynamically adopt a set of locally optimal
significance trees, instead of following the common approach of using a single type of tree. Two different
encoding strategies are proposed: the spectral coefficients can be encoded either in a threshold-by-threshold
manner or in a segment-by-segment manner. The former yields rate and fidelity scalability, and the latter
yields bandwidth scalability. Experimental results show that our proposed scheme significantly outperforms
the existing schemes using single-type trees and performs comparably with the MPEG AAC coder while
achieving fine-grain scalability.

1. INTRODUCTION

The growth of the Internet together with media stream-
ing over wireless links has created a demand for high-
quality streamed audio content. Audio coding with fine-
grain bitrate scalability and progressive transmission al-
lows real-time streaming with low buffer delay and unin-
terrupted service in the presence of channel congestion,
and yields the most efficient use of available channel
bandwidth. Among the popular audio codecs, the most
classical ones do not offer progressive transmission (e.g.,
MP3, REAL, WMA, AAC) or provide only coarse lay-
ers (MPEG-4 AAC). The state-of-the-art scalable audio

codec is the MPEG AAC-BSAC, which yields fine scala-
bility (1kbit/s) at the cost of cumbersome layer structures
and numerous arithmetic coding models.

In general, the scalability in scalable codecs is obtained
at the price of degradation in performance relative to
fixed-bitrate versions with the same coding technique.
And in general, the finer the granularity is, the higher the
loss [1]. Therefore, it is very desirable and attractive to
construct a scalable codec with both fine scalable granu-
larity and competitive efficiency. Recently, several works
addressed the issue [2, 3, 4, 5, 6, 7, 8, 9, 10] by propos-
ing fine-grain scalable audio compression schemes us-

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

ing the techniques of both ordered bitplane coding and
tree-based significance mapping. The basic idea herein
is to encode the transformed coefficients by frames. In
each frame, all coefficients are in their binary represen-
tation. Bitplane encoding (or bit-slicing) technique is to
“slice” the coefficients one bit at a time, starting from
the most significant bit (MSB) with decreasing order. In
each bitplane, a tree-based significance mapping tech-
nique is exploited to quickly locate those significant co-
efficients (whose MSBs locate on the current bitplane)
and efficiently convey their position information so that
the decoder can accurately relocate them.

With the bitplane coding technique, a coarse representa-
tion of the largest (and most significant) coefficients is
provided by the top slice, more accurate representations
of the most-significant coefficients, and coarse approxi-
mations of the next most significant ones are provided by
subsequent slices, and so on. Thus, the bitplane coding
technique inherently provides rate/fidelity scalability.

The idea of significance-tree coding has originated from
image compression and has produced impressive ad-
vances in wavelet-based image compression. A well
known example is the set partitioning in hierarchical
trees (SPIHT) algorithm, proposed by Said and Pearl-
man [11]. In this scheme, a known coefficient signifi-
cance/magnitude distribution is assumed in the form of
spatial orientation trees, where the coefficients closer to
the roots of the trees are expected to be more significant
(i.e., larger in magnitude) than those at the leaves. Then,
at each bitplane level, the algorithm uses a sorting pass
(involving significance tests and recursive partitioning of
significant trees) in order to identify the coefficients that
are significant with respect to the current bitplane, and
then uses a refinement pass to output the current bitplane
values for those coefficients that have become significant
in one of the previous bitplanes. Through repeated sort-
ing and refinement passes with decreasing bitplane order,
the information on both positions and values of signifi-
cant coefficients is progressively transmitted.

Mathematically, the spatial orientation trees are repre-
sented by parent-children coefficient coordinate relation-
ships. For wavelet-based image compression, the off-
spring of a parent coefficient at position (i, j) are typ-
ically defined as O(i, j) = {(2i,2 j),(2i,2 j + 1),(2i +
1,2 j),(2i + 1,2 j + 1)}, which holds for all coefficients,
except the ones at the highest and lowest pyramid lev-

els. It has been realized that such a significance-tree def-
inition successfully captures not only the inter-band cor-
relation but also the intra-band correlation [12], which
results in very efficient sorting passes, producing a low
number of sorting bits. Overall, the SPIHT scheme has
fine bitrate/fidelity scalability, state-of-the-art compres-
sion performance and reasonable computation complex-
ity.

