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Unitary Differential Space-Time-Frequency Codes
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Abstract—In a multiple-input multiple-output (MIMO), multi-
band orthogonal frequency division multiplexing (MB-OFDM)
ultra-wideband (UWB) system, coherent detection requires the
transmission of a large number of symbols for channel estima-
tion, thus reducing the bandwidth efficiency. For the first time,
this paper proposes unitary differential space-time-frequency
codes (DSTFCs) for MB-OFDM UWB communications, which
increase the system bandwidth efficiency because no channel
state information (CSI) is required. The proposed system would
be useful when CSI is unavailable at the receiver, such as
when the transmission of multiple channel estimation symbols
is impractical or uneconomical. The coding and decoding al-
gorithms for the proposed DSTFCs are then derived for both
constant envelope modulation scheme, such as PSK (phase
shift keying) and 4QAM (quadrature amplitude modulation),
and multi-dimensional modulation scheme, such as DCM (dual
carrier modulation). The paper also quantifies for the first time
the diversity order of a DSTFC MB-OFDM system. Simulation
results show that the application of DSTFCs can significantly
improve the bit error performance of conventional differential
MB-OFDM system (without MIMO), and even provide much
better bit error performance than the conventional coherent MB-
OFDM system (without MIMO) at high signal-to-noise ratios.

Index Terms—UWB, MB-OFDM, DSTFC, STFC, MIMO.

I. INTRODUCTION

COMBINATION of the emerging technologies, namely
multi-band orthogonal frequency division multiplexing

ultra-wideband (MB-OFDM UWB) [3], [4], multiple-input
multiple-output (MIMO), and space-time-frequency codes
(STFCs), may provide a significant improvement in the form
of maximum achievable communication range, bit error per-
formance, system capacity, data rate, or a combined form of
those. The combination of MB-OFDM UWB, MIMO and
STFCs to which we will refer as STFC MB-OFDM UWB
systems has been considerably examined in the literature, such
as [5], [6], [7], [8], [9], [10], [11].

In all aforementioned works, channel state information
(CSI) is assumed to be known exactly at the receiver, allowing
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the receiver to perform coherent detection. According to [3],
six MB-OFDM symbols are transmitted in the physical layer
convergence protocol (PLCP) preamble for channel estimation
between each pair of transmit (Tx) and receive (Rx) antennas,
thus facilitating coherent detection at the receiver. In a MIMO
system consisting of M Tx and N Rx antennas, the required
number of symbols for this purpose might be as large as 6M ,
unless when superimposed training techniques, such as the
ones mentioned in [12], [13], [14], are used to reduce the
number of channel estimation symbols transmitted within the
preamble. Therefore, transmission of a large number of MB-
OFDM symbols for channel estimation reduces significantly
the system bandwidth efficiency. Moreover, in fast fading
channels or in very high data rate systems, transmission of a
large number of MB-OFDM symbols for channel estimation
is a hassling task and might even be impractical or uneco-
nomical. In these cases, non-coherent detection (or differential
detection), where no CSI is required for decoding signals at
the receiver, would be the best candidate.

For differential transmission in general OFDM systems
associated with a MIMO model, various techniques have been
proposed in the literature, such as [15], [16], [17], [18],
[19] and [20]. However, differential transmission in MB-
OFDM systems associated with MIMO has not been con-
sidered yet. There are two main differences between channel
characteristics in conventional OFDM systems and in MB-
OFDM UWB ones. First, channels in the latter are much more
dispersive than those in the former, with the average number
of multipaths possibly reaching some thousands [21]. Second,
channel coefficients in the former are usually considered to be
Rayleigh distributed, while those in the latter are log-normally
distributed [21]. Therefore, the systems incorporating MB-
OFDM UWB, MIMO and differential transmission must be
more specifically analyzed, though there exist several simi-
larities between those systems and the systems incorporating
conventional OFDM, MIMO and differential transmission.

Thus this paper is the first case study to examine the appli-
cation of differential space-time-frequency codes (DSTFCs) in
MB-OFDM UWB communications. Contributions of this pa-
per include the implementation framework of DSTFCs, which
are adapted from the STFCs that we proposed previously in
[7] to apply to a differential detection scenario, in a MB-
OFDM UWB system; the derivation of in-depth differential
coding and decoding algorithms in the case of constant
envelop modulation schemes, such as M-PSK and 4-QAM;
the novel coding and decoding algorithms for the case of

1536-1276/13$31.00 c© 2013 IEEE
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Fig. 1. STFC MB-OFDM UWB system [7].

multi-dimensional modulation schemes, such as Dual Carrier
Modulation; the mathematical evaluation of the diversity order
of the proposed DSTFC MB-OFDM system, and the in-depth
simulation results.

The paper is organized as follows. Section II reviews
briefly the mathematical model of our proposed STFC MB-
OFDM UWB system [7]. In Section III, unitary DSTFCs are
proposed for MB-OFDM UWB, and decoding metrics are
derived for the proposed DSTFCs in Section IV. Section V
formulates the pairwise error probability and the maximum
achievable diversity order of the proposed DSTFC MB-OFDM
system. Simulation results are mentioned in Section VI and
conclusions are drawn in Section VII.

Notations: Throughout the paper, the superscripts (.)∗,
(.)T and (.)H denote the complex conjugation, transposition
and conjugate transpose operation, respectively. We denote
āj • b̄j , āj ∗ b̄j and āj ⊗ b̄j to be the element-wise (or
Hadamard) product, the linear convolution operation, and
the cyclic convolution operation between the two vectors
āj and b̄j , respectively. Further, ā. ˆ 2 denotes the element-
wise power-2 operation of ā. We define the multiplication
operation C◦D between the two matrices C = {c̄t,m}T×M and
D = {d̄m,n}M×N , whose elements c̄t,m and d̄m,n are column
vectors of the same length, such that the (t, n)-th element of
the resulting matrix is a column vector

∑M
m=1 c̄t,m • d̄m,n.

Denote Nfft to be the FFT/IFFT size (for MB-OFDM UWB
communications [3], Nfft = 128). Further, �{c} and �{c}
denote the real and imaginary parts of the complex number
c. The notation diag(āj) denotes a square diagonal matrix
formed by stacking the vector āj on the main diagonal of
the matrix, while {diag(āj)}Mj×Nj denotes a Mj × Nj-
sized rectangular matrix whose elements are diagonal matrices
diag(āj). We state that the two subsets of indices {m, k} and
{ḿ, ḱ} to be different, denoted as {m, k} �= {ḿ, ḱ}, if at
least one of the following two inequalities m �= ḿ and k �= ḱ
occurs. Finally, we define 1̄ as a column vector of length ND,
whose elements are all ones.

II. STFC MB-OFDM UWB SYSTEM

The proposed STFC MB-OFDM UWB system [7] consist-
ing of M Tx antennas and N Rx antennas, with the notations
of signals at the considered reference points, is depicted in
Fig. 1. The transmitted STFC is denoted as a matrix St =
{s̄t,m}T×M , where T is the number of MB-OFDM symbol
time slots required to transmit the whole STFC block. Each

MB-OFDM symbol time slot is TSYM = 312.5 ns, including
the FFT/IFFT period TFFT = 242.42 ns and the zero padded
suffix duration of TZPS = 70.08 ns [3, Table 6-2], [4, Table
6-2]. The code matrix S can be structured in a similar way as
orthogonal space-time block codes (OSTBCs) [22], [23], [24]
or quasi-orthogonal space-time block codes (QOSTBCs) [25]
in conventional wireless STBC MIMO systems, except that
each element s̄t,m is not a complex number, but is defined
as a column vector s̄t,m = [st,m,1 st,m,2 . . . st,m,Nfft

]T . The
vectors s̄t,m comprises the original transmitted data before
IFFT. The symbols st,m,k, for k = 1, . . . , Nfft, are drawn
from a PSK (phase shift keying), QAM (quadrature amplitude
modulation), DCM (dual carrier modulation) [26], or MDCM
(modified dual carrier modulation) [4] signal constellation.

Denote X = {x̄OFDM,t,m}T×M to be the matrix whose
elements are the Nfft-point IFFTs of the respective elements
in St, then X = {IFFT{s̄t,m}}T×M = {x̄OFDM,t,m}T×M .
The symbols x̄OFDM,t,m are referred to as MB-OFDM sym-
bols. Further, denote XZP = {x̄ZP,t,m}T×M to be the
matrix whose elements are the respective elements in X
appended by a zero padded suffix (ZPS) of 37 zeros [3].
At the transmission of the t-th MB-OFDM symbol, we de-
note h̄t,m,n = [ht,m,n,1 ht,m,n,2 . . . ht,m,n,Lm,n ]

T to be the
channel vector between the m-th Tx and n-th Rx antennas,
for m = 1, . . . ,M, n = 1, . . . , N , where the channel coef-
ficients ht,m,n,l of the l-th path, l = 1, . . . , Lm,n, in this
channel are modeled as independently log-normally distributed
random variables (RVs) [21]. Let Lmax = max{Lm,n},
for m = 1, . . . ,M, n = 1, . . . , N . Denote the MB-OFDM
UWB channel coefficient matrix as Ht = {h̄t,m,n,ZP}M×N

where the vector h̄t,m,n,ZP is created from the corresponding
channel vector h̄t,m,n by adding zeros to have the length
Lmax.

