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ABSTRACT

Many convolutive blind source separation (BSS) ap-
proaches are generalized from instantaneous BSS methods
in either time or frequency domain. In this paper, we es-
tablish in a general way the inner relationship between the
time-domain instantaneous BSS and the frequency-domain
convolutive BSS. From this point of view, the time-domain
approaches for instantaneous mixture separation are gener-
alized to those for convolutive mixture separation in the fre-
quency domain. Two examples are given to illustrate the
feasibility of the proposed approach.

1. INTRODUCTION

Blind source separation (BSS) is to recover a set of un-
known signal sources from observations that are unknown
mixtures of those sources. A challenging situation for BSS
is that mixing processes are convolutive, where observations
are the combinations of the unknown filtered versions of
the signal sources. The problem has attracted extensive re-
search work in the research communities due to its many
potential applications, such as audio processing, image pro-
cessing, communication systems and biomedical signal pro-
cessing.

As BSS of instantaneous mixtures is concerned, many
efficient approaches have been proposed and used in practi-
cal applications. The BSS of instantaneous mixtures is just
a special case of convolutive mixtures, so it is quite natural
to generalize these successful BSS approaches for instanta-
neous mixtures to the separation of convolutive mixtures.

It has been investigated to generalize BSS approaches
for instantaneous mixtures to BSS of convolutive mixtures
in two different ways. One is to achieve convolutive mixture
BSS directly in the time domain, and the other is to work in
the frequency domain. In the time domain, the objective
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function of instantaneous BSS is usually revised so as to
adapt to the convolutive case. Examples are the joint block
diagonalization approach [1], Amari’s method derived from
the natural gradient algorithm [2], and that in [4]. How-
ever, these approaches are not very efficient for long mixing
channels, such as those in well-known cocktail party prob-
lems, where the mixing channels may have 500− 2000 taps
or more if modelled by FIR filters.

Frequency-domain approaches have been considered as
the most promising technique for convolutive BSS, espe-
cially for cases of long mixing channels. In the frequency
domain, there are two different ways to exploit instanta-
neous BSS for convolutive BSS. One way is to apply firstly
an instantaneous BSS approach to every frequency bin (sub-
signal) of convolutive mixtures. Here, the convolutive mix-
tures are separated frequency bin by frequency bin. Sec-
ondly, some measures are taken to align these sub-signals
to overcome the local permutation. Lastly they are recon-
structed into source signals [5][6][8]. The other way is to
apply the objective function for instantaneous BSS to the
frequency model of convolutive mixtures and to integrate
this frequency-dependent objective function in order to gen-
erate an objective function that is a function of the time-
domain parameters of the separation system. The optimiza-
tion leads directly to the convolutive BSS [9][10].

In the following, we establish a general way how to gen-
eralize a time-domain instantaneous BSS algorithm directly
to a frequency-domain convolutive BSS algorithm.

2. MODEL OF INSTANTANEOUS BSS

We consider the N -by-N case, that is, there are N sig-
nal sources and N observed signals. We assume that the
sources are complex valued and are of zero mean, and that
the mixing system is instantaneous. The mixing process can
be described as follows:

x(n) = As(n) (1)

where s(n) = [ s1(n), s2(n), . . . , sN (n) ]T are the signal
sources, x(n) = [x1(n), x2(n), . . . , xN (n)]T are the ob-
served signals and A is the mixing matrix which is assumed
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to be nonsingular and time invariant. The task of BSS is to
recover the sources from the observations in the form:

y(n) = Wx(n) (2)

where y(n) = [y1(n), y2(n), ..., yN (n)]T is the output of
the separation system, and W is the matrix describing the
separation network. Combining (1) and (2) gives:

y(n) = Gs(n) (3)

where G = WA, which is the transform matrix from s(n) to
y(n). Separation is considered to be successful if we can
find a matrix W such that G is the product of a diagonal
matrix D and a permutation matrix P.