For audio signal compression, the problem of defining
optimal tree structures remains unsolved despite consid-
erable efforts. Almost all existing algorithms adopted a
single type of tree with the parent-children relationship
O(i) = iN + {0,1, · · · ,N− 1} for different positive inte-
ger N. In particular, N = 4 was adopted in [2, 5, 6, 7]
for the MDCT transform, and N = 2 was used in [3, 4]
for the wavelet packet transform. These significance tree
choices, in nature, are rather arbitrary. They are follow-
ing the spatial orientation-tree idea with slight modifi-
cations of the original matrix notation of 2-D trees into
vector notation of 1-D structures. In the following, this
type of significance trees will be referred to as SPIHT-
style significance trees.

The main difficulties in addressing efficient significance
tree structure for audio compression are:

1. The elegant hierarchical self-similarity properties
for a dyadic wavelet transform are not present for 1-
D non-wavelet transforms like the MDCT, which is
a commonly adopted transform form in audio com-
pression.

2. The statistical properties of audio signals might
change drastically over time. For the same audio
signal source, at different time instances, its spec-
tral magnitude distribution varies dynamically, and
a tree that is good for one time instance can be poor
for another one.

All these factors make the issue of finding a universal yet
efficient significance tree for non-wavelet transformed
audio signal compression more complicated.

To address this problem, we propose an adaptive, com-
bined tree-based significance mapping technique, and
based on it, we develop a novel, scalable compression
scheme, called combined significance tree quantization

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 2 of 8

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

(CSTQ). Unlike in sorting with single-type significance
trees, we adaptively generate different significance trees
in our proposed scheme, depending on the actual signal.
Thus the scheme has the natural features of flexibility,
adaptivity and fine-grain scalability.

Further flexibility is offered in the CSTQ scheme by
two different encoding manners: either sorting the co-
efficients threshold-by-threshold (CSTQ-T algorithm)
over all segments, or by sorting them in a segment-
by-segment manner (CSTQ-S algorithm). Encoding
threshold-by-threshold yields rate and fidelity scalabil-
ity, and encoding segment-by-segment yields bandwidth
scalability. The CSTQ-S algorithm is more complex than
CSTQ-T, because it requires an optimal distribution of
the available bits to the segments. In this paper, we con-
fine ourselves to describing the CSTQ-T algorithm.

2. TREE-BASED SIGNIFICANCE MAPPING

2.1. Basic Concept of Significance Tree

Let the vector X = (X1,X2, · · · ,XM) denote a set of M
transform coefficients to be encoded, with according co-
ordinates set M = (1,2, · · · ,M). For the coefficient set,
the most significant bitplane (MSB) nmax, is naturally de-
cided so that 2nmax > max

i∈M
(| Xi/2 |). The bitplane nmax

will be the initial bitplane in the algorithm. Given any
bitplane n with n≤ nmax, all coefficients that become sig-
nificant with respect to bitplane n are found in a sorting
pass that employs tests on coefficient magnitudes.

With the aid of the introduced significance trees, all ele-
ments in the coefficient set X are uniquely mapped into
nodes in trees. Each significance tree T is composed of
several nodes that link coefficient coordinates i (position
information) of scalars Xi in an hierarchical manner. In
this case, the tree T is said to be significant with respect
to bitplane n if any scalar inside the tree is significant.
That is, if the magnitude of at least one coefficient in the
set is larger than 2n.

