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Abstract

The EU-funded project VSAMUEL aims to record from up to 128 channels from animal
multi-electrode experiments. This will put a signi"cant load on data storage and retrieval. To
decrease the "le size of 16 bit, 25 kHz recordings, compression algorithms were investigated and
compared. Due to the high entropy of the signal, entropy coding was discarded and instead
a wavelet based coder implemented. Compression ratios of up to 1 : 20 were achieved, but on the
cost of loss of spike events. This was quanti"ed by a new spatio-temporal event detector, which
takes the location of electrodes on our silicon probes into account. � 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Modern neuroscience and our understanding of how the brain and its neural units
work, is indisputably connected to the experimental ability of detecting their natural
means of communication by electrical activity [6]. Even though extracellular record-
ing from single cells is performed routinely, little is still known about network- and
higher level activity. Intercepting this level of information processing requires the
technological ability to place a high number of recording sites in close proximity to
cells in question [18,20]. The use of standard microelectrodes or even tetrodes not
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only requires extremely di$cult surgical procedures, but also traumatizes the pen-
etrated tissue, due to the number of probes with rods of diameters of up to several tens
of microns. Additionally, it lacks a high precision of positioning subsequent electrodes
[4,17].
The EU-funded project VSAMUEL aims therefore to insert with only one single

penetration and a few thin rods as many recording sites as possible into the area of
interest. This will be performed by micro-machined and inexpensive silicon forks,
carrying tens of micrometer-sized recording sites on each tine, as already proposed
earlier [25] and achieved signi"cantly later [1,15]. Micro-structuring is here per-
formed by a dry etch process, avoiding high temperature boron di!usion etch stops.
Although well established, real widespread, general use of batch fabricated silicon

multi-site probes in neuroscience research has not truly been achieved yet. We
attribute this, besides the delicate handling of silicon probes, in part, to a lack of
appropriate, easy to use and inexpensive data acquisition systems, which relieves the
researcher from troublesome technological issues. In order to overcome this limita-
tion and provide a multisite recording system out of one cast VSAMUEL was
initiated to speci"cally tackle these tasks. Further details on the whole project may be
found on the Internet under www.vsamuel.de and are described elsewhere [7,8].

2. Characterization of recorded data

Above mentioned overall goals for data acquisition will lead to 128 channel
recording with 16 bit A/D resolution and 50 kHz sampling rate by a PC. Streaming
such data from the full #edged VSAMUEL system in a `rawa format will "ll up every
data storage device with 12.8Mbyte/s. In other words, 1 h of 128 channel recordings
will produce a data volume of over 46Gbyte. This lies technologically well within the
current state of the art for data transfer through the utilized PCI-bus (up to 1Gbyte/s
[9]), but requires signi"cant "nancial e!orts in data storage and backup.
In order to minimize these investments, the following study deals with ways to

reduce data storage requirements without compromising data quality. For that
purpose, we characterized and processed 30 s worth of data from eight channel
neuronal recordings from rat SI area [22] by algorithms developed under MATLAB
(Mathworks Inc.), utilizing the Wavelet- and the Morphological Filter-Toolbox.
Signals had amplitude values in the range of !1.5 to 1mV with up to 100�V high
frequency noise level. These data are digitally stored in an eight channel SUN audio
"le comprising 24Mbyte.
Fig. 1 (left) shows a histogram of discrete values of one channel, resulting from 16bit

sampled raw data. Going from analog, extracellular to digitized signals corresponds
to a step called `Pulse Code Modulationa (PCM). Histograms of all channels show
wide, but similar distributions over almost the whole bit range and may be quanti"ed
by their entropy H [10]:

H"!�
�

P(x)log
�
P(x),
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Fig. 1. Histogram of digitized values for 2�� data points of one channel of raw, 16bit sampled (left) and
di!erentiated data (right). Note the change in scale and spread from raw to di!erentiated data.