Consider a real-valued objective function Φ(W, W∗),
where ∗ denotes complex conjugation. Under the assump-
tion that the sources satisfy all the required separability
conditions for the given objective function, we obtain the
gradient-based learning rule

Wl+1 = Wl − µ∇Φ(Wl, Wl∗) (4)

where l is the iteration index and

∇Φ(W, W∗) =
dΦ(W, W∗)

dW∗ . (5)

According to the relationship between the ordinary gra-
dient and the natural gradient [3],

∇naturalΦ(W, W∗) = ∇Φ(W, W∗)WHW, (6)

where the superscript H denotes Hermitian transposition, we
get the natural gradient-based algorithm:

Wl+1 = Wl − µ∇Φ(Wl, Wl∗)WlHWl. (7)

Whatever the objective function is, we will get the above
type of gradient-based learning rule. For instance, if the ob-
jective function is defined on the basis of Kullback-Leibler
divergence, we get Amari’s natural gradient based algorithm
[2]; if the objective function is defined as the joint diago-
nalization of correlation matrices, we get the decorrelation-
based BSS algorithm [11][12].

3. MODEL OF CONVOLUTIVE BSS

We still consider the N -by-N case, that is, there are N sig-
nal sources, N observation signals and N separated signals
as well. The mixing channels are assumed to be FIR of
length L, and the separation channels are also FIR and their
length (M) is chosen so that M ≥ (N − 1)(L − 1) + 1 in
order to achieve satisfying performance. Also we have the
following assumptions regarding the sources and the mixing
processes [10]:

(A1) Signal sources s(n) = [s1(n), s2(n), ..., sN (n)]T

are real, zero mean and independent of each other.
(A2) The signal sources s(n) are non-stationary or non-

Gaussian, which means that their auto-power spectral den-
sities are time-varying in nature or they have nonzero high-
order cumulants.

(A3) The mixing system A(n) = [aij(n)]N×N is lin-
ear and time invariant (LTI), where aij(n) is the impulse
response of the channel from source sj(n) to observation
xi(n).

(A4) The transfer matrix of the mixing system A(z) =∑L−1
n=0 A(n)z−n is nonsingular on the unit circle in the com-

plex plane.
Assumptions (A1) and (A3) are the basic conditions for

BSS; Assumptions (A2) and (A4) are necessary for the sep-
aration of sub-signals at a given frequency.

The noise-free convolute mixing model is given as fol-
lows,

x(n) = A(n) ∗ s(n) =
L−1∑

l=0

A(l)s(n− l) (8)

where ∗ denotes the convolution operation, s(n) is the sig-
nal source vector, x(n) is the mixture vector, and A(n) =
[aij(n)]N×N is the mixing matrix.

The separation system output y(n) = [y1(n), y2(n), . . .
. . . , yN (n)]T is given as

y(n) = H(n) ∗ x(n) =
M−1∑

l=0

H(l)x(n− l) (9)

where H(n) = [hij(n)]N×N is the separation matrix and
hij(n) denotes the impulse response of the FIR channel
from xj(n) to output yi(n). From (8) and (9), we have

y(n) = H(n) ∗ A(n) ∗ s(n) = G(n) ∗ s(n) (10)

with G(n) = H(n) ∗ A(n). Equivalently, in the z-domain,
we have

Y(z) = G(z)S(z). (11)

BSS is considered to be successful if the output y(n) is
at most a permuted and filtered version of the signal sources
s(n), in which case G(z) is a product of a permutation ma-
trix P and a diagonal matrix D(z):

G(z) = PD(z). (12)

We use the short-time Fourier transform (STFT) to de-
scribe the mixing and separating processes, which, based on
(8) and (9), are given as follows if the boundary effect of the
linear convolution is negligible:

X(n, ejω) = A(ejω)S(n, ejω) (13)
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Fig. 1. This diagram illustrates the relationship between
instantaneous and convolutive BSS.

and

Y(n, ejω) = H(ejω)X(n, ejω) (14)

where n is the time index which describes the short-time
signal spectra in different time windows. If the original
signal sources s(n) are nonstationary, then the sub-signal
sources S(n, ejω) are also nonstationary.