At the transmission of the t-th MB-OFDM symbol, the
received signal at the n-th Rx antenna is calculated as

r̄ZP,t,n =

M∑
m=1

(
x̄ZP,t,m ∗ h̄t,m,n

)
+ n̄t,n. (1)

The elements of noise vector n̄t,n are considered to be
independent complex Gaussian RVs.

In MB-OFDM systems, a ZPS of length NZPS = 37 [3]
is appended to each symbol x̄OFDM,t,m at the transmitter
to create a transmitted symbol x̄ZP,t,m. At the receiver, an
overlap-and-add operation (OAAO) must be performed before
FFT. This means that NZPS samples of a received symbol
r̄ZP,t,n, from (Nfft + 1) to (Nfft + NZPS), are added to
the beginning of that received symbol. Then the first Nfft

samples of the resulting symbol will be used to decode the
transmitted symbol. As a result, after performing OAAO for
the received signal r̄ZP,t,n in (1) and then taking the first
Nfft resulting samples, denoted as r̄OFDM,t,n, the following
equation is deduced

r̄OFDM,t,n =

M∑
m=1

x̄OFDM,t,m ⊗ h̄t,m,n + n̄t,n. (2)



864 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 2, FEBRUARY 2013

TABLE I
NUMBERS OF MULTIPATHS Np10dB , Np85% , AND N̄p [21].

CM1 CM2 CM3 CM4
Np10dB 12.5 15.3 24.9 41.2
Np85% 20.8 33.9 64.7 123.3
N̄p 287.9 739.5 1463.7 3905.5

For the circular convolution, we have the following property

x̄OFDM,t,m ⊗ h̄t,m,n

= IFFT
{
FFT{x̄OFDM,t,m} • FFT{h̄t,m,n}

}
= IFFT{s̄t,m • h̄t,m,n}, (3)

where h̄t,m,n is the Nfft-point FFT of the channel vector
h̄t,m,n, i.e. h̄t,m,n = FFT{h̄t,m,n}. We denote h̄t,m,n =
[�t,m,n,1 �t,m,n,2 . . .�t,m,n,Nfft

]T .
It is noted that the exact transition from (1) to (2) can

only be achieved if the length of ZPS is not smaller than the
number of the channel multipaths. In fact, the length of ZPS
in a MB-OFDM UWB system NZPS = 37 is much smaller
than the average number of multipaths N̄p of UWB channels,
which may reach some thousands (cf. Table I). Therefore, this
transition cannot be an exact equality, but an approximation.
This will be discussed further in Section V-C of this paper.

From (2) and (3), after the FFT operation at the receiver,
the received signal becomes

FFT{r̄OFDM,t,n} =

M∑
m=1

s̄t,m • h̄t,m,n + FFT{n̄t,n}. (4)

Denote r̄t,n = [rt,n,1 rt,n,2 . . . rt,n,Nfft
]T = FFT{r̄OFDM,t,n}

and n̄t,n = [nt,n,1 nt,n,2 . . . nt,n,Nfft
]T = FFT{n̄t,n}. Then

(4) can be rewritten as follows

r̄t,n =

M∑
m=1

s̄t,m • h̄t,m,n + n̄t,n. (5)

Recall that s̄t,m is the original modulated signal (before IFFT).
Denote Ht = {h̄t,m,n}M×N to be the matrix whose

elements are the Nfft-point FFTs of the respective elements in
the channel coefficient matrix Ht, and N = {n̄t,n}T×N to be
the noise matrix. We can rewrite (5) in matrix form as follows

Rt = St ◦ Ht +Nt. (6)

If we rewrite Rt, St, Ht and Nt in (6) in the following
forms

Rt = {diag(̄rt,n)}TNfft×NNfft
,

Ht = {diag(h̄t,m,n)}MNfft×NNfft
, (7)

St = {diag(̄st,m)}TNfft×MNfft
,

Nt = {diag(n̄t,n)}TNfft×NNfft
,

then (6) can be rewritten with the normal definition of matrix
multiplication as follows

Rt = StHt + Nt.

For coherent detection, channel coefficients are assumed
to be known at the receiver. In this case, if St is a full
orthogonal STFC, each MB-OFDM symbol s̄t,m, which is a
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Fig. 2. Structural diagram of the proposed DSTFC MB-OFDM UWB system.

(Nfft × 1)-sized column vector, can be decoded separately
[7]. The decoding process can even be more simplified by the
fact that each element st,m,j within s̄t,m can also be decoded
separately. If St is partially orthogonal, i.e. St is a quasi-
orthogonal STFC (QOSTFC) [10], [11], each pair of MB-
OFDM symbols each of which is a (Nfft × 1)-sized column
vector can be decoded separately. Similarly, the decoding
process can be more simplified by the fact that each pair of
elements within the pair of MB-OFDM symbols can also be
decoded separately. We refer readers to our publications [7],
[10], [11] for more detail about the decoding metrics of STFCs
and QOSTFCs in the case of coherent detection.

III. DSTFCS FOR MB-OFDM UWB COMMUNICATIONS

The proposed model of a DSTFC MB-OFDM UWB system
requiring no transmission of channel estimation symbols is
depicted in Fig. 2. In this figure, we refer the two novel blocks
to as the multiplexing (MUX) and demultiplexing (DEMUX)
blocks. These two blocks are transparent, i.e. having no effect
to the system, if constant envelop modulation schemes (e.g.
PSK and 4QAM) are used, but non-transparent in the case of
DCM scheme. The exact functions of the MUX and DEMUX
blocks will be mentioned in Section IV-B of this paper.

We consider the application of the Alamouti STFC

St = 1/
√
2

[
s̄t,1 s̄t,2

−s̄∗t,2 s̄∗t,1

]
, (8)

where the MB-OFDM symbol s̄t,m, for m = 1, 2, is a
column vector of Nfft complex symbols corresponding to
Nfft sub-carriers, i.e. s̄t,m = [st,m,1 st,m,2 . . . st,m,Nfft

]T .
Channels in the DSTFC MB-OFDM system are assumed to be
constant during a time window of K consecutive transmitted
DSTFC code blocks, i.e. during 2KTSYM (ns), where K is an
integer number and TSYM is the MB-OFDM symbol interval
TSYM = 312.5 ns [3]. Similarly to Eq. (7), the STFC in (8)
can be rewritten in the following form

St = 1/
√
2

[
diag(̄st,1) diag(̄st,2)

−diag(̄s∗t,2) diag(̄s∗t,1)

]
. (9)

The proposed DSTFC MB-OFDM system initializes the
transmission with an identity matrix W0 = I2Nfft

. The
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subsequent code matrices will be generated and transmitted
according to the following principle

Wt = StWt−1. (10)

The transmission model can be expressed as follows

Rt = WtHt + Nt. (11)

Since channels are assumed to be constant during the trans-
mission of K consecutive Alamouti STFC blocks, i.e. within
a time window 2KTSYM (ns), the encoding principle (10)
should be applied for t = 1, . . . , (K − 1) and the whole
transmission protocol is reset for a new time window.

As mentioned detailed in Section IV, the proposed DSTFC
MB-OFDM concept would work well if the channel co-
efficients are assumed to be constant during at least two
consecutive DSTFC blocks (i.e. K ≥ 2). This assumption
is in fact normally the case. In practice, the UWB channel is
typically unchanged during several tens of Alamouti DSTFC
blocks to several thousands of DSTFC blocks. Therefore, the
case where the channel changes after every two consecutive
Alamouti DSTFC blocks is merely the fastest fading case
where the proposed DSTFC concept still works accurately. If
the channel matrix changes in every block, the difference of
channels during different code blocks results in interference in
the differential decoding process, thus the system performance
would be degraded.

Let us consider the following two scenarios, illustrating
when coherent and differential STFC MB-OFDM systems
should be deployed.

Example 1: We consider the scenario where the Alamouti
STFC is deployed for a wireless personal area network
(WPAN) with the carrier frequency Fc = 3.432 GHz, speed
of the mobile terminal v = 5 km/h (walking speed), i.e.
v = 1.39 m/s. It is known that the MB-OFDM symbol
period is TSYM = 312.5 ns (including TFFT = 242.42 ns
and TZPS = 70.08 ns). The maximum Doppler frequency is
calculated as [27]

fm =
vFc

c
=

1.39× 3.432× 109

3× 108
= 15.89 Hz.

The average coherence time TC of the channel is estimated
by the following empirical formula [27]

TC =
0.423

fm
=

0.423

15.89
= 26.62 ms.

This means that the channel can be considered to be constant
during TC/TSYM = 85, 184 MB-OFDM symbols. In other
words, the channel is almost unchanged during 42,592 con-
secutive Alamouti STFC blocks. Clearly, STFC MB-OFDM
communications with coherent detection should be used in
this case, since the channel coherence time is large enough
to allow the transmission of a large signal overhead for the
channel estimation purpose.