During the sorting pass, significance tests are performed
on the basis of trees as follows (pseudocode):

TreeSignificance (current treeT , current threshold2n)

• If T is insignificant with respect to2n, emit ‘0’ and

return;

• If T is significant with respect to2n, emit ‘1’;

• If root node N(T) is significant with respect to2n,
emit ‘1’, otherwise emit ‘0’;

• Call TreeSignificance() for each subtree with root
node as offspring of N(T) with threshold2n;

• Return;

Observing the above significance test process, it is clear
that choosing different significance-tree structures would
definitely lead to different bit costs in the sorting pass,
and also to the coding efficiency of the entire coding
scheme.

2.2. Generation of Significance Trees

To establish a suitable tree structure, considering dynam-
ically variant spectral behavior, there exists no single tree
that captures the significance information of all frames
equally well. We therefore aim at dynamically finding
the best significance tree for each frame from a given set
of possible trees. For this, the coefficient set X is first
divided into m segments, and the magnitude distribution
curves in each segment are classified by four description
models as illustrated in Fig. 1. For the model selection
in each segment, we use the following simple procedure.
We first divide a given segment into four, equally sized
parts and observe the maximum coefficient magnitudes
in these four sub-segments. Let the maxima (from left
to right) in the four parts of the ith segment be ξi,1, ξi,2,
ξi,3, ξi,4, and let ξi,max= max4

k=1 ξi,k be the overall max-
imum. Then, if ξi,max is equal to ξi,2 or ξi,3 we choose
model 1. If ξi,max= ξi,1 and ξi,1 ≥ 2ξi,4, we pick model
4. If ξi,max = ξi,4 and ξi,4 ≥ 2ξi,1, we use model 3. If
none of these conditions applies, we use model 2.

Alternative to the maximum coefficient magnitudes, the
norms of the subsegments can be used to define ξi,1, ξi,2,
ξi,3, ξi,4. This increases the cost for model selection, but
yields a slight performance improvement.

For notational convenience, in the following, we use T j

to denote the local significance tree satisfying magnitude
distribution model j . Moreover, it should be noted that,
in principle, if the tree T 4 is fixed, the tree T 3 can be de-
rived from it through reversing the coefficient sequence.

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 3 of 8

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

0 5 10 15
0

0.2

0.4

0.6

0.8

1

model 1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

model 2

0 5 10 15
0

0.2

0.4

0.6

0.8

1

model 3

0 5 10 15
0

0.2

0.4

0.6

0.8

1

model 4

Coefficient Index

C
oe

ffi
ci

en
t M

ag
ni

tu
de

Fig. 1: Approximation magnitude distribution models
(model 1,2: symmetric models; model 3: increasing
model; model 4: decreasing model).

Similarly, the trees T 1 and T 2 can be obtained from
T 4 through reordering the coefficients. Keeping this in
mind, our following analysis will only focus on estab-
lishing T 4.

Consider a significance tree T 4 (with height of J) that
is linked to a length-ω segment of coefficients Ω =
{x1,x2, . . . ,xω}. For the ith subtree with height j , t(j)

i , let

C(j)
i be its significance mapping cost (‘position’ bit cost);

P(j)
i be the subtree significance probability (including the

root node); n(j)
i be its root node; p(j)

i be the root node
significance probability; {Si, j−1} be the offspring set of
the root node; and si, j−1 be the set length. Recalling the
pseudocode for tree significance tests, we can derive the

significance and bits cost expressions for the subtree t(j)
i

as following:

• j = 1:

{
P(j)

i = 1− (1− p(j)
i)∏n∈{Si,0}(1− p0

n)

C(j)
i = 1+P(j)

i (1+si,0)

• 2 ≤ j ≤ J:

{
P(j)

i = 1− (1− p(j)
i)∏n∈{Si, j−1}(1−P(j−1)

n)

C(j)
i = 1+P(j)

i (1+∑n∈{Si, j−1}C(j−1)
n)

To simplify the problem, in this study, we limit the off-
spring number of each subtree to a fixed number r (ex-
cept for trees with highest or lowest height). Then it is
easy to get the height J of the entire tree due to the con-
straint that (1 + r + · · ·+ rJ) ≤ ω. So the top height J is
the maximum integer solution: J = �log2((r −1)ω+1) ·
(log2 r)−1 −1�. The unaccounted q= ω−∑J

i=0 r i coeffi-
cients are assumed as zero-offspring nodes.