By applying the instantaneous-BSS objective func-
tion Φ(W, W∗) to every frequency bin of the short-time
Fourier transform model (14) and then performing integra-
tion, we get the so called frequency-domain integrated ob-
jective function (FIOF):

Ψ(H(n)|n=0,1,...,M−1) =
1
2π

∫ π

−π

Φ(H(ejω),HH(ejω))dω.

(15)
This can be seen more clearly in Fig. 1.

For the gradient of the FIOF with respect to the separa-
tion filter matrices H(n), we obtain

∂Ψ(H(n)|n=0,1,...,M−1)
∂H(n)

=
1
2π

∫ π

−π

[∇HΦ
(
H(ejω),HH(ejω)

)
ejωn

+∇∗HΦ
(
H(ejω),HH(ejω)

)
e−jωn

]
dω (16)

where

∇HΦ
(
H(ejω),HH(ejω)

)
=

[
∂Φ

(
H(ejω),HH(ejω)

)

∂H∗
pq(ejω)

]
,

∇∗HΦ
(
H(ejω),HH(ejω)

)
=

[
∂Φ

(
H(ejω),HH(ejω)

)

∂Hpq(ejω)

]
.

According to [13], the natural gradient is
[
∂Ψ(H(n)|n=0,1,...,M−1)

∂H(n)

]

natural

=
1
2π

∫ π

−π

[∇HΦ
(
H(ejω),HH(ejω)

)
ejωn

+∇∗HΦ
(
H(ejω),HH(ejω)

)
e−jωn

]
HH(ejω)H(ejω)dω.

(17)
Based on the natural gradient, we obtain the learning

rule as follows:

Hl+1(n) = Hl(n)− µ

[
∂Ψ(Hl(n)

∣∣
n=0,1,...,M−1

)

∂Hl(n)

]

natural

.

(18)

The answer to the question of why this FIOF-based
BSS approach can avoid the permutation problem is that
the time-domain impulse responses have been limited
by length, which is equivalent to the frequency-domain
smoothness constraints on the unmixing filters [6][7].

4. EXAMPLES

We present two concrete examples to show the validity and
feasibility of this method.

4.1. Extending Amari’s and Cichocki’s natural-gradient
based algorithm to convolutive mixture separation

Amari’s and Cichocki’s natural-gradient based algorithm is
one of the well known BSS approaches for instantaneous
mixtures. It is also generalized to the blind separation of
convolutive mixtures in different ways.

For the instantaneous mixing cases, Amari et al. pro-
posed an algorithm based on the KL-divergence, in which
the objective function is given as

Φ(W) = −1
2

log
(
det(WTW)

)−
N∑

i=1

log pi(yi). (19)

Based on the above objective function, the natural-
gradient based approach for instantaneous mixtures was de-
rived as follows [2]:

Wl+1 = Wl + µ
(
I− f(y(l))yT(l)

)
Wl (20)

where l is a time index and iteration indicator, and I is the
identity matrix. The term

f(y(l)) = [f1(y1(l)), f2(y2(l)), ..., fN (yN (l))]T

with

fi(yi(l)) = −d log(pi(yi(l)))
dyi(l)

= −p′i(yi(l))
pi(yi(l))

,

484



which depends on the p.d.f of the sources, is referred to as
the activation function.

Following the idea presented in Section 3, we define
the following frequency-domain integrated objective func-
tion [10]:

Ψ(l, H(n) |n=0,1,...,M−1 )

= − 1
4π

∫ π

−π

log
(
det

(
HH(ejω)H(ejω)

))
dω

− 1
2π

N∑

i=1

∫ π

−π

log pi

(∣∣yi(l, ejω)
∣∣)dω. (21)

We obtain the natural-gradient based adaptive learning
rule as follows:

Hl+1(n) = Hl(n) + µ×
1
2π

∫ π

−π

[I− F(Y(l, ejω))YH(l, ejω)]Hl(ejω)ejωndω (22)

where,

F
(
Y(l, ejω)

)
= [f1(y1(l, ejω)), ..., fN (yN (l, ejω))]T

and

fp(yp(l, ejω)) = −∂
(
log pp

(∣∣yp(l, ejω)
∣∣))

∂ |yp(l, ejω)| ejθ(yp(l,ejω))

is the activation function with

θ
(
yp(l, ejω)

)
= arg

(
yp(l, ejω)

)

being the phase of yp(l, ejω).