Example 2: We consider another scenario where the Alam-
outi STFC is deployed in a magnetic bearing system with
the carrier frequency Fc = 10.296 GHz. The transmitter is
located at the center, while the receiver is placed on a rotor,
rotating around the transmitter. According to SKF Magnetic
Bearings - a world leader in design, development, manufacture

and implementation of magnetic bearings - a magnetic bearing
may allow the surface speed up to or exceed 250 m/s (i.e.
4.5 million DNs where the unit DN is the rotor diameter in
millimeters times the angular speed in rounds per minute) [28].
Hence, the maximum Doppler frequency is

fm =
vFc

c
=

250× 10.296× 109

3× 108
= 8, 580 Hz.

This results in the average channel coherence time

TC =
0.423

fm
=

0.423

8, 580
= 49.3 μs.

The channel now can be considered to be constant during
approximately TC/TSYM ≈ 158 MB-OFDM symbols, i.e.
79 consecutive Alamouti STFC blocks. Clearly, the channel
coherence time shortens significantly, compared to the previ-
ous scenario. This example might suggest that the differential
transmission could be more economical for a MIMO MB-
OFDM UWB system, since it does not require a large signal
overhead for the channel estimation purpose, which can be
as large as 6M symbols, where M denotes the number of Tx
antennas. The proposed DSTFC concept is one of the excellent
candidates for this scenario.

IV. MAXIMUM LIKELIHOOD DECODING FOR DSTFC
MB-OFDM

A. Constant Envelope Modulation Schemes

We first derive the maximum likelihood (ML) decoding
metric for the proposed DSTFC in the case of signal con-
stellations with constant envelopes, such as PSK and 4QAM,
and with one Rx antenna. For simplicity, the index of the Rx
antenna is omitted.

The STFC in (9) could be represented in the following form

St =
1√
2

2∑
m=1

Nfft∑
k=1

(Xt,m,ks
R
t,m,k + iYt,m,ks

I
t,m,k), (12)

where sRt,m,k and sIt,m,k are the real and imaginary parts of the
symbol st,m,k respectively, i.e. st,m,k = sRt,m,k+isIt,m,k, while
Xt,m,k and Yt,m,k are their corresponding weighting matrices.
It is easy to realize that the weighting matrices are real, square,
orthogonal matrices. We assume that the normalized power of
each symbol st,m,k within s̄t,m, for k = 1, . . . , Nfft, is unitary,
i.e. |st,m,k|2 = 1. Hence st,m,k can be drawn from a unitary
PSK or 4QAM signal constellation that is denoted as C. As
a result, St and Wt, which is constructed based on (10), are
unitary matrices of size 2Nfft, i.e.

StS
H
t = I2Nfft

, WtW
H
t = I2Nfft

. (13)

The weighting matrices Xt,m,k and Yt,m,k in the matrix
(9) are real, orthogonal matrices, which always satisfy the
following properties for a given value t

Xt,m,kX
H
t,m,k = Yt,m,kY

H
t,m,k ∀m, k, (14)

Xt,m,kX
H
t,ḿ,ḱ

= −Xt,ḿ,ḱX
H
t,m,k, ∀{m, k} �= {ḿ, ḱ} (15)

Yt,m,kY
H
t,ḿ,ḱ

= −Yt,ḿ,ḱY
H
t,m,k, ∀{m, k} �= {ḿ, ḱ} (16)

Xt,m,kY
H
t,ḿ,ḱ

= Yt,ḿ,ḱX
H
t,m,k ∀m, k, ḿ, ḱ. (17)
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To formulate the ML decoding metric for the symbol st,m,k,
for t = 1, . . . , (K − 1), m = 1, 2 and k = 1, . . . , Nfft, let us
consider the following term

Dm,k = DR
m,k + iDI

m,k, (18)

where DR
m,k = �[tr(Rt−1R

H
t Xt,m,k)] and DI

m,k =

�[tr(Rt−1R
H
t iYt,m,k)]. We have

DR
m,k = �[tr(Rt−1R

H
t Xt,m,k)]

= �{tr[(Wt−1Ht−1 + Nt−1)(WtHt + Nt)
H
Xt,m,k]}

= �{tr[((Wt−1Ht−1H
H
t W

H
t−1S

H
t ) + N

)
Xt,m,k]}

= �{tr[((Wt−1HtH
H
t W

H
t−1S

H
t ) + N

)
Xt,m,k]}, (19)

where N := Wt−1Ht−1N
H
t + Nt−1H

H
t WH

t + Nt−1N
H
t . The

last equality comes from the fact that channel coefficients are
constant during the transmission window, i.e. Ht = Ht−1.
(This formula indicates that the decoding process is still com-
pletely accurate even in the case where the channel changes
after every two DSTFC blocks).

Because St and Wt−1 are square unitary matrices of size
2Nfft (cf. (13)) and Xt,m,k is the weighting matrix of sRt,m,k

(cf. (12)), Eq. (19) becomes

DR
m,k = �{tr[(HtH

H
t )(SHt Xt,m,k)]}+�{tr(NXt,m,k)} (20)

The transition from (19) to (20) is detailed in the appendix of
this paper. From (12), the first term in (20) is calculated as
follows

�{tr[(HtH
H
t )(SHt Xt,m,k)]} =
1√
2
�{tr[(HtH

H
t )

(
X

H
t,m,kXt,m,ks

R
t,m,k

+
∑

∀ḿ,ḱ,{ḿ,ḱ}�={m,k}
X

H
t,ḿ,ḱ

Xt,m,ks
R
t,ḿ,ḱ

+i
∑
∀ḿ,ḱ

Y
H
t,ḿ,ḱ

Xt,m,ks
I
t,ḿ,ḱ

)]}
. (21)

It is noted that if Φ is an antihermitian (or skew-Hermitian)
matrix, i.e. ΦH = −Φ, then tr(AHAΦ) is imaginary for any
matrix A, thus �{tr(AHAΦ)} = 0. From (15), it is easy to
check that (XH

t,ḿ,ḱ
Xt,m,ks

R
t,ḿ,ḱ

)H = −(XH
t,ḿ,ḱ

Xt,m,ks
R
t,ḿ,ḱ

),

i.e. (XH
t,ḿ,ḱ

Xt,m,ks
R
t,ḿ,ḱ

) is an antihermitian matrix, thus

�{tr[(HtH
H
t )(XH

t,ḿ,ḱ
Xt,m,ks

R
t,ḿ,ḱ

)]} = 0, (22)

for all ḿ, ḱ and {ḿ, ḱ} �= {m, k}.

On the other hand, if Θ is a Hermitian matrix, i.e. ΘH = Θ,
then tr(AHAΘ) is real, thus �{tr(AHAΘ)} = 0. From
(17), it is trivial to realize that (YH

t,ḿ,ḱ
Xt,m,ks

I
t,k)

H =

(YH
t,ḿ,ḱ

Xt,m,ks
I
t,k), i.e. (YH

t,ḿ,ḱ
Xt,m,ks

I
t,k) is a Hermitian

matrix, thus

�{tr[(HtH
H
t )(iYH

t,ḿ,ḱ
Xt,m,ks

I
t,ḿ,ḱ

)]} =

�{tr[(HtH
H
t )(YH

t,ḿ,ḱ
Xt,m,ks

I
t,ḿ,ḱ

)]} = 0 ∀m, k, ḿ, ḱ. (23)

If we denote Ct,m,k := (HtH
H
t )(XH

t,m,kXt,m,k) then Ct,m,k

is a constant matrix for given values t, m and k and tr(Ct,m,k)

is a positive real number (the trivial case tr(Ct,m,k) = 0 is
discarded). From (20)–(23), we have

DR
m,k = 1/

√
2tr(Ct,m,k)s

R
t,m,k + �{tr(NXt,m,k)}.

The term DI
m,k is calculated in a similar way with the note

that (cf. Eq. (14))

Ct,m,k = (HtH
H
t )(Yt,m,kY

H
t,m,k) = (HtH

H
t )(Xt,m,kX

H
t,m,k)

we have

DI
m,k = 1/

√
2 tr(Ct,m,k)s

I
t,m,k + �{tr(NiYt,m,k)}.

Therefore

Dm,k = DR
m,k + iDI

m,k =
1√
2
tr(Ct,m,k)st,m,k +

�{tr(NXt,m,k)}+ i�{tr(NiYt,m,k)}. (24)

The ML decoding metric for st,m,k can be derived as follows

ŝt,m,k = argmin |Dm,k − 1√
2
tr(Ct,m,k)st,m,k|2

= argmin
(|Dm,k|2 + 1

2
[tr(Ct,m,k)]

2|st,m,k|2

−
√
2 tr(Ct,m,k) �{D∗

m,kst,m,k}
)

= argmin
(|Dm,k|2 + 1

2
[tr(Ct,m,k)]

2

− √
2 tr(Ct,m,k) �{D∗

m,kst,m,k}
)
. (25)

Since Ct,m,k is a constant matrix for given t, m and k and
because tr(Ct,m,k) is a positive real number, the equivalent
ML decoding metric for st,m,k is

ŝt,m,k = arg max
st,m,k∈C

�{D∗
m,kst,m,k}, (26)

for t = 1, . . . , (K − 1), m = 1, 2 and k = 1, . . . , Nfft. In
fact, there are only ND = 100 data symbols within each MB-
OFDM symbol, that include 28 other pilot, guard and null
symbols [3]. Therefore, instead of decoding Nfft symbols in
Eq. (26), i.e. k = 1, . . . , Nfft, we only need to decode ND

symbols, i.e. k = 1, . . . , ND. The decoding metric (26) holds
true for each Rx antenna.

