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Abstract

This paper deals with the problem of estimating mul-
tiple motions at points where these motions are overlaid.
We present a new approach that is based on block match-
ing and can deal with both transparent motions and oc-
clusions. We derive a block matching constraint for an
arbitrary number of moving layers. Such constraint comes
from the theory of motion-based layer separation and can
be used for estimating an arbitrary number of overlaid
motions. Furthermore, we design a hierarchical algo-
rithm that can distinguish between the occurrence of sin-
gle, transparent, and occluded motions and can thus se-
lect the appropriate local motion model. Performance is
demonstrated on image sequences synthesized from natu-
ral textures.

1. Introduction

Motion analysis is a key component of applications in-
volving video compression, human and artificial vision,
medical image processing and denoising, object tracking,
plants growing estimation, weather forecasting etc. Ac-
cordingly, many different techniques for single motion es-
timation have been developed, see [7] for a review. Nev-
ertheless, these methods fail in the case of transparency
and occlusion. Transparencies can appear in daily imagery
as results of looking at objects trough others, like in X-ray
imagery, or as reflections on polished surfaces, for instance
glass windows. In such cases we have more than only one
motion at the same spatial position. Hence, the estima-
tion of transparent motion can play a important role in the
analysis of such imagery data. Different approaches for
the estimation of motion vectors for the case of multiple
transparent motions have been proposed [9, 3, 4, 12]. The
superposition principle of Shizawa and Mase has recently
been linearized and thereby solved for an arbitrary number
of motions [8]. Such linearization allows the introduction

of solutions that include regularization as proposed in [10].
Vernon used a phase-based approach to estimate the mo-
tion vectors for the case of only two motions [11]. His
approach has also been generalized to an arbitrary number
of motions [10]. Based on this generalization, we will here
derive a block-matching algorithm for multiple transparent
and occluded motions.

2. Theoretical considerations

2.1. The block-matching equation forN motions

In the spatial domain, we model transparent motions as
a superposition ofN different moving layers:

fk(x) = f(x, k) = g1(x − kv1)+
g2(x − kv2) + · · ·+ gN (x − kvN ). (1)

Here, then-th layer is moving with velocityvn. To de-
rive an equation for block matching, we first transform the
above equation to the Fourier domain:

Fk(ω) = φk
1G1(ω) + φk

2G2(ω) + · · ·+ φk
NGN (ω) (2)

whereφn = e−jω·vn , n = 1, . . . , N are the phase shifts
and ω = (ωx, ωy) are the frequency variables. Upper-
case letters denote the Fourier transforms of the respective
lower case letters, e.g.,Fk is the Fourier transform offk.

This relationship has been used for the estimation of
only one motion by Jepson and Fleet [5]. Equation (2)
has been solved by Vernon [11] for the simplest case of
only two motions and in [10] to separate up toN motion
layers. Here we will use (2) to obtain a block-matching
equation in the spatial domain. We first simplify notation
by settingΦk = (φk

1 , . . . , φk
N ) andG = (G1, . . . , GN )

and obtain the following expression for the above system
of equations:

Fk = Φk ·G. (3)

Our goal now is the elimination of the unknown vectorG
that contains the Fourier-transforms of the motion layers.
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The remaining equation then relates only to the observable
Fourier transform of the single images and the phase shifts,
i.e.,F0, . . . , FN andφ1, . . . , φN . We proceed by defining
the polynomial

p(z) = (z − φ1) · · · (z − φN ) =

zN + a1z
N−1 + · · ·+ aN (4)

with unknown coefficientsa1, . . . , aN . The phase terms
φ1, . . . , φN are the roots ofp(z), i.e.,p(φn) = 0, for n =
1, . . . , N . Since the components ofΦk are, by definition,
the roots ofp(z) to thek-th power, we have:

ΦN + a1ΦN−1 + · · ·+ aNΦ0 =
(p(φ1), . . . , p(φN )) = 0. (5)

Therefore by inserting (5) in (3) we obtain

FN + a1FN−1 + · · ·+ aNF0 =
(ΦN + a1ΦN−1 + · · ·+ aNΦ0) ·G = 0 (6)

and consequently

FN = −aNF0 − · · · − a1FN−1. (7)

Being the coefficients ofp(z), thea’s are, up to a sign, the
symmetric functions of the rootsφ1, . . . , φN :

a1 = φ1 + φ2 + · · ·+ φN

a2 = −
∑
i<l

φiφl

a3 =
∑

i<l<k

φiφlφk

...

aN = (−1)N+1φ1φ2 · · ·φN .