To associate the coefficients position information (coor-
dinates) with nodes at different locations in the signifi-
cance tree, two useful observations are exploited: 1) the
significance probability of a higher tree is no less than

that of any lower tree. That is, P(j)
i > P(j−1)

n for 1≤ j ≤ J
and n = 1,2, . . . ,si, j−1. 2) for efficient compression, a
subtree that is expected to be insignificant should have
as many coefficients as possible while a subtree that is
expected to be significant should have the lowest possi-
ble number of coefficients.

Following these observations, it is natural to decide the
root nodes for height J and J−1 trees as:

n(J)
1 = x1 (1)

n(J−1)
1,··· ,q+r = [x2:q+1,xq+2:q+r+1] (2)

where nodes in n(J−1)
1,··· ,q+r are arranged from left to right.

That is, the coefficient with the highest significance prob-
ability is chosen as the tree root node; the next q+ r most
significant coefficients are arranged as the offspring of
the root node. If J = 1, there are only two levels and all
root nodes in height J− 1 of the tree are zero-offspring
nodes, so that the whole tree is generated. Otherwise, if
J > 1, the first part in the right-hand side (RHS) of (2)
corresponds to zero-offspring nodes, and the second part
refers to r-offspring nodes.

Now we consider how to arrange the remaining coeffi-
cients to all trees with height 0 ≤ j ≤ J− 2. Based on
the above proposed probability and cost expressions, and
with the simplifying assumption of equal costs for en-

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 4 of 8

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

coding subtrees t(j−1)
n for ∀n∈ {Si, j−1}, we have

min(C(j)
i) ⇐⇒ min

(
P(j)

i

i·r
∑

n=1+(i−1)r
C(j−1)

n

)

⇐⇒ max
(
(1− p(j)

i)
i·r
∏

n=1+(i−1)r
(1−P(j−1)

n)
)
.

Observing the last expression, we can see that, in order

to minimize bit costs, if p(j)
i > p(j)

i+1, we have φi > φi+1

with φi := ∏i·r
n=1+(i−1)r P(j−1)

n . In other words, the bigger
the parent is, the bigger offspring are expected. Thus, the
significance tree can be easily constructed by arranging
the coefficients xq+r+2:w from top to bottom for differ-
ent heights j with 0 ≤ j ≤ J− 2 and from left to right
for the same height. Together with (1) and (2) for higher
tree nodes, the entire significance tree T 4 can be gener-
ated quickly. Following this way, all m significance trees
are produced, which are concatenated together to form a
combined sequence of significance trees for coefficient
set X .

3. CSTQ-T ALGORITHM DESCRIPTION

Suppose for a set of coefficients X that is parti-
tioned into m subsets Ω1,Ω2, . . . ,Ωm, the subset signif-
icance trees are first generated as described above. The
CSTQ-T algorithm compresses the coefficient set X in
the order of threshold-by-threshold, over all segments
Ω1,Ω2, . . . ,Ωm. The entire algorithm is described as fol-
lows:

CSTQ-T Algorithm:

1. Tree Generation: Partition the coefficient set X
into m segments; sequentially generate local signif-
icance trees for the segments;

2. Initialization: output n = �log2(max
i∈M

{| Xi |})�;

sequentially do: output segment length and signif-
icance tree type; set LSC (list of significant coeffi-
cients) as an empty list.

3. Sorting Pass: sequentially call TreeSignificance,
move all significant coefficients into the according
LSC, output their signs.

4. Refinement Pass:sequentially, for each coefficient
in according LSCs, except those included in the last

sorting pass, output the nth most significant bit of
Xi .

5. Quantization-Step Update:decrement n by 1 and
go to Step 2.

The process is repeated until the desired bit budget is
achieved, or, in case of lossless compression, all bits in
all coefficients have been encoded.