Eq. (26) means that each of the two MB-OFDM symbols
s̄t,1 and s̄t,2 can be separately decoded. Furthermore, each
symbol st,m,k within these two MB-OFDM symbols can also
be separately decoded based on the above equation. In other
words, instead of jointly decoding all 2Nfft symbols st,m,k

within the two MB-OFDM symbols s̄t,1 and s̄t,2 at a time,
each of them can be separately decoded. No CSI is required
for the decoding process. All we need for the decoding process
at time t are the received signals at the previous time (t− 1)
and at the current time. The decoding process is completely
linear, thus relatively simple.

B. Dual Carrier Modulation

1) Reviews of DCM [3]: For the data rates higher than
200 Mpbs, DCM, which is a multi-dimensional constellation,
will be used instead of QPSK to employ better frequency and
time diversities, thus providing better error performance over
QPSK. The coded and interleaved binary serial input data
shall be divided into groups of 200 bits and converted into
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TABLE II
DCM MAPPING TABLE [3]

Input bits d[n] d[n+ 50] Input bits d[n] d[n+ 50]
0000 −3− 3i 1 + i 1000 1− 3i 3 + i
0001 −3− 1i 1− 3i 1001 1− i 3− 3i
0010 −3 + i 1 + 3i 1010 1 + i 3 + 3i
0011 −3 + 3i 1− i 1011 1 + 3i 3− i
0100 −1− 3i −3 + i 1100 3− 3i −1 + i
0101 −1− i −3− 3i 1101 3− i −1− 3i
0110 −1 + i −3 + 3i 1110 3 + i −1 + 3i
0111 −1 + 3i −3− i 1111 3 + 3i −1− i

100 complex numbers. The conversion shall be performed as
follows

a) The 200 coded and interleaved bits are grouped into
50 groups of 4 bits. Each group is represented as
(b[g(n)], b[g(n) + 1], b[g(n) + 50)], b[g(n) + 51]), where
g(n) = 2n if n ∈ [0, 24], and g(n) = 2n + 50 if
n ∈ [25, 49].

b) Each group of four bits (b[g(n)], b[g(n) + 1], b[g(n) +
50)], b[g(n) + 51]) shall be mapped into two differ-
ent 16-point constellations, i.e. two complex numbers
(d[n], d[n+50]), separated by 50 tones (sub-carriers). The
mapping between bits and constellation is enumerated in
Table II.

c) The complex numbers shall be normalized using a nor-
malization factor 1/

√
10 to have a unitary normalized

average power.

Therefore, after DCM modulation and before OFDM mod-
ulation, ND = 100 data symbols are allocated in such a way
that the first ND/2 = 50 symbols st,m,k, for k = 1, . . . , 50,
are taken from the pool of symbols listed in the 2nd and 5th
columns in Table II after being normalized, which is denoted
as CDCM, while the last 50 symbols st,m,k+50 are taken from
the pool of symbols listed in the 3rd and 6th columns after
being normalized, which is denoted as CDCM50. It is easy to
realize that |st,m,k|2+ |st,m,k+50|2 = 2 for ∀k, k = 1, . . . , 50.

2) Functions of MUX and DEMUX and ML Decoding
Method: In the case of DCM, the proposed DSTFC MB-
OFDM system comprises two novel blocks, referred to as the
multiplexer (MUX) and demultiplexer (DEMUX) (see Fig. 2).
Exact functions of these two proposed blocks are explained
as follows.

At the transmitter, the MUX block swaps the position of the
last 50 data symbols st,1,k+50, for k = 1, . . . , 50, within the
MB-OFDM symbol s̄t,1 and that of the first 50 data symbols
st,2,k, k = 1, . . . , 50, within the MB-OFDM symbol s̄t,2. By
doing this, two new MB-OFDM symbols, denoted as ¯́st,1 and
¯́st,2, are generated. Thus we can present ¯́st,1 and ¯́st,2 as

¯́st,1 = [st,1,1, . . . , st,1,50, st,2,1, . . . , st,2,50]
T ,

¯́st,2 = [st,1,51, . . . , st,1,100, st,2,51, . . . , st,2,100]
T .

We denote ¯́st,1 = [śt,1,1, . . . , śt,1,100]
T and ¯́st,2 =

[śt,2,1, . . . , śt,2,100]
T . It is noted that all symbols within ¯́st,1

belong to the symbol pool CDCM, while all symbols within
¯́st,2 belong to the symbol pool CDCM50.

Since |st,m,k|2 + |st,m,k+50|2 = 2 for ∀k, k = 1, . . . , 50,
one can realize that

1/
√
2 (|̄́st,1|.ˆ2 + |̄́st,2|.ˆ2) = 1̄.

We use the notations X́t,m,k, Ýt,m,k and Ćt,m,k to denote
the matrices that are similar to Xt,m,k, Yt,m,k and Ct,m,k

in Section IV-A, but the role of st,m,k has been replaced
by śt,m,k. By the proposed structure, the following three
conditions have always been assured

a) The normalized transmitted matrix St in the DCM case

St = 1/
√
2

[
diag(̄́st,1) diag(̄́st,2)

−diag(̄́s
∗
t,2) diag(̄́s

∗
t,1)

]

satisfies StS
H
t = I2Nfft

, similarly to (13).
b) The equality Ćt,1,k = Ćt,2,k, i.e. X́H

t,1,kX́t,1,k =

X́H
t,2,kX́t,2,k = ÝH

t,1,kÝt,1,k = ÝH
t,2,kÝt,2,k, is guaranteed

for ∀t, k. We denote Ćt,k := Ćt,1,k = Ćt,2,k.
c) We always have 1

2 (|śt,1,k|2 + |śt,2,k|2) = 1 ∀k, k =
1, . . . , 100.

As a result, each pair of symbols (śt,1,k, śt,2,k), for k =
1, . . . , 100, within the pair of MB-OFDM symbols (̄́st,1, ¯́st,2)
can be decoded separately based on the following ML decod-
ing metric, which is achieved by a slight modification of the
ML decoding metric (25) in Section IV-A:

(ˆ́st,1,k, ˆ́st,2,k)

= argmin

2∑
m=1

∣∣Dm,k − 1√
2
tr(Ćt,m,k)śt,m,k

∣∣2

= argmin

[ 2∑
m=1

|Dm,k|2 + 1

2
[tr(Ćt,k)]

2
2∑

m=1

|śt,m,k|2

− √
2tr(Ćt,k)

2∑
m=1

�{D∗
m,kśt,m,k}

]

= argmin

[ 2∑
m=1

|Dm,k|2 + [tr(Ćt,k)]
2

−
√
2tr(Ćt,k)

2∑
m=1

�{D∗
m,kśt,m,k}

]
.

In these formulas, Dm,k is calculated in the similar manner as
(18) with the role of st,m,k substituted by śt,m,k. The above
metric is equivalent to the following one

(ˆ́st,1,k, ˆ́st,2,k) = arg max
śt,1,k ∈ CDCM
śt,2,k ∈ CDCM50

�{D∗
1,k śt,1,k+D∗

2,kśt,2,k}

(27)
for ∀k, k = 1, . . . , 100. The decoding metric (27) can be

applied to any Rx antenna.
After all data symbols within the two MB-OFDM symbols

¯́st,1 and ¯́st,2 are decoded, the DEMUX block swaps back the
position of the last 50 data symbols in ¯́st,1 and that of the first
50 data symbols in ¯́st,2. Thereby, the MB-OFDM symbols s̄t,1
and s̄t,2 have been completely decoded.

Comparing (26) and (27), one can realize that decoding
DSTFCs in the DCM case is slightly more complicated than
that in the PSK or 4QAM case, though decoding complexity
in both cases is relatively simple.

To this point, we have derived the decoding metrics for the
proposed DSTFC MB-OFDM system in both scenarios of con-
stant envelop modulation and multi-dimensional modulation
schemes with one Rx antennas. Generalization for the case
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of an arbitrary number N of Rx antennas will be mentioned
shortly in the next section.

V. PERFORMANCE ANALYSIS

In this section, we first derive the pairwise error probability
(PEP) of the proposed DSTFC MB-OFDM system in Section
V-A. The maximum achievable diversity order of the proposed
system is then evaluated in Section V-B for both scenarios of
constant envelope modulation schemes and the DCM scheme.
Finally, an in-depth analysis of the factors affecting to the
realistic system error performance is mentioned in Section
V-C. This in-depth analysis indicates that the value of the
diversity order calculated in Section V-B should only be used
as the coarse indicator, rather than a fine measure, for the
improvement of the system error performance.