Transforming Equation (7) back into the spatial domain
leads to

fN (x) = (−1)Nf0(x− v1 − · · · − vN ) + · · ·

−
∑
i<l

fN−2(x − vi − vl) +
∑

i

fN−1(x− vi) (8)

because the products of phase terms lead to concatenated
shifts in the spatial domain. Equation (8) describes how the
image at timetN can be constructed form theN previous
images by using the motion vectors. Therefore, this equa-
tion can be used as the basis for block-matching methods
for a theoretically unlimited number of motions.

2.2. Example for two motions

In case of two motions, using the notationu = v1 and
v = v2, Equation (8) reduces to:

f2(x) = −f0(x−u−v) + f1(x−u) + f1(x−v). (9)

A block-matching algorithm can be obtained from the
above equation by minimizing the following expression,
which is the squared sum of differences for a given block:

M2(u,v) =
1
|B|

∑
x∈B

(
f2(x) + f0(x− u− v)

− f1(x − u)− f1(x − v)
)2

. (10)

This expression has to be minimized with respect tou and
v. In the above equation,B is a set that defines the pixels
in the block under consideration and|B| is the block size,
i.e. number of elements in the set. If there is only one
motion insideB, i.e. f1(x) = f0(x − v), the value

M1(v) =
1
|B|

∑
x∈B

(f1(x)− f0(x − v))2 (11)

will be small for the correct motion vectorv. On the other
hand, ifB includes two motions, the valueM1 will tend
to be far from zero for any vectorv, because one vector
cannot compensate for two motions. Accordingly, in case
of two transparent motions,M2(u,v) will be small if we
insert the correct motion vectorsu andv.

2.3. Behavior at occlusions

In case of occluded motions Equation (9) is no longer
valid and we will now show how it fails. We model the
occlusion of the layerg2 by the occluding layerg1 by

fk(x) = χ(x − ku)g1(x − ku)+
(1− χ(x− ku))g2(x − kv). (12)

χ = 1 whereg1 occludesg2 andχ = 0 otherwise [6].
By evaluating the expression in the parenthesis of Equa-
tion (10) for the above occlusion model we obtain

f2(x) + f0(x − u − v)− f1(x − v)− f1(x− u)

=
(
χ(x − 2u)− χ(x− u − v)

)(
g2(x− u− v)− g2(x− 2u)

)
. (13)

Inside the block we have a region near the occluding
boundary where the values are non-zero. This leads to a
high value ofM2. The size of the region near the occluding
boundary depends only on the difference of the velocities.
In fact, by replacingy = x − 2u in the right-hand side of
the above equation we find

f2(x) + f0(x − u − v)− f1(x − v)− f1(x− u)

=
(
χ(y)− χ(y + u− v)

)(
g2(y + u − v)− g2(y)

)
, (14)
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(a) (b) (c)

Figure 1. Results for transparent motions. See text for details.

which means that the distortion is located on a strip, which
is at most|u − v| wide. For the simplest case of a straight-
line border, the strip is|N · (u − v)| wide, whereN is the
unit vector normal to the border. Due to this distortion it is
not guaranteed that the minimum ofM2 yields the correct
motion vectors. A more formal treatment of motions at the
occluding boundary is given in [2, 1].

3. Hierarchical algorithm

In order to deal with the above mentioned cases of sin-
gle, transparent and occluded motions we design an hi-
erarchical algorithm described below and summarized in
Algorithm 1. An extension to more than two motions is
straightforward but not given here.