Compared to the SPIHT procedure [11], our proposed
CSTQ-T has competitive calculational complexity, even
with the additional combined significance tree generation
process (Step 1). Since our combined significance tree is
more accurate and flexible than fixed trees, a higher cod-
ing efficiency is expected. This will be confirmed in the
experiments in Section 4. The amount of side informa-
tion required to transmit the significance tree sequence
information (2m binary bits) and the segment length in-
formation (which could be reduced by uniform division)
is relatively low in relation to the number of bits saved
due to an enhanced significance tree selection.

4. EXPERIMENTAL RESULTS

Now we apply our proposed CSTQ scheme to the com-
pression of audio signals. First, we compare our scheme
with existing algorithms with SPIHT-style significance
tree adoption. Then, we combine our method with the
state-of-the-art MPEG AAC compression scheme by re-
placing the Huffman coding stage for quantizer-index
compression by the CSTQ algorithm. Both objective and
subjective results will be presented.

4.1. Comparison with Previous SPIHT-related
Schemes

In the experiment, the audio signal was selected as the
svega.wav file, a female singing, with 44.1 kHz sam-
pling rate and 16 bits per sample. The audio signal
was transformed with the MDCT with a constant frame
length of M = 1024. The target bitrate for a mono chan-
nel was chosen as 96 kbps. Four compression algorithms
based on the following tree constructions were applied:

1. Adopting SPIHT-style significance trees on each
frame (in short, SPIHT);

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 5 of 8

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

Table 1: Average frame-wise SNRs in dB for the svega
signal coded at 96 kbps, using different algorithms.

SPIHT SPIHT+seg CSTQ-T CSTQ-T1

30.76 28.89 31.50 28.72

2. Adopting SPIHT-style significance trees on each
segment (in short, SPIHT+seg);

3. Using the proposed algorithm with m= 8 segments
(in short, CSTQ-T)

4. Using the proposed algorithm for tree construction,
but with only one segment per frame (in short,
CSTQ-T1)

The frame-wise SNRs for the first 812 consecutive
frames containing music are given in Table 1. We can
see from these results that, overall, CSTQ-T yields the
best performance. We also see that the SPIHT algorithm
works better on a frame basis, whereas the CSTQ-T al-
gorithm works best in smaller segment basis. To have
a more detailed impression of the performance, Fig. 2
visualizes the frame-wise SNRs for the first 100 frames.
We can observe that in almost all frames, CSTQ-T out-
performs SPIHT, and it always outperforms SPIHT+seg.
This implies that for audio signal compression, due to
its variant spectral distribution from frame to frame, dy-
namic tree allocation in CSTQ-T shows more advan-
tages over the single-type trees in SPIHT. Interestingly,
when comparing SPIHT and SPIHT+seg, it turns out that
SPIHT+seg works better than SPIHT in a few frames.
This phenomenon also suggests some disadvantages of
adopting single-type trees on frame-wise coding.

4.2. Combination with the MPEG AAC Stan-
dard

In this experiment, we use the state-of-the-art MPEG
AAC compression scheme and combine it with our
CSTQ-T algorithm in order to achieve scalable coding.
For this, we keep the AAC scheme unchanged up to the
point where Huffman coding is employed, then apply
CSTQ-T algorithm to realize the compression of quan-
tizer indices. In all experiments, the reference software
of [13] was used.

0 20 40 60 80 100
10

15

20

25

30

35

40

45

50

Frame No.

F
ra

m
e-

w
is

e
S

N
R

[d
B

]

CSTQ-T

SPIHT

SPIHT+seg

Fig. 2: Frame-wise SNRs for the first 100 frames of the
svega signal, coded at 96 kbps.

The compression of quantizer indices can either be loss-
less or lossy, depending on the number of bits transmit-
ted. On the decoder side, the received quantizer indices
(either exact values or approximations, depending on the
bitrate) are injected into the standard AAC decoder. All
other side information is transmitted as produced by the
AAC coder.

