
14 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2011

A Dynamic Fine-Grain Scalable Compression
Scheme With Application to

Progressive Audio Coding
Stefan Strahl, Member, IEEE, Heiko Hansen, and Alfred Mertins, Senior Member, IEEE

Abstract—This paper studies the fine-grain scalable compres-
sion problem with emphasis on 1-D signals such as audio signals.
Like in the successful 2-D still image compression techniques
embedded zerotree wavelet coder (EZW) and set partitioning in
hierarchical trees (SPIHT), the desired fine-granular scalability
and high coding efficiency are benefited from a tree-based signif-
icance mapping technique. A significance tree serves to quickly
locate and efficiently encode the important coefficients in the
transform domain. The aim of this paper is to find such suitable
significance trees for compressing dynamically variant 1-D signals.
The proposed solution is a novel dynamic significance tree (DST)
where, unlike in existing solutions with a single type of tree, a
significance tree is chosen dynamically out of a set of trees by
taking into account the actual coefficients distribution. We show
how a set of possible DSTs can be derived that is optimized for
a given (training) dataset. The method outperforms the existing
scheme for lossy audio compression based on a single-type tree
(SPIHT) and the scalable audio coding schemes MPEG-4 BSAC
and MPEG-4 SLS. For bitrates less than 32 kbps, it results in an
improved perceived audio quality compared to the fixed-bitrate
MPEG-2/4 AAC audio coding scheme while providing progressive
transmission and finer scalability.

Index Terms—Audio coding, embedded coding, progressive com-
pression, significance tree.

I. INTRODUCTION

T HE main attractive feature of a scalable compression
algorithm is the possibility of progressive transmission.

Scalability enables the receiver to decode the received signal
at different fidelity levels, depending on the actual needs and
available device capabilities, and it also allows one to adapt
the data rate to the actual channel capacity. Certainly, such a
feature is extremely desirable in packet-based networks, and
it has been exploited to handle problems such as data-rate
fluctuation, channel congestion or limited storage space.

For audio compression, the majority of classic encoders op-
timize on a single (although arbitrary) target compression ratio,

Manuscript received January 12, 2009; revised September 24, 2009; accepted
January 04, 2010. Date of publication February 05, 2010; date of current ver-
sion October 01, 2010. This work was supported in part by the SFB/TRR 31
and in part by the International Graduate School for Neurosensory Science and
Systems, Carl von Ossietzky University, Oldenburg. The associate editor coor-
dinating the review of this manuscript and approving it for publication was Dr.
Patrick A. Naylor.

S. Strahl and H. Hansen are with the Carl von Ossietzky University, D-26111
Oldenburg, Germany (e-mail: stefan.strahl@uni-oldenburg.de).

A. Mertins is with the Institute for Signal Processing, University of Lübeck,
Ratzeburger Allee 160, D-23538 Lübeck, Germany.

Digital Object Identifier 10.1109/TASL.2010.2042129

striving to deliver the best quality given the bitstream length,
or to deliver the shortest bitstream length given a constraint on
quality. An example is the well-known MPEG2/MPEG4 ad-
vanced audio coder (MPEG-2/4 AAC) [1], which is a state-of-
the-art audio compression tool that provides excellent quality at
bitrates of 64 kbps per channel and also yields excellent perfor-
mance, relative to the alternatives, at bitrates reaching as low as
16 kbps. Clearly, no scalability is offered from those conven-
tional coders.

To cater for the scalability desire, a few scalable encoders
that are organized in layers have been proposed and standard-
ized. Namely, ITU-T G.727 [2] (5-, 4-, 3- and 2-bit/sample) for
telephone bandwidth or ITU-T G.722 [3] (48/56/64 kbps) for
wideband speech. More recently, MPEG-4 CELP [4] (2 kbps in
the narrowband version and 4 kbps in wideband) and MPEG-4
BSAC [4] (with up to 1-kbps fine bitrate graduation) have been
introduced. BSAC stands for bit slice arithmetic coding. In the
MPEG-4 BSAC coder, a core layer produces the lowest bitrate
and provides the minimum information to obtain a basic quality
for the decoded signal, and several enhancement layers contain
additional information that allows the decoder to improve the
quality. The scalability is obtained by transmitting the core
layer bitstream, combined with one or more enhancement
layers. Clearly, the obtained granularity relies on the predefined
bitrates allocated to the layers and the number of layers sent to
the decoder. Typically, for achieving scalable bitrates between
16 and 64 kbps, up to 48 enhancement layers are used. The
newest scalable audio coding scheme addition to the MPEG-4
standard is MPEG-4 SLS [5] which provides backward com-
patibility to MPEG-2/4 AAC while achieving a granularity
of up to 0.4 kbps. SLS stands for scalable to lossless audio
coding and the MPEG-4 SLS coder achieves scalability by
using, similar to the MPEG-4 BSAC coding standard, a layered
concept. The bitstream consists of an AAC core layer defining
the lowest possible bitrate and a lossless enhanced (LLE) layer
that produced the fine grain scalable to lossless portion of the
lossless SLS bitstream. The LLE layer encodes the residual
signal using a bitplane coding approach whose quantizer noise
reproduces the perceptually optimized spectral shape of the
AAC core layer’s quantizer noise [6]. The MPEG-4 SLS stan-
dard also defines a computational less complex non-core mode
for applications that require only lossless quality.

In all existing standardized scalable encoders, the scalability
is obtained at the price of degradation in terms of performance
when compared to fixed-rate schemes, and, in general, the
finer the granularity is, the higher the loss is [7]. A few other,

1558-7916/$26.00 © 2010 IEEE

STRAHL et al.: DYNAMIC FINE-GRAIN SCALABLE COMPRESSION SCHEME 15

nonstandard coders with fine bitrate scalability have been
proposed as well. These are, for example, coders based on the
SPIHT principle [8]–[13], which will be discussed in more
detail below, the embedded wideband speech coder in [14],
which is based on layered multimode transform predictive
coding, the layered coder in [7], which orders and transmits
parameters in terms of their significance, and the embedded
audio coder in [15], which forms embedded streams for time
segments of about 0.74-s duration. For the MPEG-4 SLS
scheme, a prioritized bitplane coding has been proposed [16],
that similar to the approach presented in this work, divides the
frequency spectrum of the LLE layer into several regions and
assigns these regions with coding priorities according to their
respective energy levels.