where P(x) is the frequency of occurrence of value x, for large data sets this is their
probability.
Theoretically, if all recorded values show equal frequency of occurrence, i.e. all bins

contain equal numbers of counts and therefore probabilities for all values are equal,
the entropy corresponds to the value of sampling precision*here 16 bit. Our real rat
data show an entropy value of 13.85$0.04 bit over all channels. This means that
a loss-less compression scheme by entropy coding, like the famous Hu!man algorithm
will optimally yield a compression ratio of 0.86 only [16].
This situation may be improved by storing the di!erences of subsequent samples

instead of their absolute values, a method called `Di!erential Pulse Code Modula-
tiona (DPCM) [10]: A histogram for one channel may be found on the right of Fig. 1.
The clear reduction in entropy to 8.14$0.06 bit may optimally yield a compression
ratio of 0.51, still more than half the original "le size.
Further improvement may be achieved by storing low-pass "ltered `"eld-potentiala

data (0}500Hz) separately from high-pass "ltered `action potentiala signals
(500Hz}6kHz). This will obviously introduce losses into the "le, but the entropy for
a DPCMmodulated high-pass signal will drop to 5.21$0.11 bit, making a compres-
sion ratio of 0.325 maximally achievable. Bearing the vast amounts of expected
neuronal data in mind leads us to conclude, that entropy coding of our data yields
insu$cient compression ratios and will therefore need to be subsidized by other
means of compression, like the following wavelet transformation.

3. Compression by discrete wavelet transformation

Wavelet transformation is a recent implementation of the mathematical concept of
orthogonal function systems [5]. In fact, a wavelet is in general a function of Hilbert
space with a zero average. In contrast to a Fourier transformation with its in"nite
extending base functions sine and cosine, in wavelet transformation, a so-called
`mother-waveleta is focused in the time domain, but smeared out in the frequency
domain [2,12].
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Fig. 2. Illustration of the pyramidal wavelet decomposition on 2�16 sample points with the `Daubechie 2a
wavelet.

Technically, a mother-wavelet may be implemented as a "lter [11]. Applying this
"lter to a power of two number of elements of the signal vector leads to two sets of
coe$cients (each half the original length) which represent the "rst approximation of
the signal and its "rst detail content (Fig. 2). The values of the detail vector are small
and are stored in one new output vector. Skewing the original "lter, i.e. wavelet, by �

�
and applying this to the approximation vector itself leads to another pair of approxi-
mation/detail vectors (�

�
length) and so on until the required precision is reached. Each

time the detail content is concatenated to the output vector, thus leading to an output
vector with as many coe$cients as original data points. This scheme is called
a pyramidal decomposition algorithm and deconstructs signals based on wavelets
rather than the usual sine/cosine (see Fig. 1 of [11]). An exact copy of the original data
may be regained if the pyramidal decomposition is used to the nth level assuming
2� original sample points. Lossy compression of data may simply ignore certain scales
and reconstruct the signal only from a fracture of the pyramid [12].
Fortunately, if the original mother-wavelet was chosen wisely, many of the resulting

coe$cients in output vector C will be small and may then be clipped to zero. This
enables us to e!ectively compact the coe$cients vector by a standard entropy coder
like UNIX' `bzip2a-routines.
For the compression scheme we implemented for the VSAMUEL project (Fig. 3;

the stand-alone version may be downloaded from www.vsamuel.de), we calculate the
decomposition pyramid to its n-6th level on each channel based on the `Daubechie 2a
wavelet and allow the user to set its own threshold level. In the best case, this will lead
to a compression ratio of up to 1 : 20, but will introduce losses in the original data.
In order to quantify this distortion on the data and subsequent loss of spikes, we

implemented a new spike detection scheme based not only on the temporal character-
istics of the data, but on the spatial structure of the recording sites as well.

1728 B. Weber et al. / Neurocomputing 38}40 (2001) 1725}1734



Fig. 3. Schematics of our compression algorithm based on discrete wavelet transform, thresholding and
entropy coding.