4.2. Extending correlation-based algorithms to convo-
lutive mixture separation

For instantaneous mixtures, correlation-based BSS ap-
proaches have been studied by many researchers, so
those works provide a solid background for studying
correlation-based approaches for convolutive mixture sep-
aration [11][12].

For nonstationary sources, we define the objective func-
tion with correlation matrix Ryy(l) = E[yT(l)y(l)] on the
basis of Hadamard’s inequality as

Φ(W) = Φ(Ryy(l)) =
1
2

log
[
det[Dyy(l)]
det[Ryy(l)]

]
(23)

where Dyy(l) is a diagonal matrix whose diagonal elements
are just those of the correlation matrix Ryy(l).

The natural-gradient based online learning rule for in-
stantaneous mixture separation is given as

Wl+1 = Wl − µ[D−1
yy (l)Ryy(l)− I]Wl (24)

where I is the identity matrix.
Applying the objective function (23) to every frequency

bin of the convolutive model in (14) and performing integra-
tion, we obtain the FIOF for convolutive mixture separation:

Ψ(H(n)|n=0,1,...,M−1) =

1
4π

∫ π

−π

log
(

det [DYY(l, ω)]
det [PYY(l, ω)]

)
dω

(25)

where PYY(l, ω) is the instant correlation matrix of sub-
signals Y(l, ejω), which can also be interpreted as the in-
stant power spectral density matrix of the separated sources
y(n); DYY(l, ω) is a diagonal matrix with the diagonal el-
ements of PYY(l, ω) as its diagonal elements.

Deducing in the same way as in Section 3, we obtain
the following correlation-based learning rule for convolu-
tive mixture separation:

Hl+1(n) = Hl(n)− µ× (26)
1
2π

∫ π

−π

[
D−1

YY(l, ω)PYY(l, ω)− I
]
Hl(ejω)ejωndω.

5. SIMULATIONS

In this section, we investigate the question of how the sepa-
ration performance of the FIOF-based approaches depends
on the signal-to-interference-ratios (SIRs) of the inputs of
the separation system. Sawada’s data of speech signals [16]
(the case of two sources) are used in this experiment. The
cross-channel components are multiplied by factors to ad-
just the mixing depth of two sources to obtain input mix-
tures of different SIRs. The relationship between the aver-
aged input SIR’s and the averaged output SIR’s is shown in
Fig. 2. It shows that it is difficult to separate the mixtures of
very low SIRs. This result was obtained with the algorithm
(22) (algorithm (26) will give a similar result). The corre-
sponding parameters are as follows: the length of unmixing
filters is 512; the fast Fourier transform size is 2048; the
learning rate is µ = 0.01 − (0.01 − 0.0001)t/tmax (where
t is the iteration index and tmax is the maximum number of
iterations).

6. CONCLUSIONS

In this paper, we presented a general relationship between
the BSS algorithms for instantaneous and convolutive mix-
tures by transforming the time-domain instantaneous BSS
to frequency-domain convolutive BSS and integrating the
frequency-domain criterion. So we can fully use the results
provided for instantaneous BSS. This kind of transform is
different from the frequency-domain implementation of a
time-domain convolutive BSS algorithm. It is also different
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Fig. 2. The relationship between the signal-to-interference-
ratios of the inputs and outputs of the separation system.

from applying a time-domain instantaneous BSS algorithm
directly to the frequency-domain model of convolutive mix-
tures. It is a kind of hybrid method of time-domain and
frequency-domain approaches. So it has the advantages of
both time-domain and frequency-domain approaches: effi-
cient computation and no local permutation.
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