Several of the previously mentioned scalable coders use bit-
plane coding (also called bit-slice coding), where the coeffi-
cients are transmitted layer by layer, starting with the layer of
most significant bits. In the first encoding round, this provides
coarse representations of the largest coefficients (largest in mag-
nitude), and subsequent layers provide more accurate represen-
tations of the coefficients. For a larger set of coefficients to be
encoded, in order to achieve efficient bitplane coding, it is ad-
vantageous to describe the bitplanes via position and value in-
formation, instead of transmitting value information alone in
a straightforward manner. This is in particular interesting for
sparse data where most of the coefficients are zero. One suc-
cessful solution of this is the tree-based significance mapping
technique [17], [18]. In these methods, for a set of coefficients to
be encoded, by assuming a known coefficient significance/mag-
nitude distribution in the form of trees, the coefficient position
information is mapped into node-location information in the tree
domain. Moreover, different significance-tree structures result
in different compression efficiencies. Details will be given in
Section II.

For 2-D coefficient-set compression, applying tree-based
techniques has produced impressive advances in wavelet-based
image compression. Its development could be traced back to
the work of Lewis and Knowles [19], who used tree structures
to exploit the statistical properties found in the pyramidal
decomposition of natural images. The technique was further
developed by Shapiro [17], who proposed an efficient method
to combine the two techniques, bitplane coding and tree-based
significant-coefficient selection (sorting), and applied them to
the wavelet transform coefficients. This combination, called
embedded zerotree wavelet (EZW) algorithm, was later refined
by Said and Pearlman [18]. The according new algorithm,
called set partitioning in hierarchical trees (SPIHT), is one of
the state-of-the-art progressive image compression algorithms.
It has been realized that the reason for the success of the
SPIHT fine bitstream scalability, state-of-the-art compression
performance, and reasonable computational complexity, is
mainly attributed to the effective description of the significance
map of wavelet coefficients. This has been confirmed from
both empirical observations and theoretical analysis: in the
experiment illustrated in [20], the SPIHT algorithm success-
fully captures not only the inter-band correlation but also the
intra-band correlation. Theoretical support can be found in [21]
and [22], where the statistical models between the magnitudes

of wavelet coefficients in different scales and orientations were
proved to be existent.

Inspired by the success in image compression, SPIHT-related
coding techniques have been proposed for audio compression
as well [8]–[13]. In all of these approaches, the tree structures
have been fixed independent of the signals to be encoded and are
based on the assumption that low-frequency components con-
tain more energy than high-frequency ones. This assumption,
however, does not hold for all frames of real-world audio sig-
nals, so that fixed trees can only be suboptimal.

To address this problem, in an earlier work, the authors of
this paper proposed an adaptive tree-based significance mapping
technique that used a fixed set of significance trees from which
the optimal tree for each frame was selected [23], [24]. In the
present paper, we present a novel, scalable compression scheme
with a dynamic set of data-dependent significance trees, called
dynamic significance tree quantization (DSTQ). As the com-
pression performance of a tree depends on how well it matches
the signal structure, the set of significance trees should be opti-
mized for the applied signal class. We propose to derive such a
set of data-dependent significance trees directly from the coeffi-
cient’s distribution. An initial set of significance trees can be ei-
ther learned for a general signal class (e.g., speech), or they can
be optimized for the specific signal to be encoded. A dynamic
adaptation of the set of trees is possible online without sending
further side information if the encoder and decoder stage use
the same learning algorithm. The proposed DSTQ algorithm can
provide bitrate scalability at a granularity of one bit per frame,
and has better performance than the existing SPIHT-related al-
gorithms.

Another concept of scalable audio coding is the optimization
at the encoding stage for a wide range of bitrates and types of
input signals for an a priori known bitrate. For this problem,
hybrid sound coding schemes have been proposed [25], using
in parallel sinusoidal, transform or CELP coding modules and
optimizing the respective bitrates or time segmentation using for
example operational rate-distortion optimization. These scal-
able audio coders result in a bitstream with a fixed bitrate and are
therefore different from the scalable audio coders like MPEG-4
BSAC, MPEG-4 SLS or our proposed coding schemes, where
the bitrate can be changed after the encoding process, scaling
only the bitstream itself.

This paper is organized as follows. To facilitate the later
description of our algorithm, a brief overview of existing
SPIHT-style algorithms (both in image and audio compression)
is presented in Section II. Then, Section III describes our
proposed dynamic significance tree method and develops the
scalable compression scheme DSTQ. We present a data-driven
approach to generate a set of optimal significance trees.
To illustrate the compression performance, we compare in
Section IV the achieved signal reconstruction performance
with the SPIHT scheme for lossy audio compression based on
a single-type tree and our previously proposed scheme using
a fixed set of significance trees (CSTQ). We further evaluate
the achieved perceptual quality for compression of quantizer
indices compared with the fixed-bitrate MPEG-2/4 AAC and
scalable MPEG-4 BSAC and MPEG-4 SLS audio coding
schemes. Conclusions are given in Section V.

16 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2011

Notation

Matrices and vectors are printed in boldface, sets are printed
in script alphabet and trees in fraktur alphabet. denotes the ad-
dition of sets and is the set of all positive integers excluding
zero. denotes the greatest positive integer less than or equal
to a given positive real number .

represents the set of all positive integers between and
including and .

II. TREE-BASED SIGNIFICANCE MAPPING IN SPIHT

A. SPIHT Algorithm in Image Compression

In this section, we give a brief summary of some characteris-
tics of the SPIHT algorithm, introduced by Said and Pearlman
in [18] for 2-D wavelet-based image compression.

Assume an original image is wavelet transformed to a 2-D
coefficient array . Each element of is called trans-
form coefficient at coordinate and represented in its bi-
nary form. Note that for efficient information transmission, the
most significant value information should be transmitted first.
To achieve this, the idea is to encode the coefficient value infor-
mation in decreasing bitplane order. In particular, the sign and
value of a coefficient are encoded only when the coefficient has
become significant, that is when its most significant nonzero bit
is located at the current or one of the previous bitplanes. This
idea leads to another issue, which is the question of how to ef-
ficiently encode the coordinates of significant coefficients. A
good solution is provided by the tree-based significance map-
ping technique.

