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Space-Time-Frequency Code Implementation in
MB-OFDM UWB Communications: Design Criteria

and Performance
Le Chung Tran and Alfred Mertins

Abstract— This paper proposes a general framework of Space-
Time-Frequency Codes (STFCs) for Multi-Band Orthogonal
Frequency Division Multiplexing (MB-OFDM) Ultra-Wide Band
(UWB) communications systems. A great similarity between
the STFC MB-OFDM UWB systems and conventional wire-
less Complex Orthogonal Space-Time Block Code (CO STBC)
Multiple-Input Multiple-Output (MIMO) systems is discovered.
This allows us to quantify the pairwise error probability (PEP)
of the proposed system and derive the general decoding method
for the implemented STFCs. Based on the theoretical analysis
results of PEP, we can further quantify the diversity order and
coding gain of MB-OFDM UWB systems, and derive the design
criteria for STFCs, namely diversity gain criterion and coding
gain criterion. The maximum achievable diversity order is found
to be the product of the number of transmit antennas, the number
of receive antennas, and the FFT size. We also show that all
STFCs constructed based on the conventional CO STBCs can
satisfy the diversity gain criterion. Various baseband simulation
results are shown for the Alamouti code and a code of order 8.
Simulation results indicate the significant improvement achieved
in the proposed STFC MB-OFDM UWB systems, compared to
the conventional MB-OFDM UWB ones.

Index Terms— UWB, MB-OFDM, STFC, MIMO, STC, CO
STBC, design criteria, diversity order, coding gain.

I. INTRODUCTION

Recently, Ultra-Wide Band (UWB) communications attracts
intensive attention from both industries and researchers, be-
cause it is a potential candidate for short-range communica-
tions (up to 10 meters) with very high data rate, very low
power consumption and emission. UWB can be a baseband
system using carrier-free communications, which is referred
to as impulse UWB, or a carrier-based system. The latter
possesses a number of advantages, compared to the former, in
terms of low complexity of receivers to capture sufficient mul-
tipath energy, and in easier radio frequency (RF) design. One
of the main candidates for carrier-based UWB communications
is Multi-Band Orthogonal Frequency Division Multiplexing
(MB-OFDM), supported by the WiMedia Alliance [1]. MB-
OFDM UWB is designed for very high bit rate up to 480
Mbps with low cost and low power consumption.

On the other hand, one of the emerging techniques to
resolve the bottleneck of traffic capacity in wireless networks
is the use of Multiple-Input Multiple-Output (MIMO) sys-
tems. Communication theory [2], [3], [4] shows that MIMO
systems can provide potentially a very high capacity that, in
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many cases, grows approximately linearly with the number
of antennas, without paying any additional power. The main
feature of MIMO systems is space-time processing. Space-
Time Codes (STCs) are the codes designed for the use in
MIMO systems. In STCs, signals are coded in both temporal
and spatial domains. Among a variety of STCs, of particular
interest are Complex Orthogonal Space-Time Block Codes
(CO STBCs), which possess a simpler decoding method than
other STCs, such as Space-Time Trellis Codes (STTCs) [5].

Intuitively, the combination of the emerging technologies
MB-OFDM UWB, MIMO, and STCs will provide a significant
improvement in the maximum achievable communications
range, bit error performance, system capacity, and data rate.
While the combination of OFDM, MIMO and STCs in the
form of Space-Time-Frequency Codes (STFCs) in MIMO-
OFDM systems (usually referred to as STFC-MIMO-OFDM
systems) has been well examined in the literature, such as
[6], [7], [8], [9], [10], the combination of MB-OFDM UWB,
MIMO, and STCs has been almost unexplored with few papers
examining this issue [11], [12], [13], [14]. There are two main
differences between channels’ characteristics in conventional
OFDM systems and in MB-OFDM UWB ones. First, channels
in the conventional OFDM system are less dispersive than
those in the MB-OFDM UWB system, due to the fact that the
latter has much larger bandwidth. Second, channel coefficients
in the conventional OFDM system are usually considered
to be Rayleigh distributed, while those in the MB-OFDM
UWB system are log-normally distributed [15]. Therefore, the
systems incorporating MB-OFDM UWB, MIMO, and STCs
must be more specifically analyzed, though there exist some
similarities between them and the conventional STFC-MIMO-
OFDM systems.

The combination of MB-OFDM UWB systems with STBCs
has been somewhat mentioned in [11] for only two transmit
(Tx) antennas, i.e. the Alamouti code [16]. In [12], the authors
proposed a general framework to analyze the performance
of MB-OFDM MIMO UWB systems regardless of specific
coding schemes. They quantify the performance of the MB-
OFDM MIMO UWB systems in case of Nakagami frequency-
selective fading channels. The authors also showed that the
maximum achievable diversity of a MB-OFDM MIMO UWB
system is the product of the number of Tx and receive
(Rx) antennas, the number of multipath components, and the
number of jointly encoded OFDM symbols.

However, the multipath channel amplitudes in MB-OFDM
UWB systems are independent log-normally distributed ran-
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Fig. 1. MB-OFDM UWB system according to WiMedia’s specification.

dom variables, rather than Nakagami-distributed [15]. While
[12] is a very interesting paper and has significant contribution,
it still has some drawbacks, including: a) not quantifying the
Pairwise Error Probability (PEP) in the case of log-normal
distribution, b) assuming that the time delay and average
power are the same for all transmit-receive links in order to
calculate the matrix of channel frequency responses, which
is not usually true in MB-OFDM systems where the time
delay and average power of transmit-receive links might be
very different, and c) misjudging that the product between the
channel’s multipath length and the number of Tx antennas is
usually smaller than the FFT size, resulting in an erroneous
conclusion that the maximum achievable diversity of MB-
OFDM UWB systems is the product of the number of Tx
and Rx antennas, the number of multipath components, and
the number of jointly encoded OFDM symbols. In fact, the
product between the channel’s multipath length and the num-
ber of Tx antennas is usually much greater than the FFT size,
due to the fact that UWB channels are very richly dispersive.

In this paper, we expand the discussion in [11] to propose
the STFC MB-OFDM UWB system for any number of Tx/Rx
antennas. We follow an approach, independently of the exist-
ing works, to examine the performance of STFC MB-OFDM
UWB systems. In particular, we modify the Tarokh’s proof,
which was mentioned in [5] for the conventional wireless
STC MIMO communications, to find the diversity and coding
gains of the proposed STFC MB-OFDM UWB system in the
log-normal distribution case [17], without any restriction or
additional assumption on the time delay and average power
of transmit-receive links. Our analysis is based closely on
WiMedia’s MB-OFDM UWB PHY specifications and the
IEEE 802.15.3a UWB channel model. We discover that the
maximum achievable diversity gain of the proposed STFC
MB-OFDM UWB system is the product of the numbers of
Tx and Rx antennas and the FFT size. The paper also derives
the decoding algorithm for general STFCs, and then considers
the Alamouti code and our order-8 code proposed in [18]
for illustration. Several simulation results for the Alamouti
code and the order-8 code with QPSK and Dual Carrier
Modulation (DCM) schemes are shown in order to verify
the performance improvement of the proposed STFC MB-
OFDM UWB systems, compared to the conventional MB-
OFDM ones.