It is noted that the maximum diversity order defined in
this paper (similarly to that in [7]) is the maximum diversity
order of the signals at the output of the OFDM demodulation
block (cf. Fig. 1 or Fig. 2). The maximum diversity order
of the signals arriving at the Rx antennas (before the OFDM
demodulation block, calculated by Eq. (1)) could be very large
due to the rich dispersion of UWB channels (the average
number of multipaths may reach some thousands). However,
the maximum diversity order of the signals at the output of
the OFDM demodulation block is limited because the FFT
size, Nfft = 128, is very limited, compared to the full length
of UWB multipaths. Thus the maximum diversity order of
the outgoing signals from the OFDM demodulation block
should be examined, rather than the arriving signals at the
Rx antennas. The former represents the effect of an important
technical specification of the system, i.e. the limited FFT size
of the OFDM demodulation block, while the latter does not
reflect the essence of the effect of the FFT operation to the
diversity order.

A. Pairwise Error Probability

Denote Es to be the average energy of the signal constel-
lation. For the Alamouti STFC St in (8), both the number of
MB-OFDM symbol time slots required to transmit the whole
block, denoted as T , and the number of Tx antennas, M , are
equal to 2, i.e. T = M = 2. We consider the probability that
a ML receiver decides erroneously in favor of a signal

e = [e1,1,1 . . . e1,1,Nfft
, . . . , eT,M,1 . . . eT,M,Nfft

],

assuming that

c = [c1,1,1 . . . c1,1,Nfft
, . . . , cT,M,1 . . . cT,M,Nfft

]

was transmitted. Note that each group of Nfft consecutive data
inside c in fact forms a certain vector s̄ in the matrix St defined
in (8).

From (11), the received signal matrices during the two time
instants t and (t− 1) can be written as

Rt−1 = Ht−1Wt−1 + Nt−1

Rt = HtWt−1St + Nt = Rt−1St + (Nt − Nt−1St), (28)

where the last equality comes from the fact that Ht−1 = Ht.
If N0 is the variance of the Gaussian noise entries in Nt−1

and Nt, given that St is an unitary matrix, it is easy to realize
that the variance of the noise term (Nt−Nt−1St) is 2N0. It is
also noted that Rt−1 and Rt are the matrices of the received
signals, thus they are known (i.e. constant). The ML decoding
metric for the transmitted matrix St, given that Rt−1 and Rt

are known at the receiver, becomes

Ŝt = arg min
St∈ C2Nfft

‖Rt − Rt−1St‖2F , (29)

where C2Nfft denotes all possibilities of values that the matrix
St could take, and ‖.‖F denotes the Frobenius norm. It should
be emphasized that (29) is in fact the most general form of
the decoding metric in (26) because we can further write (29)
as follows

Ŝt = arg min
St∈ C2Nfft

‖Rt − Rt−1St‖2F ,
= arg min

St∈ C2Nfft

tr
[
(Rt − Rt−1St)

H(Rt − Rt−1St)
]
,

= arg max
St∈ C2Nfft

�{tr(RH
t Rt−1St)

}
.

Equations (28) and (29) indicate that, given the received
signal matrices Rt−1 and Rt in the two time instants (t− 1)
and t, the performance analysis of the proposed system can
be turned into the performance analysis of the coherent STFC
MB-OFDM UWB system which has been analyzed in [7], by
replacing the role of the channel matrix Ht in the coherent
system by the received matrix Rt−1 in the differential system,
and by noting that the noise variance in the differential system
is twice that in the coherent system. Additionally, at high
signal-to-noise ratio (SNR), we have Rt−1 ≈ HtWt−1. If Ht

contains log-normally distributed random variables, so does
Rt−1 (it has been proved in [7, Section IV] that the weighted
sum of a finite number of log-normally distributed random
variables can be well approximated by another log-normally
distributed random variable). Therefore, an approach similar
to that mentioned in [7, Section IV] for a coherent STFC MB-
OFDM UWB system is adopted for the proposed DSTFC MB-
OFDM UWB system, resulting in the Chernoff bound of the
pairwise error probability in log-normally distributed fading
channels at a high SNR as follows

P (c → e) ≤
[(
Es/8N0

)−rNNfft
( Nfft∏
k=1

r∏
m=1

λm,k

)−N

N∏
n=1

Nfft∏
k=1

r∏
m=1

exp(−Km,n,k)

]
, (30)

where r = min{rk}, and rk, for k = 1, . . . , Nfft, is the rank
of matrix Bk(c, e), which is defined as

Bk(c, e) =

⎡
⎢⎢⎣

c1,1,k − e1,1,k . . . c1,M,k − e1,M,k

c2,1,k − e2,1,k . . . c2,M,k − e2,M,k

. . . . . . . . .
cT,1,k − eT,1,k . . . cT,M,k − eT,M,k

⎤
⎥⎥⎦ ,

λm,k are the eigenvalues of Bk(c, e)
HBk(c, e), which are

nonnegative real numbers, and Km,n,k is a term depending
on the distribution parameters of the log-normally distributed
random variables in the matrix Rt−1.

Recall that the Chernoff bound for the pairwise error
probability of a coherent STFC MB-OFDM UWB system in
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HtH
H
t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑N
n |�t,1,n,1|2 . . . . . . . . .

. . . . . . . . .∑N
n |�t,1,n,Nfft

|2 . . .

. . .
∑N

n |�t,2,n,1|2

. . . . . .
. . .

. . . . . . . . .
∑N

n |�t,2,n,Nfft
|2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

log-normally distributed fading channels at a high SNR is
(cf. (34) in [7])

P (c → e) ≤
[(
Es/4N0

)−rNNfft
( Nfft∏
k=1

r∏
m=1

λm,k

)−N

N∏
n=1

Nfft∏
k=1

r∏
m=1

exp(−Km,n,k)

]
. (31)

Equations (30) and (31) indicate that, if SNR is large enough,
the differential system behaves similarly to the coherent STFC
MB-OFDM UWB system, except for the fact that the former
is inferior by approximate 3dB, compared to the latter, due
to the noise variance is double in the differential system.
This observation will be confirmed by simulation results
mentioned later in this paper. This observation is similar to
the observation in a differential space-time coded system in
Rayleigh fading channels, where the Chernoff bound is the
same as that in the coherent space-time coded system (with
perfect CSI at the receiver), except for a 3-dB loss in SNR
[29, Sections III.B].

The aforementioned analysis is derived regardless of a
specific modulation scheme, thus it can be applied to different
modulation schemes (M-PSK, 4-QAM or DCM).

B. Diversity Order

In this subsection, the diversity order of the proposed
Alamouti DSTFC MB-OFDM system, i.e. M = 2, will be
derived for an arbitrary number N of Rx antennas in both
scenarios of constant envelope modulation and DCM schemes.

From (30), it is intuitive that a diversity order of rNNfft and
a coding gain (over a differential MB-OFDM UWB system
without space-time-frequency codes) of

( Nfft∏
k=1

r∏
m=1

λm,k

)−N
N∏

n=1

Nfft∏
k=1

r∏
m=1

exp(−Km,n,k)

could be achieved. The maximum achievable diversity order
of the proposed system is achieved when r = M , thus the
maximum achievable diversity order is MNNfft.

Alternatively, one can also work out the system diversity
order based on the decoding metric in (24). Basic idea for this
approach is that diversity order is the number of independent
fading coefficients that can be averaged over to detect the
symbol [30, Section II.B], [31, Section IV]. To derive the
diversity order using this approach, we first generalize Eq.
(24) for the case of N Rx antennas. In this case, the channel
matrix is denoted as (cf. Eq.(7))

Ht = {diag(h̄t,m,n)}2Nfft×NNfft
, (32)

where the subscript n indicates the n-th Rx antenna (n =
1, . . . , N ), and

h̄t,m,n = FFT{h̄t,m,n} = [�t,m,n,1 �t,m,n,2 . . . �t,m,n,Nfft
]T

(33)
From (32) and (33), HtH

H
t is a square matrix of size 2Nfft×

2Nfft having the [(m−1)Nfft+p]-th element, for m = 1, 2 and
p = 1, . . . , Nfft, on its main diagonal to be

∑N
n |�t,m,n,p|2. In

other words, the main diagonal of HtH
H
t has the form shown

on the top of this page. Other elements of this matrix might
not be zeros. Meanwhile, for the Alamouti DSTFC in (9), it is
easy to realize that XH

t,m,kXt,m,k is the square matrix of size
2Nfft× 2Nfft, which contains only two numbers of one at the
k-th and (Nfft+k)-th positions in its main diagonal. All other
elements of this matrix are zeros. Therefore, we have

tr(Ct,m,k) = tr
[
(HtH

H
t )(XH

t,m,kXt,m,k)
]

=
N∑
n

[
|�t,1,n,k|2 + |�t,2,n,k|2

]
. (34)

Substitute (34) into (24), the metric Dm,k for the case of N
Rx antennas can be written as

Dm,k =
1√
2

N∑
n

2∑
m=1

|�t,m,n,k|2st,m,k +

�{tr(NXt,m,k)}+ i�{tr(NiYt,m,k)}. (35)

It has been proved in our previous work [7] that the Nfft-
point FFT of a channel vector h̄t,m,n consisting of Lt,m,n

(Lt,m,n > Nfft) real multipath components ht,m,n,l (for
l = 1, . . . , Lt,m,n), whose magnitudes are independently log-
normally distributed RVs, results in a channel vector h̄t,m,n

consisting of Nfft complex multipath components �t,m,n,k (for
k = 1, . . . , Nfft), which are also independently log-normally
distributed RVs. It is emphasized that if the FFT size Nftt is
not smaller than the average number of multipath components
N̄p (which is usually not the case of MB-OFDM UWB
systems), then the Nfft-point FFT of h̄t,m,n results in a vector
h̄t,m,n consisting of N̄p, rather than Nfft, independently log-
normally distributed RVs. Further, it has been proved there that
if �t,m,n,k (k = 1, . . . , Nfft) are independently log-normally
distributed RVs, then |�t,m,n,k|2 are also independently log-
normally distributed RVs. Interested readers may refer to
Section IV in [7] for more detail.