First, we estimate one motion ifM1 is smaller than a
given thresholdT1. Second, we estimate two motions if
M1 is larger than the thresholdT1 andM2 is smaller than
a second thresholdT2. If at a certain position both val-
uesM1 andM2 exceed their thresholds, the movements
do neither comply with the assumption of one or two trans-
parent motions. In such case, this position is marked as oc-
cluded. In the second phase we determine motion vectors
for the marked pixels only. We iterate the algorithm at the
marked pixelsL times and increase the size of the block
at each iteration. The estimation of the motion vectors for
the marked pixels is based on non-marked pixels only, be-
cause the marked pixels violate the assumption of one or
two motions and would thus not allow to minimize either
expressionM1 or M2. The iteration can be repeated until
motion vectors are found for all marked pixels or a maxi-
mum number of iterations is reached. This two-phase ap-
proach enables us to compute two motions at the occluding

Algorithm 1 Hierarchical algorithm
1: for all pixelsdo
2: Compute minimum value ofM1 and the corre-

sponding motion vector.
3: if M1 ≤ T1 then
4: Choose single-motion model
5: else
6: Compute the minimum value ofM2 and the two

motion vectors
7: if M2 ≤ T2 then
8: Choose model for two transparent motions
9: else

10: Mark pixel
11: end if
12: end if
13: Increase window sizes and repeat lines 2 to 12 for

all marked pixels. Ignore marked pixels inside the
current window.

14: end for

boundary by avoiding the terms in the right side of Equa-
tion (14).

4. Results

Image (a) of Figure 1 shows the first frame of a se-
quence consisting of two image layers: a square moving
with velocity u = (1, 0) and a background moving with
velocity v = (0, 1) pixels per frame. Both layers are
textured and overlaid additively. The textures are natu-
ral, taken from the MIT VisTex database. In (b) we show
the motion field estimated from up to three consecutive
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(a) (b) (c)

Figure 2. Results for occluded motions. See text for details.

frames. Note that both the transparent motions in the cen-
ter and the single motion of the background are correctly
estimated and that the border between the two regions is
sharp. For better visualization, the boundary of the square
is marked by a rectangle corresponding to the position of
the boundary in the first frame. In this example we used a
block size of3 × 3 pixels. The thresholdsT1 andT2 were
set to one. The motion field obtained after adding spatio-
temporal Gaussian noise to the image sequence, at a signal-
to-noise ratio of 35 dB, is shown in (c). We used a larger
window of 5 × 5 pixels for the first phase and9 × 9 pix-
els for the second phase of the algorithm. For both phases,
T1 = 11 andT2 = 17. The larger window size increases
both the robustness to noise and the smearing of the motion
field at object boundaries.

Figure 2 shows results for the case where the mov-
ing square occludes the moving background according to
Equation (12). In (a) the first frame of the sequence is de-
picted. Note in (b), that we obtain the correct motion vec-
tors at the occluding boundary. Again, filter size was3× 3
pixels for the first phase and5 × 5 pixels for the second
phase andT1 = T2 = 1. In (c) results have been obtained
for a noisy sequence (35 dB). Block size was5 × 5 pixels
for the first and9 × 9 for the second phase,T1 = 11, and
T2 = 17. Note the increased smear and the two outliers at
the edges, which are both due to the noise. For all results
presented in both figures we used the same Algorithm 1
and only one iteration in the second phase, i.e.L = 1.

5. Summary and conclusion

We derived a block-matching method for estimating
an arbitrary number of transparent motions and we have

also shown how to estimate multiple motions at occluding
boundaries. To estimateN motions at the same spatial po-
sition,N + 1 successive image frames are needed. More-
over, we derived a hierarchical decision rule for selecting
the best-fitting local-motion model. The performance of
the algorithm is demonstrated on noise free and noisy se-
quences. The hierarchical decision requires threshold pa-
rameters, which we have so far chosen empirically. We
currently develop a statistical framework that will allow to
determine the thresholds by significance tests.
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