The paper is organized as follows. In Section II, we review
WiMedia’s MB-OFDM UWB PHY specifications and the
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M zH

f

Fig. 2. MB-OFDM UWB band groups.

IEEE 802.15.3a UWB channel model. In Section III, we
propose the STFC MB-OFDM UWB system for any number
of Tx/Rx antennas as well as the mathematical model for
the proposed system. Section IV analyzes the diversity gain
and coding gain of the proposed STFC MB-OFDM system
under the WiMedia’s UWB MB-OFDM PHY specifications
and the IEEE 802.15.3a UWB channel model. Section V
provides two main criteria to design STFCs in MB-OFDM
UWB systems, namely diversity gain criterion and coding
gain criterion. In Section VI, we derive the general Maximum
Likelihood (ML) decoding expression for STFCs and the
detailed decoding metrics for the Alamouti code and our order-
8 code. Simulation results are mentioned in Section VII and
conclusions are drawn in Section VIII.

Notations: The following notations will be used throughout
the paper. The superscripts (.)∗ , (.)T and (.)H denote the
complex conjugation, transposition operation, and Hermitian
transpose operation, respectively. We denote ā⊗ b̄, ā ∗ b̄, and
ā • b̄ to be the linear convolution, the cyclic (or circular)
convolution, and the element-wise (or Hadamard) product
of the two vectors ā and b̄, respectively. Further, ā. ˆ 2
denotes the element-wise power-2 operation of ā. We define
the multiplication operation C ◦ D between the two matrices
C = {c̄t,m}T×M and D = {d̄m,n}M×N , whose elements
c̄t,m and d̄m,n are Nfft-length column vectors, such that
the (t, n)-th element of the resulting matrix is a Nfft-length
column vector

∑M
m=1 c̄t,m • d̄m,n. The complex space C of a

symbol s denotes all potential possibilities that the symbol s
can take, while the ND-dimensional complex space CND of a
ND-length vector s̄ denotes all potential possibilities that the
vector s̄ can take. We define 1̄ as a column vector of length
ND, whose elements are all 1. Finally, ‖ . ‖F denotes the
Frobenius norm, and j =

√−1.

II. MB-OFDM UWB OVERVIEW

A. WiMedia’s MB-OFDM UWB PHY Specification

The structural diagram of the physical layer (PHY) of
the WiMedia MB-OFDM UWB systems is shown in Fig. 1.
WiMedia MB-OFDM UWB PHY specifications proposed by
A. Batra et al. [1], [19] specify an UWB physical layer for
a WPAN, utilizing the unlicensed 3.1 - 10.6 GHz frequency
band, and supporting data rates of 53.3, 80, 106.7, 160, 200,
320, 400, and 480 Mb/s. The UWB spectrum is divided into
14 bands (see Fig. 2), each of which has a bandwidth of 528
MHz. The first 12 bands are then grouped into four band
groups consisting of three bands, while the last two bands
are grouped into the fifth band group. Support for the first
band group is mandatory. A total of 100 data sub-carriers is
used per band to transmit the information.
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TABLE I
NUMBERS OF MULTIPATHS Np10dB , Np85% , AND N̄p [15].

CM 1 CM 2 CM 3 CM 4
Np10dB 12.5 15.3 24.9 41.2
Np85% 20.8 33.9 64.7 123.3
N̄p 287.9 739.5 1463.7 3905.5

Frequency-domain spreading, time-domain spreading, and
Forward Error Correction (FEC) coding are used to vary the
data rates. The FEC used is a convolutional code with coding
rates of 1/3, 1/2, 5/8 and 3/4. The coded binary data sequence
then goes through a three-stage bit interleaver, consisting of
symbol interleaver, tone interleaver, and cyclic shifter. The
interleaved binary data sequence is then mapped into complex
constellations. For data rates of 200 Mbps and lower, a
QPSK constellation is used, while for the higher data rates, a
multi-dimensional constellation using a DCM technique. This
technique maps a group of four bits into two different 16-point
constellations separated by 50 tones (sub-carriers) to better
employ the frequency and time diversity [19].

The resulting data is inserted with 12 pilots and 10 guard
sub-carriers, and is then transformed via the IFFT to form an
OFDM symbol. The OFDM symbols are then padded with
37 zeros, which are considered as Zero-Padded Suffix (ZPS).
ZPS is used to mitigate the effects of multi-path, and to
provide a time window to allow the transmitter and receiver
sufficient time to switch between the different frequencies.
Most conventional wireless OFDM-based systems use a Cyclic
Prefix (CP) to provide robustness against multipath. When a
CP is used, redundancy or structure is introduced into the
transmitted signal. This correlation in the transmitted signal
causes ripples in the average Power Spectral Density (PSD),
which, in MB-OFDM systems, could be as large as 1.5 dB
[20]. Because the UWB emission is limited, the transmitted
power must be reduced, resulting in a lower range for the
system. When a ZPS is used, the ripples in the PSD can
be reduced to zero, thus the power-backoff problem at the
transmitter can be avoided, and the system can achieve the
maximum possible range.

The coded data is then spread using a Time-Frequency Code
(TFC) to achieve further time and frequency diversities. There
are two types of TFCs: one where the coded information is
interleaved over three bands, referred to as Time-Frequency
Interleaving (TFI); and, one where the coded information is
transmitted on a single band, referred to as Fixed Frequency
Interleaving (FFI). Support for both TFI and FFI is mandatory.

B. IEEE 802.15.3a MB-OFDM UWB Channel Models

MB-OFDM UWB channel models proposed by Jeff Foerster
et al. [15] are based on the Saleh-Valenzuela model with slight
modification. The multipath gain magnitudes are modeled as
independent log-normally distributed random variables (RVs)
rather than Rayleigh variables, because the log-normally dis-
tributed variables fit better the measurement data. Independent
fading is assumed for each cluster as well as each ray
within the cluster. The discrete-time impulse response of the
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Fig. 3. Structural diagram of the proposed STFC MB-OFDM UWB systems.

multipath channel is

hi(t) = Xi

L∑

l=0

K∑

k=0

αi
k,lδ(t− T i

l − τ i
k,l) (1)

where αi
k,l are the multipath gain coefficients, T i

l is the delay
of the l-th cluster, τ i

k,l is the delay of the k-th ray relative to the
l-th cluster arrival time (T i

l ), Xi is the log-normal shadowing,
and i is the index for the i-th realization.