A tree is a set of linked nodes that realizes a hierarchical data
structure. Each node has at most one parent node and a set of
zero or more children nodes. A node with zero child nodes is
also called a leaf node and the root node is defined as the topmost
node that has no parent node. The order of the tree defines the
number of children of a node. A significance tree is generated by
ordering all coefficients in the form of trees with the assumption
that the coefficients closer to the roots of the trees will usually
be more significant (i.e., larger in magnitude) than those at the
leaves. In SPIHT coding of the wavelet coefficients of an image,
such a tree is recursively generated by the parent-offspring re-
lationship

, where is the coordinate of a parent and
the set of coordinates of its offspring (also called direct descen-
dants of the parent at node). Each of the members of the set

then has its own offspring, which are called indirect de-
scendants with regard to the parent node . For the descrip-
tion of the algorithm, all the indirect descendants of the parent
with coordinates are gathered in the set . Finally,
a complete descendants set is defined as the sum of the
direct and indirect descendants .

The above-mentioned relationship between parents and their
offspring provides a natural link between wavelet coefficients
in different frequency bands that belong to the same spatial lo-
cation in an image. It holds for all coefficients, except the ones
in the highest and lowest frequency bands, because the coeffi-
cients in the highest bands do not have any offspring, and in the

Fig. 1. Parent-offspring dependencies in SPIHT. (a) 2-D tree for a seven-band
wavelet transform. The larger squares represent the frequency bands
��� ��� ��� ��� ��� ��� ��� � of the transformed image,
and the smaller ones represent the individual coefficients within the bands.
The arrows show the links between parents and their offspring. (b) 1-D tree
following the offspring rule ���� � �� � ���� � �� with � � 	.

lowest band, only three out of four coefficients have offspring.
Fig. 1(a) gives an illustration.

Based on the significance tree, which is also called spatial
orientation tree, the entire SPIHT algorithm performs iterative
sorting and refinement passes to progressively encode the coef-
ficient array . From the top bitplane , naturally de-
cided by , each sorting pass is used to

perform three actions: The first is to find all coefficients that are
significant with respect to the current bitplane (these are coeffi-
cients that are larger in magnitude than the current threshold
with). The second action is to transmit
the significance-testing results and signs of those coefficients
that have become significant against the current threshold. The
final action is to update the initial spatial orientation trees by re-
moving all significant coefficients and storing them separately.
Here, the significance tests are performed on the basis of sets. If
a set has become significant (at least one coefficient inside the
set whose most significant bit locates at the current bitplane),
a partitioning rule is used to partition the set into new subsets,
then significance tests are performed on the new, smaller sets.
This process continues until the significance test has been done
for all significant sets, and the coordinates of all significant co-
efficients for the current bitplane have been identified. A suc-
ceeding refinement pass is used to transmit the current bitplane
values for coefficients that are known to be significant from the
previous bitplanes. The whole sorting and refinement-pass se-
quence is repeated until the desired bitrate is achieved or, in the
case of lossless compression of finite-alphabet data, until all bit-
planes have been transmitted.

B. SPIHT-Style Algorithm in Audio Compression

The idea of applying SPIHT-type significance trees to audio
compression has been independently proposed in [9] and [8].
Both focused on compressing MDCT (modified discrete cosine
transform) transformed audio signals and applied a parent-off-
spring relationship for the coefficient coordinates of the form

where is the parent coordi-
nate and is the number of offspring. This tree choice is
somehow related to the fact that most instruments produce har-
monics of a fundamental frequency, so that correlations might
exist between the coefficients and their harmonics. Because this
type of significance tree was inspired by the SPIHT algorithm,
we will refer to it as the SPIHT-style significance tree in the

STRAHL et al.: DYNAMIC FINE-GRAIN SCALABLE COMPRESSION SCHEME 17

Fig. 2. Flowchart representation of Algorithm 1.

following. Fig. 1(b) illustrates the SPIHT trees for . In
addition to SPIHT-related compression, additional perceptual
significance tests were introduced in [11]. In this method, co-
efficients that were significant with respect to their magnitudes
were only transmitted if they were also significant with respect
to a masking threshold.

III. DESCRIPTION OF THE DYNAMIC SCALABLE

COMPRESSION SCHEME DSTQ

In this section, we consider the problem of constructing op-
timal significance trees for a 1-D transform vector and how to
use them for compression. First we will explain the proposed
DSTQ algorithm. Then we will present an approach to generate
a data-dependent set of optimal significance trees.

A. DSTQ Algorithm

Let the vector be the 1-D
coefficient vector to be encoded, with the corresponding set of
coefficient coordinates . Here the data in the co-
efficient vector is not specified. It can, for example, be real-
valued signal samples, transform coefficients or integer-valued
quantizer indices in a frame of audio. Similar to the SPIHT
algorithm, our DSTQ algorithm encodes the coefficients sub-
sequently bitplane for bitplane, commonly starting from their
most significant and continuing to their least significant bit-
plane. The most significant bitplane is determined by

. DSTQ also distinguishes between a

sorting pass (to select significant coefficients by tree-based sig-
nificance mapping and output “position” bits) and a refinement
pass (to output “value” bits).

Now let us assume that the coefficient-position information
is mapped to a significance tree . Then the so-called sorting

pass performs the following significance-tree tests for the cur-
rent processed bitplane

if

otherwise.
(1)

The significance-tree test can be performed1 calling the
following pseudocode TreeSignificance :

Algorithm 1 TreeSignificance(tree , threshold)

1: if is not a leaf node then
2: if is insignificant with respect to then
3: emit “0” and return

4: else
5: emit “1”

6: end if
7: end if
8: root node of

9: if is significant with respect to then
10: emit “1” and sign bit

11: else
12: emit “0”

13: end if

14: th child subtree of

15: for all do

16: Call TreeSignificance(,)

17: end for.

See also Fig. 2 for a flow-chart representation of Algorithm 1.
The important feature of this kind of coefficients-position map-
ping technique can be seen in the pseudocode of Algorithm 1
in the lines 2 and 3. We can save bit costs whenever we encode
an insignificant tree (i.e., a tree with) with only one
bit “0” instead of coding all the insignificant coefficients of the
tree one-by-one. Even though there is additional cost for trans-
mitting the significance-tree test result for significant trees, due
to the savings that occur when a tree is insignificant, the method
is, in general, more efficient than the straightforward one-by-one
coding.