Table 2 shows the average segmental SNRs for the two
algorithms at different bitrates, using the quartet signal
from the sound quality access material (SQAM), ob-
tained from [14]. Note that the results for the AAC coder
were produced by encoding the signal individually for
each bitrate. For CSTQ-T, the encoding was done once
at 64 kbps, and then lower rates were realized by truncat-
ing the frame-wise embedded bitstream produced by the
CSTQ-T algorithm. As the results in Table 2 show, the
SNR for CSTQ-T is slightly lower at the highest bitrate,
but it is better for all lower bitrates. A similar behav-
ior could be found for other audio material as well. This
could be explained by to the fact that at 64 kbps, not all
frames could be compressed by the CSTQ-T scheme, in
a lossless manner within the given bit budget. At lower
rates, however, CSTQ-T has the advantage that it can ex-
actly meet the target bitrate without the need of including
any padding bits, which are quite common in the AAC
bitstream produced by the reference software.

In order to see whether the objective results based on the

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 6 of 8

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

Table 2: Average segmental SNRs in dB for different
bitrates and algorithms.

Bitrate AAC CSTQ-T

16 7.42 8.51

24 9.59 10.67

32 11.32 13.37

40 12.73 15.23

48 14.29 16.32

56 15.82 16.84

64 17.05 17.03

segmental SNR translate into similar subjective quality
impressions, we carried out listening tests with twenty
test persons. The measurement procedure was set up
according to the ITU recommendation BS.1116-1 [15].
The quality ratings between one (very annoying) and five
(indistinguishable from the original) were translated into
the subjective difference grade, which is the difference
between the rating for the encoded test item and the hid-
den reference and ranges from zero (equal quality) down
to -4 (the lowest grade). The results for three different
test signals are depicted in Fig. 3.

Observing the difference grades in Fig. 3, we see that,
overall, the subjective ratings for CSTQ were quite close
to those for AAC. Moreover, at the lowest rate of 16
kbps, CSTQ was always rated better than AAC; at the
highest rate of 64 kbps, both the AAC and the CSTQ
coder achieved close to transparency quality. Further, it
is interesting to take a close look at the results for the
quartet signal. Comparing the subjective results in Fig.
3 with the objective results listed in Tab. 2 confirms
that it is not always the case that an objective advan-
tage will translate into a better subjective quality. The
reason for the better subjective performance of AAC at
32 and 48 kbps is likely to be the fact that the AAC
coder used individually optimized quantizers (based on
the psychoacoustic analysis) for each bitrate, whereas the
CSTQ coder used the quantizers that were optimized for
64 kbps and then dropped the lower bitplanes in order to
meet the desired target bitrates.

-4

-3

-2

-1

0

1

AAC

CSTQ

CSTQ

CSTQ

CSTQ

AAC

AAC

AAC

rate [kbps]
16 32 48 64

-4

-3

-2

-1

0

1

AAC

CSTQ

CSTQ

CSTQ

CSTQ

AAC

AAC

AAC

rate [kbps]
16 32 48 64

-4

-3

-2

-1

0

1

AAC

CSTQ

CSTQ

CSTQ
CSTQ

AAC

AAC

AAC

rate [kbps]
16 32 48 64

D
if
fe

re
n

c
e

g
ra

d
e

D
if
fe

re
n

c
e

g
ra

d
e

D
if
fe

re
n

c
e

g
ra

d
e

Fig. 3: Subjective difference grades. Top: Tracy Chap-
man. Middle: Quartet. Bottom: Female English speech.