The multipath gain coefficients are defined as

αk,l = pk,lξlβk,l (2)

where pk,l is equiprobable ±1 to account for signal inversion
due to reflection, ξl accounts for the fading relating to the l-
th cluster, and βk,l reflects the fading relating to the k-th ray
within the l-th cluster. |ξlβk,l| is modeled to be independent
log-normally distributed RVs |ξlβk,l| = 10(µk,l+n1+n2)/20,
where µk,l is the mean of the Gaussian RV 20log10(|ξlβk,l|)
associated with the log-normal RV |ξlβk,l|, n1 and n2 are
independent Gaussian RVs with the distributions N (0, σ2

1)
and N (0, σ2

2), relating to the fading on each cluster and ray,
respectively. The value of µk,l can be found in [15].

There are four main IEEE MB-OFDM UWB channel
models proposed by the IEEE 802.15.3a Task Group [15],
accounting for the four typical multipath scenarios of UWB
systems, namely CM 1 with a Light-Of-Sign (LOS) scenario
and the distance between the transmitter and receiver is up
to 4 m; CM 2 (Non Light-Of-Sign (NLOS), 0-4 m), CM 3
(NLOS, 4-10 m), and CM 4 proposed to fit the channel with
the rms delay spread of 25 ns representing an extreme NLOS
multipath channel. Denote Np10dB , Np85%, and N̄p to be
the number of multipaths arriving within 10 dB of the peak,
the number of multipaths capturing 85% channel energy, and
the average number of multipaths calculated over 100 channel
realizations generated by the IEEE 802.15.3a UWB channel
models [15]. The typical values of these parameters are shown
in Table I. Clearly, UWB channels are very richly dispersive
with the maximum number of resolvable multipaths reaching
some thousands.

III. STFC MB-OFDM UWB SYSTEM

The diagram of the proposed STFC MB-OFDM UWB
system with the notations of signals at the considered reference
points is depicted in Fig. 3. The system consists of M Tx
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Fig. 4. An example of the transmitted RF pattern using the first band group.

antennas and N Rx antennas. We describe the transmitted
STFC with the following matrix

S = {s̄t,m}T×M , (3)

where T denotes the number of MB-OFDM symbol time slots
required to transmit the whole STFC block. Structures of S
are the same as the structures of CO STBCs in conventional
wireless STC MIMO systems [16], [18], [21], except that
each element s̄t,m is not a complex number, but defined as
a column vector s̄t,m = [st,m,1, st,m,2, . . . , st,m,Nfft

]T . The
vectors s̄t,m are the original transmitted data before IFFT. The
symbols st,m,k are drawn from a QPSK or DCM constellation.

Elements s̄t,m in each row of S are transmitted simultane-
ously through M Tx antennas in the same frequency band,
while different rows of S might be transmitted in different
frequency bands, following a certain TFC. An example of such
TFCs is shown in Fig. 4.

Denote X = {x̄OFDM,t,m}T×M to be the matrix whose
elements are the Nfft-point IFFTs of the respective elements
in S, then

X = {IFFT{s̄t,m}}T×M = {x̄OFDM,t,m}T×M . (4)

The symbols x̄OFDM,t,m are referred to as MB-OFDM sym-
bols. Further, denote with XZP = {x̄ZP,t,m}T×M the matrix
whose entries are the respective elements in X appended by a
ZPS of 37 zeros. Clearly, x̄OFDM,t,m is the transmitted MB-
OFDM symbol before Zero Padding (ZP), while x̄ZP,t,m is
the actual transmitted symbol after ZP. Denote

h̄m,n = [hm,n,1, hm,n,2, . . . , hm,n,Lm,n ]T (5)

to be the channel vector between the m-th Tx and n-th Rx
antennas, for m = 1, . . . , M, n = 1, . . . , N , where the channel
coefficients hm,n,l of the l-th path, l = 1, . . . , Lm,n, in this
channel are modeled as independent log-normally distributed
RVs. Let Lmax = max{Lm,n}, for m = 1, . . . , M, n =
1, . . . , N . Denote the MB-OFDM UWB channel coefficient
matrix as

H = {h̄m,n,ZP }M×N (6)

where the vector h̄m,n,ZP is created from the corresponding
channel vector h̄m,n by adding zeros to have the length Lmax.

At the transmission of the t-th MB-OFDM symbol, the
received signal at the n-th Rx antenna is calculated as

r̄ZP,t,n =
M∑

m=1

(
x̄ZP,t,m ⊗ h̄m,n

)
+ n̄t,n. (7)

The elements of noise vector n̄t,n are considered to be
independent complex Gaussian RVs.

A. Theoretical Analysis

In this section, we first analyze the proposed system with
the theoretical assumption that the maximum number of
multipaths Lm,n, for m = 1, . . . , M , n = 1, . . . , N , is
(NZPS + 1), where NZPS denotes the length of the ZPS.
As mentioned in Section II, instead of inserting a CP at
the transmitter and discarding the CP at the receiver as in a
conventional OFDM system, in an MB-OFDM system, a ZPS
of a length NZPS is appended to each symbol x̄OFDM,t,m

at the transmitter to create a transmitted symbol x̄ZP,t,m. At
the receiver, an Overlap-And-Add Operation (OAAO) must be
performed before FFT. OAAO means that the NZPS samples
of a received symbol r̄ZP,t,n, ranging from (Nfft + 1) to
(Nfft + NZPS), are added to the beginning of that received
symbol. Then the first Nfft samples of the resulting symbol
will be used to decode the transmitted symbol. These Nfft

samples are exactly equivalent to the circular convolution of
the transmitted OFDM symbol (before ZP) x̄OFDM,t,m with
the channel h̄m,n. This exact equivalence is due to the fact
that, if a ZPS of a length NZPS is used, the greatest multipath
tolerance of the system is (NZPS +1). Consequently, from the
theoretical viewpoint, the number of multipaths (the length of
vectors h̄m,n) must not exceed (NZPS + 1).

As a result, after performing OAAO for the received signal
r̄ZP,t,n in (7), and then taking the first Nfft resulting samples,
denoted as r̄OFDM,t,n, the following equation is deduced

r̄OFDM,t,n =
M∑

m=1

x̄OFDM,t,m ∗ h̄m,n + n̄t,n. (8)

For the circular convolution, we have the following property

x̄OFDM,t,m ∗ h̄m,n = IFFT{FFT{x̄OFDM,t,m} •
FFT{h̄m,n}}

= IFFT{s̄t,m • h̄m,n} (9)

where h̄m,n is the Nfft-point FFT of the channel vector h̄m,n,
i.e.

h̄m,n = FFT{h̄m,n}. (10)

We denote h̄m,n = [~m,n,1, ~m,n,2, . . . , ~m,n,Nfft
]T .