The proposed DSTQ algorithm compresses the coefficient set
in the order of threshold-by-threshold. At each bitplane, in the

sorting pass, the procedure TreeSignificance is applied based on
the dynamically selected local significance tree . The coeffi-
cient positions that become significant in the current bitplane
are determined and moved into a respective list of significant
coefficients (LSC). In the refinement pass, also sequentially, we
output the current bitplane values of those coefficients that be-
came significant in the previous bitplanes. Then, we move to the
next lower bitplane, and the sequence of sorting and refinement
passes is repeated. In this way, the DSTQ algorithm achieves
encodings with finer and finer quantization steps by progres-
sively transmitting the binary representation of the coefficients

1The partitioning rule is slightly simplified compared to the 2-D one in SPIHT
[18]

18 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2011

Fig. 3. Flowchart representation of Algorithm 2.

and yields a bit-wise scalable compression technique. The en-
tire DSTQ algorithm is described as Algorithm 2 (see Fig. 3 for
a flow-chart representation).

Algorithm 2 DSTQ(coefficients , coordinates)

1: Dynamic Tree Generation:

2: select optimal tree from set of possible significance trees

3: Initialization:

4: output ;

5: output index of selected

6: set LSC as an empty list.

7: while and bit budget is not fully utilized do

8: Sorting Pass:

9: call TreeSignificance

10: store all newly significant coefficients into the LSC

11: Refinement Pass:

12: for all coefficient in LSCs except those included in

the last sorting pass do

13: output the th bit

14: end for

15:

16: end while.

The previous definition of TreeSignificance described a sim-
plified version for comprehensibleness. In the DSTQ algorithm,
a modified version TreeSignificance is used that only emits
test results for nodes that have not become significant in a pre-
vious bitplane. These coefficients are encoded in the refinement
pass and their removal from the set of tested coefficient results
in larger insignificant trees. The process is repeated until the
desired rate (bit budget for compressing the coefficient set) is
achieved, or, in case of lossless compression, all bits in all coef-
ficients have been encoded. Like with the technique used in [18],
to obtain the desired decoder’s algorithm that duplicates the en-
coder’s execution path, we simply have to replace the words
“output” by “input” in the pseudo code.

The amount of side information required to transmit which
significance tree has been selected is relatively low compared
with the number of saved bits due the optimized signifi-
cance tree. This will be confirmed by experimental results in
Section IV, where we compare the performance of single fixed
trees with the one of dynamically selected trees.

B. Data-Driven Generation of Significance Trees

As stated before, in wavelet-based still image coding, due to
the properties of natural images, the significance information
can be well captured within a single type of significance tree. For
audio, however, where the frequency content can change dra-
matically over time, there exists no single tree that captures the
significance information of all frames equally well. We there-
fore propose to dynamically select the best significance tree for
each frame from a given set of possible trees. To efficiently con-
struct such a set of significance trees, we suggest to directly use
the information available from the coefficients distribution. We
will first recapitulate some theoretical results on optimal signif-
icance trees for a given coefficients distribution.

For a significance tree the root node is denoted as and
the th child subtree of is represented by . The probability
of significance of a tree with respect to the bitplane is denoted
as . The probability of significance of the root node at
a given bitplane is written as . Then the average signif-
icance mapping cost of a tree for a bitplane is given by

(2)

with

(3)

From (2), it follows that the encoding cost for a significance tree
depends recursively on the probability of significance (3) of its
child subtrees and the number of these recursive steps executed.
This leads to the important conclusion that the optimal sequence
of coefficient positions is in descending order of their magni-
tude, resulting in the largest possible insignificant subtrees for
each bitplane.

We will illustrate this using the toy example given in
Table I. The sorting tree for this example, shown in Fig. 4,

STRAHL et al.: DYNAMIC FINE-GRAIN SCALABLE COMPRESSION SCHEME 19

Fig. 4. Significance tree of the 1-D example which is its sorting tree.

TABLE I
BINARY REPRESENTATION OF THE 1-D EXAMPLE SIGNAL

is mapping the coefficient positions depth-first in the order
. An optimal tree would

transmit for a bitplane all significant coefficients first, followed
by the remaining insignificant coefficients. For the example, its
sorting tree maps in the third bitplane the significant coefficient

first and TreeSignificance will emit to the bitstream
with being the sign bit. The remaining coefficients of the bit-
plane are fully described by the test results for the subtrees with
the root nodes and . The bitstream encoding the MSB of
the example is therefore . As for every bitplane its
significant coefficient positions are moved to a list of significant
coefficients (LSC) they are excluded from the sorting pass in the
following bitplanes. Thereby all significant coefficients in the
next bitplane will be of lower magnitude than the coefficients
that became significant in the current bitplane. The sorting tree
will map these coefficient first, in the example is skipped
in the next sorting pass and the subtree with the root node

is tested first, adding to the bitstream. Then, the
leaves mapping and are encoded and the insignificant
coefficients and are encoded with a single 0 bit. In the
refinement pass the next bit representing is transmitted,
resulting in the overall bitstream . In the last
bitplane, the sorting pass emits the test result for the subtree
with the root node . With the final refinement pass the
bitstream of the example is .

It can be concluded that an optimal significance tree for a
given 1-D coefficient vector can be derived by computing its
sorting tree. In audio coding applications, the signal is com-
monly divided into frames of fixed length. To derive a set of
optimal significance trees for such frames, we define a training
dataset, and the sorting trees for every frame of the training
dataset are computed. If the DSTQ coding scheme is applied
for an entire signal class, for example for human speech in a
telecommunication scenario, the training dataset would be a
speech database. If the signal to be encoded is known a priori,
like it is the case for storing digital audio, the signal itself can

be used as the training dataset. We propose the following simple
algorithm to learn a set of significance trees that is optimized
for the training dataset. First, we encode the frames of the
training dataset with all available sorting trees derived from
these frames. The performance of every tree is measured using
the lengths of the resulting bitstreams needed to achieve lossless
encoding. These derived metric values are stored into a
matrix . It is to note that the DSTQ algorithm has a low com-
plexity—a simple C prototype implementation on a standard
workstation was able to test 10 000 trees per second for a frame
length of 1024 samples. We then use the following algorithm to
reduce the number of significance trees to trees.