From (35), the equivalent channel gain(
1√
2

∑N
n

∑2
m=1 |�t,m,n,k|2

)
for the symbol st,m,k

corresponding to the k-th subcarrier is a function of
2N RVs |�t,m,n,k|2, i.e. it has 2N degrees of freedom. In
other words, the decoding metric for an arbitrary MB-OFDM
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symbol s̄t,m = [st,m,1 st,m,2 . . . st,m,Nfft
]T within the

transmitted space-time-frequency code in (8) has 2NNfft

degrees of freedom. The factor 2 in the formula 2NNfft

is actually the number of Tx antennas. Generalization for
an arbitrary number of Tx antennas M is thus trivial, and
the diversity order of DSTFC MB-OFDM UWB systems is
MNNfft.

In [7], we have proved that the maximum achievable
diversity order of a (coherent) STFC MB-OFDM system is
MNNfft. This means that the proposed space-time-frequency
processing concept for MB-OFDM UWB systems possesses
the diversity order of MNNfft, regardless of coherent or
non-coherent detection. It should be emphasized that though
they have the same diversity orders, the differential detection
is inferior by approximate 3 dB compared to the coherent
detection as the penalty of missing the exact CSI at the
receiver. This finding is consistent with the well-known knowl-
edge in a conventional wireless system that the diversity
orders of the system are the same in coherent and differential
detections, and that the gap between the system performances
is approximate 3 dB [29, Sections III,IV], [31, Section V],
[32, Fig.1], [33, Fig.1].

Interestingly, the diversity order of MNNfft found in this
paper (and in [7]) for the proposed system in log-normally
distributed fading channels agrees with the finding in [6] for
the coherent MB-OFDM MIMO UWB system in Nakagami-
m fading channels. (In [6], the diversity order was found to
be min(LNfftMN,KNfftN), where K denotes the number
of jointly encoded OFDM symbols, which is in turn equal to
M for a full rate code, such as the Alamouti code. Given that
L, which is the number of multipaths, is extremely large for
an UWB system, the diversity order becomes MNNfft).

An interesting observation can be drawn from (35) is that
the equivalent channel gain

(
1√
2

∑N
n

∑2
m=1 |�t,m,n,k|2

)
for

each transmitted symbol st,m,k is the sum of N equivalent
gains 1√

2

∑2
m=1 |�t,m,n,k|2 created by individual Rx antennas.

This observation allows the decoding process to be further
simplified by just calculating the decoding metric, denoted as
Dm,n,k (the subscript n indicates the n-th Rx antenna), based
on (18) as if the system merely had one Rx antenna (the n-th
Rx antenna)

Dm,n,k = DR
m,n,k + iDI

m,n,k =

�[tr(Rt−1,nR
H
t,nXt,m,k)] + i�[tr(Rt−1,nR

H
t,niYt,m,k)],

and then adding the effect of all individual decoding metrics
Dm,n,k for N Rx antennas to decode the symbol st,m,k by
the following formula

ŝt,m,n,k = arg max
st,m,k∈C

N∑
n=1

�{D∗
m,n,kst,m,k}.

In the similar manner, the decoding metric for the DCM
scheme in the case of N Rx antennas can be expressed as
follows

(ˆ́st,1,k, ˆ́st,2,k) =

arg max
śt,1,k ∈ CDCM
śt,2,k ∈ CDCM50

N∑

n=1

�{D∗
1,n,k śt,1,k +D∗

2,n,k śt,2,k},

for ∀k, k = 1, . . . , 100.
This observation allows us to basically “clone” the Matlab

programming cell for decoding symbols in the system with
only one Rx antennas to N similar cells (with slight mod-
ifications) to cover the case of N Rx antennas. Hence, the
decoding complexity in the case of N Rx antennas is only
slightly increased, compared to the case of one Tx antenna.

C. Comments on Realistic System Performance

Section V-B has quantified the maximum achievable di-
versity order of the proposed DSTFC MB-OFDM system to
be MNNfft. One may have a question about whether the
performances of a system with given values of M , N and
Nfft would be the same in different channel models CM1-
CM4, having known that the system has the same maximum
achievable diversity order in all channel models.

The answer for this question is that the performances of
the same system are different in different channel models.
Simulation results in this paper shall clearly show that the
more dispersive the channel is, the worse the system error
performance is. In other words, the slope of the system bit
error curve is reduced for a more dispersive channel model.
This phenomenon is due to the affect of the following two
un-ideal factors to the performance of a realistic MB-OFDM
UWB system.

1) Limited Length of ZPS: Theoretically, it is well known
in an OFDM-based system that the length of ZPS (or cyclic
prefix (CP)) must not be shorter than the longest multipath
channel to turn the linear convolution (cf. Eq. (1)) between
the transmitted signal and the channel vector into the circular
convolution (cf. Eq. (2)), thus facilitating an accurate signal
recovery in the frequency domain using a FFT operation. If
it is not the case, the energy of multipath components within
the ZPS (or CP) window will be captured, while that of the
multipath components outside this window will be discarded.
This results in a loss of useful signal power. Unfortunately, this
situation normally holds for MB-OFDM UWB systems where
the channels are very dispersive with the average number
of multipaths N̄p being much bigger than NZPS = 37
(see Table I). Consequently, in a realistic MB-OFDM UWB
system, ZPS can partially, but not completely, capture the
useful signal power which is required for the accurate signal
recovery. Mathematically speaking, the circular convolution
in (3) is not exactly equal to, but approximate the first Nfft

samples achieved by the OAAO of the linear convolution
x̄ZP,t,m ∗ h̄m,n in (1). In other words, the transition from (1)
to (2) is an approximation, rather than an exact match. The
difference between (1) and (2) is larger when the channel is
more dispersive and/or the SNR is higher (since a higher
transmitted power causes a higher power loss). Therefore,
there exits a gap between the ideal system performance (i.e.
when NZPS is larger than the largest number of channel
multipaths) and the system performance when realistic channel
conditions and the limited length of ZPS are taken into
account. The difference between the ideal system performance
and the realistic system performance increases if the channel
is more dispersive. As a result, the more dispersive the channel
is, the worse the performance of a realistic MB-OFDM system
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Fig. 3. DSTFC MB-OFDM vs. differential MB-OFDM (without STFCs) and
coherent MB-OFDM (without STFCs) with QPSK modulation in the case of
one Rx antenna.
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Fig. 4. DSTFC MB-OFDM vs. differential MB-OFDM and coherent MB-
OFDM with QPSK modulation in the case of two Rx antennas.

is. The slope of the bit error curve reduces for a more
dispersive channel model.

2) Limited FFT/IFFT Size: It is easy to realize that, for
a given Nfft, the Nftt-point FFT of the channel vectors
h̄m,n = [hm,n,1, hm,n,2, . . . , hm,n,Lm,n]

T , i.e. FFT{h̄m,n},
of different lengths Lm,n always provides the same result,
as long as Lm,n is not smaller than Nfft. This means that,
by FFT-ing the received signals with a limited FFT size Nfft

following Eq. (3), the Nfft-point FFT operation truncates the
impact of a long vector h̄m,n to the length of Nfft. (This
observation also explains intuitively why the diversity order
of a received MB-OFDM symbol is MNNfft as mentioned
in Section V-B, rather than MNLmax, where Lmax denotes
the biggest number of multipaths among the MB-OFDM UWB
channels). This is the second reason for the mismatch between
the linear convolution in (1) and the circular convolution in
(2) in a realistic MB-OFDM UWB system. The truncating

TABLE III
SIMULATION PARAMETERS.