After going through the FFT block at the receiver, the
received signal becomes

FFT{r̄OFDM,t,n} =
M∑

m=1

s̄t,m • h̄m,n + FFT{n̄t,n}

(11)

Denote

r̄t,n = [rt,n,1, rt,n,2, . . . , rt,n,Nfft
]T = FFT{r̄OFDM,t,n}

and

n̄t,n = [nt,n,1, nt,n,2, . . . , nt,n,Nfft
]T = FFT{n̄t,n}.

Then (11) can be rewritten as follows

r̄t,n =
M∑

m=1

s̄t,m • h̄m,n + n̄t,n. (12)
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Recall that s̄t,n is the original QPSK or DCM transmitted
signal (before IFFT).

Denote H = {h̄m,n}M×N to be the matrix whose ele-
ments are the Nfft-point FFTs of the respective elements
in the channel-coefficient matrix H. Further, denote R =
{r̄OFDM,t,n}T×N to be the received signal matrix, R =
{r̄t,n}T×N to be the received signal matrix after FFT, and
N = {n̄t,n}T×N to be a noise matrix. We can rewrite (12) in
matrix form as follows

R = S ◦ H+N . (13)

From (13), we can realize that there exists a similarity
between the mathematical model of the STFC MB-OFDM
UWB system and that of the conventional wireless STC
MIMO system [16], [18], [22]. The only difference between
the two mathematical models is that the matrix elements are
scalar numbers in the conventional STC MIMO system, while
they are Nfft-length vectors in the STFC MB-OFDM UWB
system.

Because the vector elements in S will be transformed
with the IFFT to generate MB-OFDM symbols with Nfft

subcarriers, we refer to S as a Space-Time-Frequency Code.

B. Realistic Channel Condition
The error performance of the proposed system with realistic

UWB channel conditions is inferior, compared to the theoret-
ical performance, due to the following two main reasons.

In theory, the length of CP or ZPS must be longer than the
longest multipath in an OFDM-based system to turn the linear
convolution between the transmitted signal and the channel
vector into the circular convolution. However, in practice, the
multipath length is very likely to exceed the length of CP
or ZPS. This is especially true in MB-OFDM UWB systems
where the average number of multipaths N̄p is usually much
bigger than NZPS = 37 (see Table I). The transition from
(7) to (12) is an approximation, due to the fact that the
circular convolution in (9) is approximate, but not exactly
equal to the first Nfft samples achieved by the OAAO of
the linear convolution x̄ZP,t,m ⊗ h̄m,n in (7). The energy
of multipath components within the ZPS window will be
captured, while the multipath components outside this window
may be considered as interferences for the received signals.
Eq. (7) represents the real received signals at the Rx antennas,
while (12) shows the realistic concept used at the STFC
decoder to decode the original transmitted signals. Therefore,
in order to simulate the realistic performance of the proposed
system, the signals received at the Rx antennas should be
calculated from (7) with the linear convolution between the
transmitted MB-OFDM symbols and the fully long multipath
channels, while decoding algorithm should be carried out
based on (12), i.e. based on the circular convolution.

On the other hand, for a channel vector h̄m,n =
[hm,n,1, hm,n,2, . . . , hm,n,Lm,n ]T , we always have the fol-
lowing property for the Nfft-point FFT operation

FFT{h̄m,n} = FFT{[hm,n,1, hm,n,2, . . . , hm,n,Lm,n ]T }
if the length Lm,n of the vector is not smaller than Nfft.
This means that, by FFT-ing the received signals with a limited

FFT size Nfft, and decoding signals based on (12), the Nfft-
point FFT operation truncates the impact of a long vector
h̄m,n to the length of Nfft. Therefore, the higher Nfft is,
the closer the approximation between the linear convolution
and the circular convolution is, and thus the better the system
performance is. However, FFT and IFFT blocks significantly
decide the complexity and the cost of transmitter and receiver.
As a result, there must be a suitable compromise between the
cost/complexity and the system performance.

IV. PAIRWISE ERROR PROBABILITY

Due to the similarity between the mathematical model of the
STFC MB-OFDM system and that of the conventional wireless
STC MIMO system as shown in (13), we can calculate the
PEP of the proposed STFC MB-OFDM system, based on
Tarokh’s method mentioned in [5] for conventional wireless
STC MIMO communications, with proper modifications to
account for the MB-OFDM UWB channels. We consider a
STFC MB-OFDM MIMO system with M Tx, N Rx antennas,
and with the STFC S defined in (3). We denote Es to be
the average energy of the signal constellation. The following
analysis is derived without considering a specific modulation
scheme, thus can be applied to different modulation schemes.

We consider the probability that a ML receiver decides
erroneously in favor of a signal

e = [e1,1,1 . . . e1,1,Nfft
, e1,2,1 . . . e1,2,Nfft

, . . . ,

eT,M,1 . . . eT,M,Nfft
] (14)

assuming that

c = [c1,1,1 . . . c1,1,Nfft
, c1,2,1 . . . c1,2,Nfft

, . . . ,

cT,M,1 . . . cT,M,Nfft
] (15)

was transmitted. Note that each group of Nfft consecutive
data inside c in fact form a certain vector s̄ as defined in (3).

If the transmission coefficients are known at the receiver, the
probability of transmitting c and deciding e at the decoder is
well approximated by the Chernoff bound

P (c → e|~m,n,k,m = 1, . . . , M ;n = 1, . . . , N ;
k = 1, . . . , Nfft) ≤ exp(−d2(c, e)Es/4N0) (16)

where N0/2 is the noise variance per dimension and

d2(c, e) =
N∑

n=1

T∑
t=1

Nfft∑

k=1

∣∣
M∑

m=1

~m,n,k(ct,m,k − et,m,k)
∣∣2.