Algorithm 3 Derive set of optimal significance trees

1: find in for every frame the tree achieving the best

performance and store their ID in

2: while (number of unique trees in do
3: get for every tree in its next best tree for the according

frame from and store its ID in

4: replace in the tree whose next best tree in is already

used in and which results in the smallest performance

degeneration for its frame.

5: if no such tree is found in search for the second next

best/third next best/…tree.

6: end while.

Note that instead of the length of the bitstream achieving loss-
less compression a perceptual metric could be used, and the
computational complexity could be reduced by limiting the iter-
ations of the DSTQ scheme to the first bitplanes or to a given
bitrate. If both the encoder and the decoder know the previ-
ously decoded frames to a certain minimal reconstruction level,
it is possible to use this information to derive new optimal signif-
icance trees after each audio frame which can replace trees in the
set that have seldom been selected for the past frames. Another
alternative to dynamically update the set of significance trees
is to use a side-information channel that continuously transmits
updates to the set of significance trees.

IV. EXPERIMENTAL RESULTS

We applied our proposed DSTQ scheme to the compression
of audio signals, and in this section, we compare our method
with the existing algorithms SPIHT [8], [9] and CSTQ [23] for
lossy audio compression. In addition, we combined our method
with the state-of-the-art MPEG-2/4 AAC compression scheme
by replacing the Huffman coding stage for quantizer-index
compression by the SPIHT, CSTQ, and DSTQ algorithms.
Performance comparisons for this AAC-related scheme are
made with the standardized MPEG-2/4 AAC scheme with
low-complexity profile (fixed bitrate) and the scalable MPEG-4
BSAC and MPEG-4 SLS schemes.

A. Comparison With Schemes Using a Priori Fixed Trees

In this experiment, we compared the compression perfor-
mance of our proposed DSTQ algorithm with the single-tree
SPIHT algorithm and the CSTQ coding scheme which uses a

20 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2011

TABLE II
SEGMENTAL SNRS IN dB FOR THE SVEGA TEST SIGNAL ENCODED AT BITRATES BETWEEN 16–96 kbps USING DIFFERENT ALGORITHMS

set of a priori fixed trees [23]. The CSTQ algorithm separates
an audio frame into eight segments and selects for each segment
a tree that assumes a descending, ascending, convex or concave
coefficient-magnitude behavior. This results in a set of 65 536
possible trees for every frame. The a capella song “Tom’s
Diner” by Suzanne Vega was transformed with the MDCT
filterbank with frequency bands and then encoded
with the SPIHT, CSTQ, and DSTQ algorithms, respectively. All
coding schemes were performed with significance trees having
a tree order of four. For the DSTQ algorithm, a full search over
all trees was performed for every audio frame, selecting the tree
that results in the shortest bitstream for a lossless encoding. Sets
of optimal significance trees consisting of 32, 64, 128, 256, and
512 trees have been derived as described in Algorithm 3. To
allow for a direct comparison of the significance trees, the same
tree-selection algorithm was used for CSTQ in contrast to [23],
where a less complex tree selection algorithm was applied. The
test bitrates were varied between 16 and 96 kbps. The according
frame bit budget was computed as ,
where is the required bitrate in bits per second, and is the
sampling rate in Hz. As a quality measure for the compression
performance, the segmental signal-to-noise ratio (segSNR) was
used, which was computed as follows:

segSNR (4)

where , are the transform coefficients in frame
and are the corresponding reconstructed coefficients. is
the number of frames. A psychoacoustic analysis was not car-
ried out for this experiment, because all schemes applied the
same MDCT and significance tests (i.e., the same thresholds),
so that, in this special case, the segmental SNR indeed allows
for a comparison between the different significance tree-related
compression techniques.

The results presented in Table II show that algorithms using a
set of possible significance trees achieve a better segmental SNR
than single-tree algorithms like SPIHT. The number of saved
bits due to the selection of significance-trees being optimal for
the current frame is larger than the amount of side information
needed to transmit which significance-tree has been selected. It
further shows that using a data-driven approach to construct a set
of trees being optimal for a specific class of signals (DSTQ), a
higher compression performance can be achieved with a smaller
set of possible significance trees compared to a model-driven

approach (CSTQ). For bitrates equal to or less than 32 kbps, a
set of 256 optimized significance trees achieved a similar per-
formance as the set of 65 536 model-driven trees (CSTQ). For
higher bitrates, a set of 512 learned significance trees showed
a superior signal reconstruction performance than CSTQ. For
digital audio storage applications, the derived optimal set can be
placed at the beginning of the media and only the ID of the se-
lected tree needs to be transmitted for every audio frame. Using
a simple run-length encoding we needed at most 5000 bits to en-
code a significance tree for a frame length of 1024 samples. This
would result in a maximal cost of 2.44 MB for 512 trees which
is below 0.5% of the capacity of a standard audio CD. And for
applications like speech coding it is not necessary to transmit
the learned set of significance trees, as an a priori learned set of
significance trees can be stored in the decoding device. Also a
constant update of the significance tree set can be performed as
proposed in Section III-B.

B. Comparison With MPEG-2/4 AAC, MPEG-4 BSAC, and
MPEG-4 SLS

In this section, we compare the perceptual quality of our
proposed DSTQ scheme with the single-tree SPIHT algorithm,
the CSTQ coding scheme, the standardized MPEG-2/4 AAC
fixed-bitrate encoder and the MPEG-4 BSAC and MPEG-4
SLS scalable encoders, respectively. Within the MPEG-2/4
AAC compression scheme, a flexible Huffman codebook selec-
tion (from 11 predesigned Huffman codebooks) is adopted to
losslessly compress the quantizer indices. The MPEG-4 BSAC
coder uses an alternative noiseless coding method (bit slice
arithmetic coding instead of Huffman coding), with the rest of
the processing (filterbank, psychoacoustic model, etc.) being
identical to MPEG-2/4 AAC. The MPEG-4 BSAC coder is
designed to support scalability with nearly transparent sound
quality at 64 kbps and graceful degradation at lower bitrates and
performs best in the range of 40 kbps to 64 kbps. The MPEG-4
SLS coder realizes a two-layer structure with a Huffman en-
coded AAC core and a lossless enhancement bitstream which
is encoded using context-based bitplane arithmetic coding
and a special entropy encoding mode for low-energy frames.
MPEG-4 SLS is designed to achieve lossless coding at a bitrate
of approximately 350 kbps/channel and nearly transparent
sound quality at approximately 64kbps as a result of the AAC
core layer. In our experiments, MPEG-2/4 AAC and MPEG-4
BSAC compression procedures were implemented based on the
MPEG-2/4 reference software (2001 Edition) with available
source codes on [26]. The MPEG-4 SLS coding scheme was
implemented using the available source code on [27]. Due to the
poor performance of the reference software we further included

STRAHL et al.: DYNAMIC FINE-GRAIN SCALABLE COMPRESSION SCHEME 21

a state-of-the-art MPEG-2/4 AAC implementation (Nero AAC
codec 1.3.3.0, http://www.nero.com) in our test setup.