4. Spatio-temporal event detection by morphological 5ltering

Standard in vivo microelectrode recording utilizes only a handful of recording sites
[19,24], which are located inpredictably from each other. Recorded signals have
therefore to be treated as spatially independent.
In spite of this, micro-machined multisite probes have the invaluable advantage, of

precise determination of their sites location relative to each other due to their
lithographic origin. In our case, electrode sites were distributed along one tine with
a center-to-center distance of 50�m, which we decided to incorporate into a new kind
of spike event detector.
For detecting separate events, the obtained signals (Fig. 4A) are represented as gray

level images with one line for each channel respectively each recording site. The signal
amplitudes are mapped to image intensities by identifying the individual signal means
with average intensity. This representation enables us to consider time-correlation
among the signals by the local image neighborhoods and to detect spatially separated
events occurring at the same time (Fig. 4B). Since events are structures of high
intensities, a global clipping suppresses noise and yields potential events (Fig. 4C). The
event detection now turns into an image processing problem that can be tackled by
means of mathematical morphology, since events occur with characteristic shapes and
extends in the image representation.
Mathematical morphology provides powerful nonlinear "lters for shape sensitive

manipulation of structures [21]. It has been used successfully for many biological
and medical tasks [3], such as cytological shape analysis [13] and image segmenta-
tion [14].
Since we want to detect structures of high intensity and known shape we perform
`openinga "ltering with a specially shaped template. Opening of gray level images
removes bright structures that are subsets of the template and smoothes contours. The
size of the remaining structures is qualitatively preserved since opening is a composi-
tion of the dual operators erosion and dilation. The remaining structures represent
desired events (Fig. 4D). They are detected by a maximum-transformation that yields
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Fig. 4. Illustration of the new spatio-temporal spike detection algorithm: (A) 1000 samples of 8 channels
recordings are mapped in (B) according to their amplitude to a grayscale line for each channel. Global
clipping of amplitude values yields (C) on which events are detected by morphological opening-"ltering.
Detection of regional maxima results in (E) and localization of single events by marker extraction is shown
in (F). Only events visible on more than 2, but less than 5 electrodes were marked.

a binary image consisting of all regional maxima of certain gray-level dynamics.
Gray-level dynamics controls the minimal intensity of the selected region. It is
globally subtracted from the image and the subsequent reconstruction-by-dilation
yields regional maxima [23]. The "nal extraction of representativemarkers to indicate
the time of occurrence for each event is subject to ongoing research, but depends on
the chosen morphological template.

5. Results

Ultimate goal of this study was to design a compression algorithm, which enables
the user to compress acquired data to his wishes while preserving spike information.
Although numerical values like a PSNR [10] are useful to compare compression

1730 B. Weber et al. / Neurocomputing 38}40 (2001) 1725}1734



Fig. 5. Comparing our wavelet compression with respect to loss of spike events. The upper pictures show
raw (a) and 95% compressed and retrieved data (b) both sets of data were subject to the same spatio-
temporal event detector. Regional maxima, correlating to spike events, are shown in the lower row: Events
from raw (c) and compressed (d) data.

algorithm on test data, the ultimate requirement is preservation of all those events the
user deems important. To achieve this user driven comparison we subjected our test
data to a compression and decompression cycle and performed the spatio-temporal
event detection on those data. Pictures (c) and (d) in Fig. 5 clearly illustrate a loss of
events which is put into perspective by the achieved compression of 1 : 20!
Analysis of several compression ratios showed, that from 1 : 3 on (66% of original

size) a loss of events occurs as compared to the raw data set. For our test data, this loss
increased almost linearly to 25% for a compression ratio of 1 : 20 (5% of original size).
In other words, the user pays for savings in data storage with a reduction in
performance and biological meaning. Whether or no this loss is acceptable has to be
determined by each user for his speci"c application.
Clearly, since the VSAMUEL project is work in progress, our algorithm needs

further investigations and "eld testing, in particular with respect to artifactual events
and computing performance in a real-time application.
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