(17)

Setting Ωn,k = (~1,n,k, . . . , ~M,n,k) for n = 1, . . . , N, k =
1, . . . , Nfft, we rewrite (17) as

d2(c, e) =
N∑

n=1

Nfft∑

k=1

M∑
m=1

M∑

ḿ=1

[
~m,n,k~∗ḿ,n,k

T∑
t=1

(ct,m,k − et,m,k)(ct,ḿ,k − et,ḿ,k)∗
]
.(18)
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With the square, order-M matrix Ak(c, e) = {Ap,q,k}, where

Ap,q,k =
T∑

t=1

(ct,p,k − et,p,k)(ct,q,k − et,q,k)∗ (19)

for p, q = 1, . . . ,M , Eq. (18) becomes

d2(c, e) =
N∑

n=1

Nfft∑

k=1

Ωn,kAk(c, e)ΩH
n,k. (20)

It is clear that Ak(c, e) is Hermitian, i.e. Ak(c, e) =
Ak(c, e)H . Hence, there exits a unitary matrix Vk and a real
diagonal matrix Dk such that VkAkVH

k = Dk. The diagonal
elements of Dk are the eigenvalues λm,k, for m = 1, . . . ,M ,
and k = 1, . . . , Nfft, of Ak(c, e). By construction, the matrix

Bk(c, e) =




c1,1,k − e1,1,k . . . c1,M,k − e1,M,k

c2,1,k − e2,1,k . . . c2,M,k − e2,M,k

. . . . . . . . .
cT,1,k − eT,1,k . . . cT,M,k − eT,M,k




(21)

is clearly a square root of Ak(c, e), i.e. Bk(c, e)HBk(c, e) =
Ak(c, e). Therefore, the eigenvalues λm,k of Ak(c, e) are
nonnegative real numbers. It is noted that Bk(c, e) can be
created from the STFC matrix S in (3) by replacing each
vector element of S with the non-vector term (cm,n,k−em,n,k).

Let

(β1,n,k, β2,n,k, . . . , βM,n,k) = Ωn,kVH
k (22)

we have

Ωn,kAk(c, e)ΩH
n,k =

M∑
m=1

λm,k|βm,n,k|2. (23)

As mentioned in Section II, the magnitudes of the channel
coefficients hm,n,l, for m = 1, . . . ,M , n = 1, . . . , N , and l =
1, . . . , Lm,n, are independent, log-normally distributed (rather
than Rayleigh distributed) RVs (not necessary identical). It is
known that if Y =

∑J
i=1 Xi, where J is a finite number and

Xi are the independent log-normally distributed RVs with the
distribution Log−N(µi, σ

2
i ), then the distribution of Y has no

available closed-form expression, but can be reasonably well
approximated by another log-normally distributed RV Z ∼
Log − N(µZ , σ2

Z), for instance, using the Fenton-Wilkinson
approximation [23] with the following distribution parameters

σ2
Z = ln

[
1 +

∑J
i=1 e2µi+σ2

i (eσ2
i − 1)

(
∑J

i=1 eµi+σ2
i /2)2

]

µZ = ln
( J∑

i=1

eµi+σ2
i /2

)− σ2
Z

2

Note that, because J is a finite number, the central-limit
theorem cannot be applied in this case. Also, the distribution
parameters of a log-normally distributed RV x should be
understood to be the mean and variance of the normally
(Gaussian) distributed RV associated with x.

Expanding this property for the case

Y =
J∑

i=1

pie
aiXi (24)

where ai are real or complex numbers, and pi = ±1, based
on Eqs. (15)–(17) in [23] and with simple manipulations, we
can deduce the distribution parameters of the approximate log-
normally distributed RV Z as follows

σ2
Z = ln

[
1 +

∑J
i=1 p2

i e
2ηi+σ2

i (eσ2
i − 1)

(
∑J

i=1 pieηi+σ2
i /2)2

]

µZ = ln
( J∑

i=1

pie
ηi+σ2

i /2
)− σ2

Z

2
(25)

where ηi = µi + ai.
Since the average number of multipaths of UWB channels

N̄p is much higher than Nfft (see Table I), the elements
~m,n,k of the channel vector h̄m,n, which is the Nfft-point
FFT of the channel vector h̄m,n, can be represented as

~m,n,k =
Nfft∑

l=1

hm,n,le
− j2π(l−1)(k−1)

Nfft . (26)

The multipath components hm,n,l defined in (1) are real
numbers with equiprobable negative and positive values rep-
resenting the signal inversion due to reflections. Thus we
write hm,n,l = ±|hm,n,l|. Further, the magnitudes |hm,n,l|
of multipath components are independent log-normally dis-
tributed RVs. Denote Ehm,n,l and θ2

m,n,l to be the mean and
variances of the normally distributed RV associated with the
log-normally distributed RV |hm,n,l|. Thus, |hm,n,l| follow the
log-normal distribution Log−N(Ehm,n,l, θ

2
m,n,l). To quantify

the distribution parameters of ~m,n,k, we rewrite (26) as

~m,n,k =
Nfft∑

l=1

pm,n,l|hm,n,l|e−
j2π(l−1)(k−1)

Nfft (27)

where pm,n,l = ±1 depending on whether hm,n,l is positive
or negative. Clearly, (27) is in the similar form as (24).
Therefore, ~m,n,k can be approximated by a complex log-
normally distributed RV Zm,n,k. From (25), the distribution
parameters of Zm,n,k are derived as follows

σ2
Zm,n,k

= ln
[
1 +

∑Nfft

l=1 e2ηm,n,k,l+θ2
m,n,l(eθ2

m,n,l − 1)

(
∑Nfft

l=1 pm,n,le
ηm,n,k,l+θ2

m,n,l/2)2
]

µZm,n,k
= ln

( Nfft∑

l=1

pm,n,le
ηm,n,k,l+θ2

m,n,l/2
)−

σ2
Zm,n,k

2

(28)

where ηm,n,k,l = Ehm,n,l − j2π(l−1)(k−1)
Nfft

.
From the mutual relation between the mean and variance of

a log-normally distributed RV and the normally distributed RV
associated with it [17], we can quantify the mean and variance
of ~m,n,k, denoted as E~m,n,k and %2

m,n,k respectively, as
follows

E~m,n,k = e
µZm,n,k

+σ2
Zm,n,k

/2

%2
m,n,k = (eσ2

Zm,n,k − 1)e2µZm,n,k
+σ2

Zm,n,k (29)

As a result, the Nfft-point FFT of a channel vector h̄m,n

consisting of Lm,n (Lm,n > Nfft) real multipath compo-
nents hm,n,l (for l = 1, . . . , Lm,n), whose magnitudes are
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independent log-normally distributed RVs, produces a channel
vector h̄m,n consisting of Nfft complex multipath components
~m,n,k (for k = 1, . . . , Nfft), which are independent log-
normally distributed RVs. It should be emphasized that, from
the mathematical viewpoint, if the FFT size Nfft is not
smaller than the average number of multipath components N̄p,
which is usually not the case of MB-OFDM UWB systems,
then the Nfft-point FFT of h̄m,n produces a vector h̄m,n

consisting of N̄p (rather than Nfft) independent log-normally
distributed RVs.