For a fair comparison, we adopted the basic MPEG-2/4 AAC
encoding process before noiseless coding for our DSTQ coder
as well. That is, we kept the MPEG-2/4 AAC scheme unchanged
up to the point where Huffman coding is employed, but instead
of using Huffman codebooks, our proposed DSTQ algorithm
was employed for quantizer-index compression. In detail, the
MDCT coefficients that have been quantized according to the
psychoacoustic model are not Huffman encoded but compressed
with the DSTQ coding scheme. The resulting bitstream con-
sists of the MPEG-2/4 sideband information, e.g., the chosen
scalefactors and the DSTQ coefficients that take up the same
space in the new bitstream as the Huffman coefficients did in
the original MPEG-2/4 AAC bitstream. This combined scheme
will be referred to as the AAC-DSTQ scheme in the following.
The CSTQ and SPIHT coding schemes have been realized in
the same manner and will be referred to as AAC-CSTQ and
AAC-SPIHT. To be able to compare the audio-coding perfor-
mance of MPEG-4 SLS at low bit rates we chose for the AAC
core layer a bitrate of 16 kbps. This allowed also a direct com-
parison with MPEG-4 BASC whose base layer is encoded at 16
kbps. It is to note that for MPEG-4 SLS higher AAC core layer
bitrates have not been investigated in this work as the main focus
is on coding scenarios with a scalability form low up to high bi-
trates which leads to the necessity of a low-bitrate AAC core in
the MPEG-4 SLS scheme.

We evaluated the audio coding schemes using a set of five
test files with different characteristics. From the SQAM test
material [28] we selected a male German speaker (track #53),
a recording of a harpsichord as an example for a strong har-
monic sound structure (track #40), and a castanets recording
(track #27) consisting of sharp attacks. We further selected the
pop song “Mountains O’Things” by Tracy Chapman and the a
capella song “Tom’s Diner” by Suzanne Vega.

In the first experiment we used the MPEG-2/4 reference soft-
ware. We applied AAC-DSTQ, AAC-CSTQ, and AAC-SPIHT
to encode the quantizer indices derived by the reference soft-
ware at 64 kbps, matching the maximum bitrate of MPEG-4
BSAC, and then truncated the bitstream to the different target
bitrates. In the MPEG-4 SLS coding scheme the AAC core bi-
trate was set to 16 kbps to allow for a minimal bitrate of 16 kbps.
We measured the perceived audio quality of the decoded audio
signals relative to the original test signal using a model of audi-
tory perception (PEMO-Q) [29]. The estimated perceived audio
quality was mapped to a single quality indicator, the Objective
Difference Grade (ODG) [30]. This is a continuous scale from
0 for “imperceptible impairment,” 1 for “perceptible but not
annoying impairment,” 2 for “slightly annoying impairment,”

3 for “annoying impairment” to 4 for “very annoying im-
pairment.” For the AAC-DSTQ, AAC-CSTQ, and AAC-SPIHT
coders, the bitstreams in each frame consisted of the side infor-
mation produced by the MPEG-2/4 AAC encoder when the total
bit rate was selected to be 64 kbps, the tree-selection bits if appli-
cable, and the embedded bitstream truncated to meet the target
bitrates. It is to note that the encoding for AAC-DSTQ, AAC-
CSTQ, and AAC-SPIHT was performed thereby only once for
the highest bitrate and that the decoding at the lower bitrates was

Fig. 5. MPEG-2/4 reference software. Objective difference grades for the set of
audio test files encoded with MPEG-4 SLS, MPEG-4 BSAC, MPEG-2/4 AAC
and AAC-SPIHT, AAC-CSTQ, and AAC-DSTQ using quantizer indices derived
at 64kbps.

performed by simply truncating this bitstream to the desired bi-
trate. For the MPEG-2/4 AAC coder the complete encoding and
decoding process was repeated for all lower bitrates. The tree
order for all significance-tree based coding schemes was set to
four. All signals were encoded as mono signals and temporal
noise shaping was not used.

From the resulting objective difference grades for the set of
audio test files shown in Fig. 5, we can see that MPEG-2/4 AAC,
MPEG-4 BSAC, AAC-CSTQ, and AAC-DSTQ achieved a sim-
ilar perceived audio quality from 64 to 48 kbps with MPEG-4
BSAC showing a marginally lower perceived audio quality at
48 kbps. For AAC-SPIHT lower ODGs were derived from 64
to 48 kbps that showed a parallel trend to the ODGs of AAC-
CSTQ and AAC-DSTQ. MPEG-4 SLS resulted in the lowest
ODGs from 64 to 32 kbps. MPEG-2/4 AAC resulted in the
second lowest perceived audio quality for 32 kbps, followed by
MPEG-4 BSAC, AAC-SPIHT, AAC-CSTQ, and AAC-DSTQ.
For 16 kbps MPEG-4 BSAC resulted in the lowest ODG and a
similar perceived audio quality was derived for MPEG-4 SLS
and MPEG-2/4 AAC. AAC-DSTQ showed for all bitrates the
best perceived audio quality. Interestingly the MPEG-2/4 AAC
coder of the reference implementation achieved low ODGs for
bitrates below 48 kbps despite the fact that it was allowed to op-
timize the quantizer indices for every target bitrate separately
in contrast to the other coding schemes. It showed that the rate
loop of the MPEG-2/4 AAC reference implementation did not
optimally utilize the available bit budget at lower bitrates.