Parameter Value
FFT and IFFT size Nfft = 128
Data rate 320 Mbps
Convolutional encoder’s rate 1/2
Convolutional encoder’s constraint length 7
Convolutional decoder Viterbi
Decoding mode Hard
STFC decoding at nodes ML decoding
Number of transmitted
DSTFC blocks 1200
Modulation QPSK, DCM
IEEE Channel model CM1, 2, 3 & 4
Number of data subcarriers ND = 100
Number of pilot subcarriers NP = 12
Number of guard subcarriers NG = 10
Total number of subcarriers used NT = 122
Number of samples in ZPS NZPS = 37
Total number of samples/symbol NSY M = 165
Number of channel realizations 100

effect also causes a certain loss of the useful power since the
signal power received via various other channel multipaths
is not considered. This power loss is bigger when SNR
increases (since the useful power which is not taken into
account is higher when the transmitted power is higher).
Clearly, the higher Nfft is, the better the full impact of
the multipath channel is reflected, and thus the better the
system performance is. (This analysis will be further verified
by the simulation results in Section VI). However, FFT and
IFFT blocks significantly decide the complexity and the cost
of transmitter and receiver. In a realistic MB-OFDM UWB
system [3], [4], the FFT/IFFT size is Nfft = 128, which is
typically much smaller than the length of UWB channels. As
a result, there is a compromise between the cost/complexity
and the system performance.

Due to the aforementioned reasons, the BER (bit-error-
rate) curves of a realistic MB-OFDM system for different
channel models CM1-CM4 are expected not to be parallelled.
The above reasons provide the insight of the fact that a
DSTFC MB-OFDM system with given numbers of Tx and
Rx antennas and given Nfft performs differently in different
channel models CM1-CM4, despite that the system has the
same maximum diversity order in all four channel models.
Specifically, the more dispersive the channel is, the worse
the system performance is, and thus the smaller the slope of
the BER curve is. This observation will be confirmed by
simulations in the next section. Therefore, it is recommended
that the diversity order quantified in Section V-B should only
be considered as a raw indicator, rather than an exact measure,
of the possible enhancement of the system performance.

VI. SIMULATION RESULTS

To examine the performance advantage of the proposed
DSTFC MB-OFDM system, several Monte-Carlo simulations
were run in Matlab for four systems, namely the baseband,
conventional differential MB-OFDM system (without MIMO)
with QPSK modulation, the baseband, conventional coherent
MB-OFDM system (without MIMO) with QPSK modulation,
and the two baseband Alamouti DSTFC MB-OFDM systems
with QPSK and DCM schemes.
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Fig. 5. DSTFC MB-OFDM with DCM vs. DSTFC MB-OFDM with QPSK
in the case of one Rx antenna.

TABLE IV
SLOPES OF BER CURVES BETWEEN BER = 10−1 AND BER = 10−2 .

Differential transmission CM1 CM2 CM3 CM4
no MIMO (�SNR dB/BER decade) 0.65 0.71 0.82 1.18
MIMO (�SNR dB/BER decade) 0.47 0.53 0.59 0.76

The conventional differential MB-OFDM system was sim-
ply created in a similar way as Eq. (10), but it was much
more simplified because transmission was carried out in a
symbol-by-symbol basis rather than a block-by-block basis as
in a DSTFC MB-OFDM system. In particular, the transmitted
MB-OFDM symbol at time t is the Hadamard product of the
transmitted symbol at time t−1 and a new information symbol.
The initial transmitted symbol is set to the vector 1̄. Decoding
process was also carried out in a similar manner to Eq. (26).

Each run of simulations was carried out with 1,200 Alam-
outi DSTFC blocks. One hundred channel realizations of
each channel model (CM1 to CM4) were considered for the
transmission of each DSTFC block. The channel realizations
were created by the Matlab program enclosed in the appendix
of the IEEE 802.15.3a channel modeling sub-committee report
[21]. In simulations, SNR is defined to be the signal-to-noise
ratio (dB) per sample in a MB-OFDM symbol (consisting of
165 samples) at each Rx antenna (i.e. the subtraction between
the total power (dB) of the received signal corresponding to
the sample of interest and the power of noise (dB) at that
Rx antenna). All systems were considered at the bit rate 320
Mbps. Further, the total average powers transmitted from all
Tx antennas are equal in all four systems at any time, in
order to fairly compare their performances. The complete set
of simulation parameters is presented in Table III.

Fig. 3 compares the bit error performance of the three sys-
tems, namely the conventional differential MB-OFDM (dashed
curves), the conventional coherent MB-OFDM (shaded
curves), and the Alamouti DSTFC MB-OFDM (solid curves),
in the case where the receiver is equipped with only one
Rx antenna. From this figure, the proposed DSTFC MB-
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Fig. 6. DSTFC MB-OFDM with DCM vs. DSTFC MB-OFDM with QPSK
in the case of two Rx antennas.

OFDM system brings about a significant improvement in
the bit error performance, compared to the other two MB-
OFDM systems. For instance, the Alamouti DSTFC provides
approximately a 3.5 dB gain in CM1 at the bit error rate
BER = 10−2, compared to the conventional differential MB-
OFDM. The more dispersive the channel is (CM1 is the least
dispersive channel model while CM4 is the most dispersive
one), the higher gain the DSTFC provides. Furthermore, the
proposed DSTFC system can even provide much better bit
error performance over the conventional coherent MB-OFDM
system at high SNRs. For example, the former is better than
the latter at SNR being higher than 10 dB in CM1 and
the gain can be as large as 2.5 dB at BER = 10−3. This
improvement is due to the fact that the former deploys the
MIMO system (more accurately, the 2× 1 MIMO model).

Fig. 4 presents the bit error performance of the three
systems in the case of two Rx antennas, i.e. in a 2 × 2
MIMO model. Once again, we can see that DSTFCs improve
significantly the bit error performance of MB-OFDM systems.
For illustration, a gain of at least 4.5 dB (over the conventional
differential MB-OFDM system) can be achieved at BER =
10−4 when the Alamouti DSTFC is utilized. Similarly, the
DSTFC system might even perform much better than the
conventional coherent MB-OFDM system at the high SNR
range. It is noted that the aforementioned improvements were
gained without any increase of total transmission power, but
thanks to the introduced space, time and frequency diversities
in the proposed DSTFC MB-OFDM system.

From the two figures, one can observe the error performance
enhancement in the Alamouti DSTFC system, compared to the
conventional differential MB-OFDM system, in all channel
models thanks to the higher diversity order introduced by
the proposed DSTFC MB-OFDM system. For illustration, the
slopes of BER curves of the two systems are presented in
Table IV, where the BER slopes are measured by the SNR
difference (dB), denoted as �SNR, per BER decade within
the range from BER = 10−1 to BER = 10−2 and measured
based on Fig. 4 (one can also make a similar table based
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Fig. 7. Comparison between STFC MB-OFDM, DSTFC MB-OFDM,
coherent MB-OFDM (without STFCs), and differential MB-OFDM (without
STFCs) in CM1 with one Rx antenna.
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Fig. 8. Comparison between STFC MB-OFDM, DSTFC MB-OFDM,
coherent MB-OFDM (without STFCs), and differential MB-OFDM (without
STFCs) in CM3 with one Rx antenna.

on Fig. 3). With this slope definition, the smaller the slope
is, the higher the diversity order is. From Table IV, the BER
curves in the Alamouti DSFTC system are always steeper than
those in the conventional differential system in all channel
models CM1-CM4 respectively. It can also be seen that, when
transiting from a less dispersive channel to a more dispersive
one, the slopes of the BER curves in the Alamouti DSFTC
system vary less than those in the conventional differential
system. This means that, when the channel becomes more
dispersive, the error performance degradation in the proposed
DSTFC system is less sensitive to the channel dispersion,
compared to the conventional differential system, though the
performance degradation occurs in both systems as analyzed
in Section V-C.

Figures 5 and 6 compare the bit error performance of
the two Alamouti DSTFC MB-OFDM systems with QPSK
(dashed curves) and DCM schemes (solid curves) with one
and two Rx antennas respectively. We can realize that the
proposed DSTFC MB-OFDM system associated with DCM
is significantly better than the proposed DSTFC MB-OFDM
system associated with QPSK, especially at high SNRs. For
illustration, in CM1, the former may possess the gains of
approximate 6 dB and 2.5 dB over the latter in the case of
one and two Rx antennas at BER = 10−4, respectively.
Again, these gains were achieved without the increase of
total transmission power, but due to the better deployment
of frequency and time diversities by the DCM proposed in
Section IV-B.

Fig. 7 compares all four systems, namely (coherent) STFC
MB-OFDM, DSTFC MB-OFDM, conventional (coherent)
MB-OFDM (without STFCs), and conventional differential
MB-OFDM (without STFCs), in the channel model CM1
with one Rx antenna. Fig. 8 provides the comparison for the
channel model CM3. From these figures, one can observe that
the conventional differential and conventional coherent MB-
OFDM systems (two dashed curves) have the same diversity
orders (illustrated by the slopes of the curves), and there exists
a gap of 3 dB as a penalty of missing the exact CSI at
the receiver. Similarly, it is clear that the diversity orders of
the STFC MB-OFDM and DSTFC MB-OFDM systems (two
solid curves) are the same as pointed out in Section V-B. The
advantage of 3 dB of the STFC MB-OFDM system requires
the exact CSI at the receiver, i.e. requiring the transmission of
a large number of MB-OFDM symbols for channel estimation,
which might be uneconomical in some cases, such as the one
mentioned in Example 2.