Since Vk is unitary, the rows {v1,k, v2,k, . . . , vM,k} of
Vk are a complete orthonormal basis of the complex M -
dimensional space CM , and thus, from (22) and the general
property (24) of a sum of independent log-normally distributed
RVs, βm,n,k (for m = 1, . . . ,M , n = 1, . . . , N and k =
1, . . . , Nfft) can also be reasonably well approximated to
be complex, independent log-normally distributed RVs. Note
that if βm,n,k is a complex log-normally distributed RV, then
|βm,n,k| is a real log-normally distributed RV. That is because
we can always represent βm,n,k in the form βm,n,k = eω =
eωR+jωI , where ωR and ωI are the real and imaginary parts of
the complex, normally distributed RV ω. Therefore, |βm,n,k| =
eωR is a real, log-normally distributed RV with the associated
normally distributed RV ωR.

Denote the mean and variance of |βm,n,k| as Em,n,k

and γ2
m,n,k respectively, then |βm,n,k| are independent log-

normally distributed RVs with the following pdf

p(|βm,n,k|) =
1

|βm,n,k|σm,n,k

√
2π

exp
[− (ln(|βm,n,k|)

−µm,n,k)2/(2σ2
m,n,k)

]
(30)

where

µm,n,k = ln(Em,n,k)− 1
2

ln
(
1 +

γ2
m,n,k

E2
m,n,k

)

σ2
m,n,k = ln

(
1 +

γ2
m,n,k

E2
m,n,k

)
. (31)

Denote Km,n,k to be the mean of |βm,n,k|2. Thus Km,n,k is
the second moment of |βm,n,k|, and therefore [17]

Km,n,k = e(2µm,n,k+2σ2
m,n,k) (32)

If |βm,n,k| is a log-normally distributed RV, so is |βm,n,k|2.
From (16), (20), and (23), to compute the upper bound on the
average probability of error, we simply average

exp
[− (Es/4N0)

N∑
n=1

Nfft∑

k=1

M∑
m=1

λm,k|βm,n,k|2
]

(33)

with respect to independent log-normal distribution of
|βm,n,k|2. We denote Ξm,n,k = |βm,n,k|2.

It is noted that, if Ξm,n,k is a log-normally distributed RV
(i.e. Ξm,n,k = ey where y ∼ N (µ, σ2), and µ, σ2 are finite
numbers) and α is a positive coefficient, it is possible to prove
that E{e−αΞm,n,k} ≤ 1

αe−E{Ξm,n,k} for a sufficient large α,
i.e. α ≥ α0 (see Appendix I). Therefore, if a sufficiently large

signal-to-noise ratio Es/N0 is considered, we have

P (c → e) ≤
[(

Es/4N0

)−rNNfft
( Nfft∏

k=1

r∏
m=1

λm,k

)−N

N∏
n=1

Nfft∏

k=1

r∏
m=1

exp(−Km,n,k)
]

(34)

where r = min{rk}, and rk, for k = 1, . . . , Nfft, is the rank
of matrix Bk(c, e).

We realize that a diversity order of rNNfft and a coding
gain (over MB-OFDM systems without STFCs) of

( Nfft∏

k=1

r∏
m=1

λm,k

)1/rNfft ×

[ N∏
n=1

Nfft∏

k=1

r∏
m=1

exp(−Km,n,k)
]−1/rNNfft

(35)

are achieved. Therefore, the maximum achievable diversity
order in STFC MB-OFDM UWB systems is the product
between number of Tx antennas, the number of Rx antennas,
and the FFT size.

We note that the maximum diversity order is defined here as
the maximum diversity order of the outgoing signals from the
OFDM demodulation block in Fig. 1, which are evaluated by
(12). The maximum diversity order of the incoming signals
received at Rx antennas (before the OFDM demodulation
block, calculated by (7)) may be very large due to the very
dispersive multipath channel, while the maximum diversity
order of the outgoing signals from the OFDM demodulation
block is limited because the FFT size is normally very
limited, compared to the full length of multipaths. Thus the
maximum diversity order of the outgoing signals from the
OFDM demodulation block should be considered, rather than
the incoming signals. The former represents the effect of an
important technical specification of the system, i.e. the FFT
size of the OFDM demodulation block, while the latter does
not.

It is interesting that the diversity order achieved by our
approach agrees with that mentioned in Eq. (23) of the
independent work [12], provided we consider the case where
the average number of multipaths is in fact higher than the FFT
size. However, the authors in [12] misjudged this fact, thus
came to the conclusion that the maximum achievable diversity
order is the product between the number of Tx antennas, the
number of Rx antennas, the number of multipath components,
and the number of jointly encoded OFDM symbols. Further-
more, our PEP formulation is carried out directly for the case
of log-normal distribution of UWB channel magnitudes, which
has not been examined in [12]. Our PEP is formulated without
assumptions on the same time delays and the same average
power of all transmit-receive links as in [12]. Additionally,
the approach in [12] does not reflect clearly the essence of
the effect of the FFT operation to the diversity order. In
contrast, our approach shows clearly that the FFT size actually
decides the number of independent log-normally distributed
RVs |βm,n,k|, that in turn decides the diversity order. If the
FFT size Nfft is not smaller than the average number N̄p
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TABLE II
DECODING METRICS FOR S2 WITH PSK OR QAM MODULATIONS.

Symbol Decoding Metric

s̄1 arg mins̄∈CND ‖ [|(h̄∗1 • r̄1 + h̄2 • r̄∗2
)− s̄|.ˆ2+

(−1̄ +
∑2

m=1 |h̄m|.ˆ2) • (|̄s|.ˆ2)
] ‖2F

s̄2 arg mins̄∈CND ‖ [|(h̄∗2 • r̄1 − h̄1 • r̄∗2
)− s̄|.ˆ2+

(−1̄ +
∑2

m=1 |h̄m|.ˆ2) • (|̄s|.ˆ2)
] ‖2F

of multipath components, then Nfft in (34) must be replaced
with N̄p, because there are only N̄p independent RVs among
Nfft variables |βm,n,k|, for certain numbers m and n, thus the
maximum diversity order is MNN̄p. However, this is usually
not the case for MB-OFDM UWB channels due to the fact
that UWB channels are richly dispersive, while the FFT size is
limited. Finally, our approach also clearly shows that, within
a range up to N̄p, the higher the FFT size is, the lower the
error bound in (34) is. This agrees with the analysis mentioned
previously in Section III-B.

V. DESIGN CRITERIA FOR STFCS IN MB-OFDM UWB

Assuming that all the multipath components are known at
the receiver. From (34), we derive the following design criteria
of STFCs in MB-OFDM UWB systems for a large SNR to
minimize the upper bound of error probability
• Diversity Gain Criterion: In order to achieve the maxi-

mum diversity order of MNNfft, the minimum rank of
matrices Bk(c, e), for k = 1, . . . , Nfft, over any two
distinct code words c and e must be equal to M . If
the minimum rank is r, then a diversity of rNNfft is
achieved.