Therefore, we conducted a second experiment using the
state-of-the-art Nero AAC encoder. We newly encoded the set
of audio test files using MPEG-2/4 AAC Nero and analogous
to the previous experiment these quantizer indices derived for
64 kbps were encoded using CSTQ and DSTQ. We further
used a reduced number of audio coding schemes (MPEG-2/4
AAC, CSTQ-AAC, and DSTQ-AAC) to allow the evaluation
of the perceived audio quality with the resource-demanding
subjective listening test method MUSHRA (multi stimuli with
hidden reference and anchor points) [31]. The tests were per-
formed using AKG K240 headphones, Creative Sound Blaster
Audigy sound cards and the ABC/Hidden Reference Audio
Comparison Tool [32]. The 12 listeners performed a training

22 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2011

Fig. 6. MPEG-2/4 AAC Nero implementation. Results of MUSHRA listening
tests for the set of audio test files encoded with MPEG-2/4 AAC Nero, AAC-
DSTQ, and AAC-CSTQ using quantizer indices derived at 64 kbps and the
hidden reference and anchors. Error bars denote 95% confidence intervals for
mean.

session of approximately 15 min and had the opportunity to
adjust the playback level only within this training period. Test
instructions explained the user interface of the software and
how to give the scores on the quality scale from 1 (bad) to 100
(excellent). The chosen anchor points were low-pass-filtered
originals with cutoff frequencies of 3.5 and 7 kHz.

From the resulting MUSHRA scores for the set of audio test
files shown in Fig. 6 we can see that for 64 kbps MPEG-2/4
AAC Nero achieved a transparent audio coding quality,
followed by AAC-DSTQ, AAC-CSTQ and the reference im-
plementation of MPEG-2/4 AAC. The same ranking order was
derived for 48 kbps. For 32 kbps MPEG-2/4 AAC Nero and
AAC-DSTQ achieved a similar MUSHRA score and for 24
kbps AAC-DSTQ achieved the best perceptual audio quality,
followed by MPEG-2/4 AAC Nero and AAC-CSTQ and the
reference implementation of MPEG-2/4 AAC achieved the
lowest MUSHRA scores.

Overall, the perceptual quality for AAC-DSTQ, especially at
low bitrates, was better than for the competing scalable coding
schemes and for bitrates below 32 kbps, a higher perceptual
coding quality than the non-scalable MPEG-2/4 AAC coding
scheme was achieved. This indicates that the signal-dependent
significance trees of the DSTQ scheme can reconstruct the im-
portant coefficients earlier than audio coding schemes assuming
more general coefficient distributions.

V. CONCLUSION

The fine-grain scalable 1-D signal compression problem
has been addressed in this paper. While in almost all existing
SPIHT-related algorithms a single-type significance tree has

been adopted for sorting significant coefficients and transmit-
ting position information, we have proposed a novel dynamic
significance tree technique, which learns optimal tree structures
for 1-D signal compression. Based on the selection of an
optimal tree from a learned set of significance trees, a compres-
sion scheme called DSTQ has been developed providing high
compression quality and bitrate scalability. Further, we applied
our proposed scheme to audio signal compression. Here, the
advantages of our proposed scheme are clearly demonstrated:
the method outperforms the existing SPIHT-like algorithm and
yields competitive results for compressing quantizer indices
in the MPEG-2/4 AAC audio compression scheme, yet with
fine-grain scalability.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments and corrections and the MUSHRA
listening test participants for their effort. S. Strahl would like to
thank A. Klinge for her support on this manuscript.

REFERENCES

[1] K. Brandenburg, O. Kunz, and A. Sugiyama, “MPEG-4 natural audio
coding,” Signal Process.: Image Commun., vol. 15, no. 2, pp. 423–444,
2000.

[2] “5-, 4-, 3- and 2-bit/sample embedded adaptive differential pulse code
modulation (ADPCM),” ITU Publication, 1990, ITU-T Rec. G.727.

[3] “7 kHz audio coding within 64 kbit/s using sub-band adaptive differ-
ential pulse code modulation (SB-ADPCM),” ITU Publication, 1988,
ITU-T Rec. G.722.

[4] MPEG-4 Audio Version 2, ISO/IEC 14496-3:1999/Amd.1, 1999, ISO/
MPEG.

[5] Scalable Lossless Coding (SLS), ISO/IEC 14496-3:2005/Amd.3:2006,
2006, ISO/MPEG.

[6] R. Yu, R. Geiger, S. Rahardja, J. Herre, X. Lin, and H. Huang,
“MPEG-4 scalable to lossless audio coding,” in Proc. AES 117th
Conv., San Francisco, CA, Oct. 2004, preprint 6183.

[7] B. Kovesi, D. Massaloux, and A. Sollaud, “A scalable speech and audio
coding scheme with continuous bitrate flexibility,” in Proc. Int. Conf.
Acoust., Speech, Signal Process. (ICASSP’04), Montreal, QC, Canada,
May 2004, vol. 1, pp. I-273–6.

[8] C. Dunn, “Efficient audio coding with fine-grain scalability,” in Proc.
AES 111th Conv., New York, Sep. 2001, preprint 5492.

[9] M. Raad, A. Mertins, and I. Burnett, “Audio coding based on the modu-
lated lapped transform (MLT) and set partitioning in hierarchical trees,”
in Proc. 6th World Multiconf. Syst., Cybern., Inform. (SCI 2002), Or-
lando, FL, Jul. 2002, vol. 3, pp. 303–306.

[10] M. Raad and A. Mertins, “From lossy to lossless audio coding using
SPIHT,” in Proc. 5th Int. Conf. Digital Audio Effects (DAFx-02), Ham-
burg, Germany, Sep. 2002, pp. 245–250.

[11] M. Raad, A. Mertins, and I. S. Burnett, “Scalable to lossless audio
compression based on perceptual set partitioning in hierarchical trees
(PSPIHT),” in Proc. 4th Int. Conf. Multimedia Expo (ICME 2003),
Reprinted From ICASSP’03, Baltimore, MD, Jul. 2003, vol. 3, pp.
393–396.

[12] Z. Lu and W. A. Pearlman, “An efficient, low-complexity audio coder
delivering multiple levels of quality for interactive applications,”
in Proc. IEEE Signal Process. Soc. Workshop Multimedia Signal
Process., Dec. 1998, pp. 529–534.