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 7 of 8

Zhou et al. An Efficient, Fine-Grain Scalable Audio Compression Scheme

5. CONCLUSIONS

The fine-grain scalable audio signal compression prob-
lem has been addressed in this study. While in almost
all existing algorithms, a single type of significance tree
has been adopted for sorting significant coefficients and
transmitting position information, we have proposed a
novel combined significance tree technique. Such a tree
is generated dynamically to suit variant spectral behav-
ior from frame to frame. Based on the dynamic tree
selection, a compression scheme called CSTQ-T has
been fully developed, which provides both high com-
pression quality and fine-grain bitrate scalability. Further
experiments clearly demonstrate these advantages: the
method outperforms the existing SPIHT-like algorithms
and yields competitive quality as the nonscalable AAC
audio compression scheme, yet with fine scalability of
one-bit granularity per frame.

6. REFERENCES

[1] B. Kovesi, D. Massaloux, and A. Sollaud, “A scal-
able speech and audio coding scheme with continu-
ous bitrate flexibility,” in Proc. Int. Conf. on Acous-
tics, Speech, and Signal Processing, May 2004, pp.
I–273–I–276.

[2] C. Dunn, “Efficient audio coding with fine-grain
scalability,” in AES 111th Convention, NY, USA,
Sep. 2001, preprint 5492.

[3] Z. Lu and W. A. Pearlman, “An efficient, low-
complexity audio coder delivering multiple levels
of quality for interactive applications,” in Proc.
IEEE Signal Processing Society Workshop on Mul-
timedia Signal Processing, Dec. 1998, pp. 529–
534.

[4] Z. Lu and W. A. Pearlman, “High
quality scalable stereo audio coding,”
http://www.cipr.rpi.edu/ pearlman/papers/, 1999.

[5] M. Raad, A. Mertins, and R. Burnett, “Audio
coding based on the modulated lapped transform
(MLT) and set partitioning in hierarchical trees,”
in Prof. 6th World Multiconference on Systemics,
Cybernetics and Informatics, Orlando, USA, Jul.
2002, pp. 303–306.

[6] M. Raad and A. Mertins, “From lossy to lossless
audio coding using SPIHT,” in Proc. of the 5th Int.

Conf. on Digital Audio Effects, Hamburg, Germany,
Sep. 2002, pp. 245–250.

[7] M. Raad, A. Mertins, and R. Burnett, “Scalable
to lossless audio compression based on perceptual
set partitioning in hierarchical trees (PSPIHT),” in
Proc. Int. Conf. on Acoustics, Speech, and Sig-
nal Processing, Hong Kong, Apr. 2003, pp. V624–
V627.

[8] J. Li, “Embedded audio coding (EAC) with implicit
auditory masking,” in Proc. ACM on Multimedia,
Nice, France, Dec. 2002, pp. 592–601.

[9] S. A. Ramprashad, “High quality embedded wide-
band speech coding using an inherently layered
coding paradigm,” in Proc. Int. Conf. on Acoustics,
Speech, and Signal Processing, Istanbul, Turkey,
June 2000, pp. 1145–1148.

[10] Moving Picture Experts Group, “MPEG-4 Au-
dio Version 2 (Final Committee Draft 14496-
3 AMD1),” ISO/IEC/JTC1/SC29/WG11 N2803,
1999.

[11] A. Said and W. A. Pearlman, “A new, fast and ef-
ficient image codec based on set partitioning in hi-
erarchical trees,” IEEE Trans. on Circuits and Sys-
tems for Video Technology, vol. 6, no. 3, pp. 243–
250, 1996.

[12] Z. Liu and L. J. Karam, “Quantifying the intra
and inter subband correlations in the zerotree-based
wavelet image coders,” in Conf. Record of the 36th
Asilomar Conf. on Signals, Systems and Comput-
ers, Sep. 2002, pp. 1730–1734.

[13] “http://www.iso.ch/iso/en/ittf/PubliclyAvailableSta
ndards/ISOIEC 14496-
5 2001SoftwareReference/”.

[14] “http://sound.media.mit.edu/mpeg4/audio/sqam/”.

[15] ITU-R Recommendation BS.1116-1, “Methods for
the subjective assessment of small impairments in
audio systems including multichannel sound sys-
tems,” International Telecommunication Union,
Geneva, 1997.

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 8 of 8