• Coding Gain Criterion: Suppose that a diversity of order
rNNfft is of our interest. The minimum of the product

( Nfft∏

k=1

r∏
m=1

λm,k

)1/rNfft ×

[ N∏
n=1

Nfft∏

k=1

r∏
m=1

exp(−Km,n,k)
]−1/rNNfft

taken over distinct codewords c and e has to be maxi-
mized.

Interestingly, all CO STBCs proposed in the literature for
conventional STBC MIMO systems can satisfy the diversity
gain criterion. This is because, a CO STBC S transmitted
through a wireless system with M Tx antennas during T time
slots can be defined [18], [24] as a T ×M -size matrix whose
nonzero entries are the indeterminates s1, s2, . . . , sk, their
conjugates s∗1, s

∗
2, . . . , s

∗
k, or their products with j =

√−1
over the complex number field C, such that

SHS = D (36)

where D is a diagonal matrix of size M ×M with diagonal
entries Di,i, for i = 1, 2, . . . , M , of the form (li,1|s1|2 +
li,2|s2|2 + · · · + li,k|sk|2). The coefficients li,k are strictly

TABLE III
DECODING METRICS FOR S8 WITH PSK OR QAM MODULATIONS.

Symbol Decoding Metric

s̄1 arg mins̄∈CND ‖ [|((h̄∗8 • r̄7 + h̄∗6 • r̄5 + h̄∗7 • r̄7+

h̄∗3 • r̄3 + h̄∗1 • r̄1 + h̄6 • r̄∗6 + h̄∗2 • r̄1 − h̄5 • r̄∗6+
h̄2 • r̄∗2 − h̄1 • r̄∗2 + h̄∗5 • r̄5 + h̄∗4 • r̄3 − h̄3 • r̄∗4+
h̄4 • r̄∗4 − h̄7 • r̄∗8 + h̄8 • r̄∗8

)− s̄|.ˆ2+

(−1̄ + 2
∑8

m=1 |h̄m|.ˆ2) • (|̄s|.ˆ2)
] ‖2F

s̄2 arg mins̄∈CND ‖ [|(− h̄5 • r̄∗8 + h̄8 • r̄∗6 + h̄7 • r̄∗6−
h̄3 • r̄∗1 + h̄4 • r̄∗1 − h̄∗7 • r̄5− h̄∗6 • r̄7 + h̄1 • r̄∗3+
h̄∗3 • r̄2 + h̄∗4 • r̄2 − h̄2 • r̄∗3 + h̄∗8 • r̄5 − h̄∗1 • r̄4−
h̄∗2 • r̄4 + h̄∗5 • r̄7 − h̄6 • r̄∗8

)− s̄|.ˆ2+

(−1̄ + 2
∑8

m=1 |h̄m|.ˆ2) • (|̄s|.ˆ2)
] ‖2F

s̄3 arg mins̄∈CND ‖ [|(− h̄∗1 • r̄6 − h̄∗2 • r̄6 − h̄5 • r̄∗1+

h̄6 • r̄∗1 − h̄2 • r̄∗5 − h̄8 • r̄∗4 + h̄1 • r̄∗5 + h̄∗5 • r̄2+
h̄∗7 • r̄3 + h̄∗6 • r̄2 − h̄∗3 • r̄7 − h̄∗8 • r̄3 − h̄7 • r̄∗4+
h̄∗4 • r̄7 + h̄3 • r̄∗8 + h̄4 • r̄∗8

)− s̄|.ˆ2+

(−1̄ + 2
∑8

m=1 |h̄m|.ˆ2) • (|̄s|.ˆ2)
] ‖2F

s̄4 arg mins̄∈CND ‖ [|(h̄∗7 • r̄2 − h̄2 • r̄∗7 − h̄∗1 • r̄8−
h̄∗2 • r̄8 + h̄∗3 • r̄5 − h̄7 • r̄∗1 + h̄8 • r̄∗1 − h̄∗5 • r̄3+
h̄∗6 • r̄3 + h̄1 • r̄∗7 + h̄∗8 • r̄2 − h̄∗4 • r̄5 + h̄5 • r̄∗4+
h̄6 • r̄∗4 − h̄3 • r̄∗6 − h̄4 • r̄∗6

)− s̄|.ˆ2+

(−1̄ + 2
∑8

m=1 |h̄m|.ˆ2) • (|̄s|.ˆ2)
] ‖2F

positive, real numbers. Since the time delay for transmitting
the CO STBC T is at least equal to M , from (36), the rank
of S is always equal to M . Therefore, if the structures of
conventional CO STBCs are used to create STFCs in MB-
OFDM UWB systems, the diversity gain criterion is always
guaranteed. In other words, from the diversity viewpoint, the
design criteria are the same for both conventional STBC
MIMO system and STFC MB-OFDM UWB system.

As an example, the Alamouti code [16] for two Tx antennas
is a STFC providing a full diversity of 2NNfft for any
two distinct codewords c and e. Our proposed codes in
[18] for 8 Tx antennas are some examples, among various
other examples of STFCs for 8 Tx antennas, providing a full
diversity order of 8NNfft, for any distinct codewords c and
e.

VI. MAXIMUM LIKELIHOOD DECODING ALGORITHM

From (13), the ML decoding expression can be derived in
the most general form as follows

{s̄dec,t,m} = arg min
{s̄t,m}

‖ R − S ◦ H ‖2F . (37)

This decoding metric is too complicated to be performed if
S has non-orthogonal structures. Fortunately, because S has
the similar structures as the conventional CO STBCs, the
orthogonality of S is preserved for the MB-OFDM symbols
s̄t,m transmitted inside the code block S. As a result, the
simplicity of decoding CO STBCs in conventional wireless
STBC MIMO systems is also preserved in STFC MB-OFDM
UWB systems, i.e., each MB-OFDM symbol s̄t,m can be
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decoded separately, rather than jointly. Therefore, decoding
metrics for the MB-OFDM symbols s̄t,m can be easily found,
based on those decoding metrics for the respective CO STBC
of S, with slight modifications. Furthermore, each data point
among ND data points (ND = 100 data sub-carriers) within
a MB-OFDM symbol s̄t,m can also be decoded separately,
rather than the whole ND data in a MB-OFDM symbol s̄t,m

are decoded simultaneously. Thus the decoding process is
completely linear, and relatively simple.

According to the WiMedia’s MB-OFDM UWB specifica-
tions, the convolutional encoder is utilized at the transmitter.
Therefore, the transmitted binary information will be recov-
ered at the receiver by using a Viterbi decoder, after all of the
signals at the FFT points are separately decoded as mentioned
above.