[13] Z. Lu and W. A. Pearlman, “High quality scalable stereo audio coding,”
1999 [Online]. Available: http://www.cipr.rpi.edu/~pearlman/papers/
scal_audio.ps.gz

[14] S. A. Ramprashad, “High quality embedded wideband speech coding
using an inherently layered coding paradigm,” in Proc. Int. Conf.
Acoust., Speech, Signal Process. (ICASSP’00), Istanbul, Turkey, Jun.
2000, pp. 1145–1148.

[15] J. Li, “Embedded audio coding (EAC) with implicit auditory masking,”
in Proc. ACM Multimedia, Nice, France, Dec. 2002, pp. 592–601.

[16] Li Te, S. Rahardja, and S. N. Koh, “Frequency region-based prioritized
bit-plane coding for scalable audio,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 16, no. 1, pp. 94–105, Jan. 2008.

STRAHL et al.: DYNAMIC FINE-GRAIN SCALABLE COMPRESSION SCHEME 23

[17] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp.
3445–3462, Dec. 1993.

[18] A. Said and W. A. Pearlman, “A new, fast and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. for Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[19] A. S. Lewis and G. Knowles, “A 64 kb/s video codes using the 2-D
wavelet transform,” in Proc. Data Compression Conf., Snowbird, UT,
1991, pp. 196–201.

[20] Z. Liu and L. J. Karam, “Quantifying the intra and inter subband corre-
lations in the zerotree-based wavelet image coders,” in Conf. Rec. 36th
Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Sep. 2002,
pp. 1730–1734.

[21] E. P. Simoncelli, “Statistical models for images: Compression, restora-
tion and synthesis,” in Conf. Rec. 35th Asilomar Conf. Signals, Syst.,
Comput., Pacific Grove, CA, Nov. 1997, pp. 673–678.

[22] X. Li and X. Zhuang, “The decay and correlation properties in wavelet
transform,” Tech. Rep., Univ. Missouri-Columbia, 1997.

[23] H. Zhou, A. Mertins, and S. Strahl, “An efficient, fine-grain scal-
able audio compression scheme,” in Proc. AES 118th Convention,
Barcelona, Spain, May 2005, preprint 6435.

[24] S. Strahl, H. Zhou, and A. Mertins, “An adaptive tree-based pro-
gressive audio compression scheme,” in IEEE Workshop Applicat.
Signal Process. Audio Acoust. (WASPAA’05), New Paltz, NY, 2005,
pp. 219–222.

[25] N. H. Schijndel et al., “Adaptive RD optimized hybrid sound coding,”
J. Audio Eng. Soc., vol. 56, no. 10, pp. 787–809, 2008.

[26] ISO/IEC 14496-5:2001—Information Technology—Coding of Audio-
Visual Objects—Part 5: Reference Software, ISO/IEC 14496-5:2001,
2010, ISO/MPEG.

[27] ISO/IEC 14496-5:2001/Amd.10:2007—Information Tech-
nology—Coding of Audio-Visual Objects—Part 5: Reference Software,
ISO/IEC 14496-5:2001/Amd.10:2007, 2010, ISO/MPEG.

[28] “Sound quality assessment material (SQAM) recordings for subjective
tests,” Eur. Broadcasting Union, 1988, Tech. Rep. 3253.

[29] R. Huber and B. Kollmeier, “PEMO-Q: A new method for objective
audio quality assessment using a model of auditory perception,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 14, no. 6, pp. 1902–1911,
Nov. 2006.

[30] “Methods for objective measurements of perceived audio quality,” ITU
Publication, 2001, ITU-R Rec. BS.1387-1.

[31] “Method for the subjective assessment of intermediate quality level
coding systems,” ITU Publication, 2001, ITU-R Rec. BS.1534.

[32] D. Miyaguchi, “ABC/Hidden Reference Audio Comparison Tool (Ver-
sion 1.0),” 2004 [Online]. Available: http://ff123.net/abchr/abchr.html

Stefan Strahl (M’08) received the M.Sc. degree in
intelligent systems from Brunel University, London,
U.K., in 2000, the Dipl.-Math. degree in math-
ematics/computer science/medical biology from
Leibniz University, Hannover, Germany, in 2003,
and the Dr.rer.nat. degree from the University of
Oldenburg, Oldenburg, Germany, in 2009.

In 2003, he joined the International Graduate
School for Neurosensory Science and Systems,
University of Oldenburg, Oldenburg, Germany. In
2007, he was visiting the UCL Ear Institute, London,

developing a binaural visual-to-auditory sensory substitution prosthesis. Since
2008, he has been with the Animal Physiology and Behavior Group, University
of Oldenburg, developing computational models of the auditory system, and
in July 2008 he joined MED-EL GmbH, Austria, working as a Development
and Research Engineer on objective measures of the auditory system. His
research interests include sparse signal processing, audio coding, multimodal
and neurosensory processing, and auditory models.

Heiko Hansen received the diploma degree in
physics from the University of Kiel, Kiel, Germany,
in 2000, and the Doctor of Science (“rer. nat.”)
degree from the University of Hamburg, Germany,
in 2007.

From 2001 to 2005, he was a Research Assistant at
the Max-Planck-Institute for Meteorology, Hamburg,
Germany. From 2005 to 2009, he was a Research As-
sistant at the Department of Physics, Carl von Ossi-
etzky University of Oldenburg, Oldenburg, Germany,
and member of the project SFB-TRR 31 “Das aktive

Gehör,” funded by the German Research Foundation. His research interests are
digital signal and audio processing, with special focus on optimal embedded
audio coding.

Alfred Mertins (M’95–SM’03) received the
Dipl.-Ing. degree in electrical engineering from the
University of Paderborn, Paderborn, Germany, in
1984, the Dr.-Ing. degree in electrical engineering
and the Dr.-Ing. habil. degree in telecommunica-
tions from the Hamburg University of Technology,
Hamburg, Germany, in 1991 and 1994, respectively.

From 1986 to 1991, he was with the Hamburg
University of Technology, from 1991 to 1995 with
the Microelectronics Applications Center Hamburg,
from 1996 to 1997 with the University of Kiel, Kiel,

Germany, from 1997 to 1998 with the University of Western Australia, and
from 1998 to 2003 with the University of Wollongong, Australia. From April
2003 to October 2006, he was with the University of Oldenburg. In November
2006, he joined the University of Lübeck, Lübeck, Germany, as a Professor
of Computer Science and Director of the Institute for Signal Processing. His
research interests include speech, audio, image, and video processing, wavelets
and filter banks, and digital communications.