Finally, Figures 9 and 10 illustrate the effect of the different
FFT/IFFT sizes to the performance of the proposed DSTFC
MB-OFDM system, with the number of Tx antennas M = 2
(the Alamouti DSTFC is simulated) and the number of Rx
antennas N = 1 and N = 2. Specifically, Fig. 9 compares the
system performance between two FFT sizes, namely Nfft = 64
and Nfft = 128, in the same channel model CM1, while Fig.
10 compares the system performance in the channel model
CM3. From the two figures, two important observations can
be drawn. First, the larger the FFT size is, the better the system
error performance is. This observation confirms the analysis
stated previously in Section V-C. Second, in each figure, the
two curves corresponding to the pairs (Nfft = 64, N = 2)
and (Nfft = 128, N = 1) are in parallel, i.e. the two curves
have the same slopes. In other words, the DSTFC MB-OFDM
UWB system has the same diversity orders in these cases.
This observation further verifies the mathematical analysis of
diversity order, which is the product MNNfft as mentioned
in Section V-B.

VII. CONCLUSIONS

The paper has proposed for the first time the framework of
DSTFC MB-OFDM UWB systems using the unitary Alamouti
DSTFC with either constant envelope modulation scheme
or multi-dimensional modulation one. The proposed DSTFC
MB-OFDM concept is useful when the transmission of a large
number of MB-OFDM symbols for the channel estimation
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Fig. 9. Comparison between Nfft = 64 and Nfft = 128 in CM1.
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Fig. 10. Comparison between Nfft = 64 and Nfft = 128 in CM3.

purpose is uneconomical or even impractical. It has been
shown that the DSTFC MB-OFDM system could provide
much better bit error performance, compared to the con-
ventional differential MB-OFDM UWB without MIMO, and
even better than the conventional coherent MB-OFDM system
without MIMO at a high SNR range. The improvement is
achieved without any increase of total transmission power,
but thanks to the spatial, temporal and frequency diversities
introduced by the proposed system. The paper has also derived
the novel coding and decoding algorithms for the proposed
DSTFC MB-OFDM system and the in-depth analyses of the
diversity order and the factors affecting the performance of a
realistic MB-OFDM UWB system.

Furthermore, beside the case study of MB-OFDM UWB
systems, it is our conjecture that the proposed DSTFC princi-
ple might be applied to various other wireless systems, such
as WiMax MIMO [34, p.578], providing better BER than
the respective WiMax without MIMO. Examination of the
application of DSTFCs in WiMax MIMO might be our future
work.

ACKNOWLEDGMENT

L. C. Tran would like to thank the Alexander von Humboldt
(AvH) Foundation, Germany, for its support of this work in
form of a postdoctoral fellowship. The authors are grateful to
Prof. Vahid Tarokh, Harvard University, U.S.A for his helpful
advices on the diversity order, and to anonymous reviewers
for their insightful comments.

APPENDIX

PROOF OF EQUATION (20)

We need to prove that

�{tr[Wt−1HtH
H
t W

H
t−1S

H
t Xt,m,k]} =

�{tr[(HtH
H
t )(SHt Xt,m,k)]}. (36)

Denote

Ψ = Wt−1HtH
H
t W

H
t−1, Ω = HtH

H
t , Ξ = S

H
t Xt,m,k.

It is trivial to realize that Ψ and Ω are Hermitian matrices.
Hence they can be presented as

Ψ =

[
Ψ11 Ψ12

ΨH
12 Ψ22

]
, Ω =

[
Ω11 Ω12

ΩH
12 Ω22

]
,

where Ψ11, Ψ12, Ψ22 and Ω12 are all square complex diagonal
matrices of size Nfft × Nfft, while Ω11 and Ω22 are positive
semi-definite square real diagonal matrices of size Nfft×Nfft.

Recall that (cf. (9) and (10))

St = 1/
√
2

[
diag(̄st,1) diag(̄st,2)

−diag(̄s∗t,2) diag(̄s∗t,1)

]
, (37)

Wt = StWt−1, (38)

it is easy to check that the unitary matrix Wt constructed
according to (38) (similarly for Wt−1) can be presented in
the following form

Wt =

[
W11 W12

−WH
12 WH

11

]
,

where W11 and W12 are square complex diagonal matrices
satisfying

W
H
11W11 = W

H
12W12 =

1

2
INfft

. (39)

To prove (36), we first prove the following theorem.
Theorem 1: Prove that

Ψ11 +Ψ22 = Ω11 +Ω22. (40)

Proof: We have

Ψ = Wt−1HtH
H
t W

H
t−1,

=

[
W11 W12

−WH
12 WH

11

] [
Ω11 Ω12

ΩH
12 Ω22

] [
WH

11 −W12

WH
12 W11

]
.

The two sub-matrices Ψ11 and Ψ22 of Ψ are calculated as

Ψ11 = W11Ω11W
H
11 +W12Ω22W

H
12 +

W11Ω12W
H
12 +W12Ω

H
12W

H
11,

Ψ22 = W
H
12Ω11W12 +W

H
11Ω22W11 −

W
H
12Ω12W11 −W

H
11Ω

H
12W12. (41)
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ΨΞ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... . . .
. . . . . .

...
... Ψ(k, k)p−Ψ(k,Nfft + k)q∗ . . . Ψ(k, k)q +Ψ(k,Nfft + k)p∗

...
...

...
. . .

...
...

... Ψ(Nfft + k, k)p−Ψ(Nfft + k,Nfft + k)q∗ . . . Ψ(Nfft + k, k)q +Ψ(Nfft + k,Nfft + k)p∗
...

... . . .
. . . . . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From (39) and because all matrices on the right hand side
of (41) are square diagonal matrices, we can rewrite (41) as
follows

Ψ11 =
1

2
Ω11 +

1

2
Ω22 +W11Ω12W

H
12 +W12Ω

H
12W

H
11,

Ψ22 =
1

2
Ω11 +

1

2
Ω22 −W11Ω12W

H
12 −W12Ω

H
12W

H
11.

As a result, we have

Ψ11 +Ψ22 = Ω11 +Ω22.

Eq.(40) has been proved.
If we denote the k-th entry (k = 1, . . . , Nfft) of the main

diagonal of Ψ (or Ω) to be Ψ(k, k) (Ω(k, k)), from (40), we
can deduce that

Ψ(k, k)+Ψ(Nfft+k,Nfft+k) = Ω(k, k)+Ω(Nfft+k,Nfft+k).
(42)

It is also worthwhile to note that Ψ(k, k), Ψ(Nfft+k,Nfft+k),
Ω(k, k) and Ω(Nfft + k,Nfft + k) are all real numbers since
they are in the main diagonals of the Hermitian matrices Ψ
and Ω.

We now return to prove Eq.(36). Recall that Xt,m,k (m =
1, 2; k = 1, . . . , Nfft) is the weighting matrix of the real part
of the symbol st,m,k (cf. (12)), which is in turn an element
of the column vector s̄t,m in the matrix St in (37). Since
st,m,k only appears twice in the matrix St, Xt,m,k is a real
square matrix of size 2Nfft×2Nfft with all zero entries, except
for two entries of +1 or −1. Therefore, Ξ = SHt Xt,m,k is a
square matrix of size 2Nfft×2Nfft with all zero entries, except
for the four entries Ξ(k, k), Ξ(Nfft + k, k), Ξ(k,Nfft + k),
and Ξ(Nfft + k,Nfft + k). Further, these four entries have the
following properties

Ξ(k, k) = Ξ(Nfft + k,Nfft + k)∗

Ξ(k,Nfft + k) = −Ξ(Nfft + k, k)∗.

For brevity, we denote Ξ(k, k) = p and Ξ(k,Nfft + k) = q,
then Ξ has the following form

Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
. . . . . .

. . . . . .
. . .

...
... . . . p . . . q . . .

...
... . . .

...
. . .

... . . .
...

... . . . −q∗ . . . p∗ . . .
...

...
. . . . . .

. . . . . .
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where other entries of this matrix are all zeros. It is now trivial
to realize that ΨΞ contains all zeros entries, except for the

(k, k), (k,Nfft + k), (Nfft + k, k) and (Nfft + k,Nfft + k)
entries (see the equation on the top of this page). As a result,
we have

tr(ΨΞ) = Ψ(k, k)p−Ψ(k,Nfft + k)q∗ +Ψ(Nfft + k, k)q

+ Ψ(Nfft + k,Nfft + k)p∗.

Because Ψ(k, k) and Ψ(Nfft+k,Nfft+k) are real numbers and
Ψ(Nfft + k, k) = Ψ(k,Nfft + k)∗ (Ψ is a Hermitian matrix),
we may write

�{tr(ΨΞ)} = [Ψ(k, k) + Ψ(Nfft + k,Nfft + k)]�{p}. (43)

Similarly, we can also prove that

�{tr(ΩΞ)} = [Ω(k, k) + Ω(Nfft + k,Nfft + k)]�{p}. (44)

From (42), (43) and (44), it is clear that �{tr(ΨΞ)} =
�{tr(ΩΞ)}. In other words, (36) has been proved.
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