To illustrate the ML decoding algorithm for STFCs imple-
mented in MB-OFDM UWB systems, we consider here two
CO STBCs: the Alamouti code for two Tx antennas

S2 =
[

s̄1 s̄2

−s̄∗2 s̄∗1

]
(38)

and the code proposed in [18] for 8 Tx antennas

S8 =




s̄1 s̄1 −s̄∗2 s̄∗2 −s̄∗3 s̄∗3 −s̄∗4 s̄∗4
−s̄∗1 s̄∗1 s̄2 s̄2 s̄3 s̄3 s̄4 s̄4

s̄∗2 −s̄∗2 s̄1 s̄1 −s̄4 s̄4 s̄3 −s̄3

−s̄2 −s̄2 −s̄∗1 s̄∗1 s̄∗4 s̄∗4 −s̄∗3 −s̄∗3
s̄∗3 −s̄∗3 s̄4 −s̄4 s̄1 s̄1 −s̄2 s̄2

−s̄3 −s̄3 −s̄∗4 −s̄∗4 −s̄∗1 s̄∗1 s̄∗2 s̄∗2
s̄∗4 −s̄∗4 −s̄3 s̄3 s̄2 −s̄2 s̄1 s̄1

−s̄4 −s̄4 s̄∗3 s̄∗3 −s̄∗2 −s̄∗2 −s̄∗1 s̄∗1




(39)

Detailed decoding metrics for these codes can be found in
the following sections.

A. MISO system

First, we consider a MISO system using the Alamouti code
with PSK or QAM modulation schemes, and with only one
Rx antenna. For simplicity, we denote the channel coefficient
vectors between the Tx antennas and the Rx antenna to be
h̄m, for m = 1, 2. The decoding metrics for the MB-OFDM
symbols are presented in Table II.

Clearly, from Table II, the data at each sub-carrier can be
decoded separately, rather than jointly. Therefore, the decoding
metrics for data at the k-th sub-carrier, for k = 1, . . . , ND, in
the MB-OFDM symbols s̄1 and s̄2 are

s1,k = arg min
s∈C

[|(~∗1,kr1,k + ~2,kr∗2,k

)− s|2 +

(−1 +
2∑

m=1

|~m,k|2)|s|2
]

(40)

s2,k = arg min
s∈C

[|(~∗2,kr1,k − ~1,kr∗2,k

)− s|2 +

(−1 +
2∑

m=1

|~m,k|2)|s|2
]
.

For the DCM scheme, the decoding process is slightly more
complicated, compared to PSK or QAM modulation schemes.
A pair of data points sm,k and sm,k+50, where sm,k and
sm,k+50 are the data points within the MB-OFDM symbol

TABLE IV
SIMULATION PARAMETERS.

Parameter Value
FFT and IFFT size Nfft = 128
Data rate 320 Mbps
Convolutional encoder’s rate 1/2
Convolutional encoder’s constraint length K = 7
Convolutional decoder Viterbi
Decoding mode Hard
Number of transmitted
MB-OFDM symbols 1200
Modulation QPSK & DCM
IEEE Channel model CM1, 2, 3 & 4
Number of data subcarriers ND = 100
Number of pilot subcarriers NP = 12
Number of guard subcarriers NG = 10
Total number of subcarriers used NT = 122
Number of samples in ZPS NZPS = 37
Total number of samples/symbol NSY M = 165
Number of channel realizations 100

s̄m and are separated from each other by 50 tones, must be
simultaneously decoded. For instance, decoding metrics for
s1,k and s1,k+50, for k = 1, . . . , ND/2, are as follows

[s1,k, s1,k+50] = arg min
s∈CDCM,s50∈CDCM,50[|(~∗1,kr1,k + ~2,kr∗2,k

)− s|2 + (41)

|(~∗1,k+50r1,k+50 + ~2,k+50r
∗
2,k+50

)− s50|2

+(−1 +

2∑
m=1

|~m,k|2)|s|2 + (−1 +

2∑
m=1

|~m,k+50|2)|s50|2
]

where the complex space CDCM denotes all potential possi-
bilities that the symbol s can take, while the complex space
CDCM,50 denotes all potential possibilities that the symbol
s50 can take. The exact values of CDCM and CDCM,50 can be
found in [19].

Similarly, for the code S8, we can easily derive the decoding
metrics of the MB-OFDM symbols s̄1, s̄2, s̄3, and s̄4 by slight
modification from the detailed decoding metrics mentioned in
[18] for this CO STBC in conventional STC MIMO systems,
and arrive at the decoding metrics in Table III. Hence, the
data point sm,k at the k-th tone, for k = 1, . . . , ND, can be
decoded separately. For instance, the decoding metric for the
data s1,k is

s1,k = arg min
s∈C

[|(~∗8,kr7,k + ~∗6,kr5,k + ~∗7,kr7,k +

~∗3,kr3,k + ~∗1,kr1,k + ~6,kr∗6,k + ~∗2,kr1,k −
~5,kr∗6,k + ~2,k2r∗2,k − ~1,kr∗2,k + ~∗5,kr5,k +
~∗4,kr3,k − ~3,kr∗4,k + ~4,kr∗4,k − ~7,kr∗8,k +

~8,kr∗8,k)− s|2 + (−1 + 2
8∑

m=1

|~m,k|2)|s|2
]
(42)

A deduction similar to (42) is applied for the data s2,k, s3,k,
and s4,k in PSK or QAM schemes. Accordingly, a deduction
as in (42) can be applied for S8 with the DCM scheme.

B. MIMO system

Next, we consider the MIMO system with N Rx antennas.
Linear combinations of the received signals from N Rx an-
tennas are used to decode the transmitted symbols. Therefore,



10

0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

MBOFDM,SISO,CM1
MBOFDM,SISO,CM2
MBOFDM,SISO,CM3
MBOFDM,SISO,CM4
STFC MBOFDM,2ISO,CM1
STFC MBOFDM,2ISO,CM2
STFC MBOFDM,2ISO,CM3
STFC MBOFDM,2ISO,CM4

Fig. 5. Alamouti STFC MB-OFDM UWB performance with QPSK modu-
lation/demodulation, and with 1 Rx antenna.
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Fig. 6. Alamouti STFC MB-OFDM UWB performance with QPSK modu-
lation/demodulation, and with 2 Rx antennas.

the decoding metrics for the transmitted symbol vectors s̄1,
s̄2, s̄3, and s̄4 can be deduced simply by replacing h̄m, for
m = 1, . . . ,M , in Tables II and III by the term h̄m,n, while
replacing ‖.‖2F with

∑N
n=1 ‖.‖2F . Similar to MISO systems,

each data point can be separately decoded.

VII. SIMULATION RESULTS

To examine the performance of the proposed STFC MB-
OFDM UWB systems, we used the codes S2 in (38) and S8

in (39), and ran several Monte-Carlo simulations, each with
1200 MB-OFDM symbols. As suggested in [15], 100 channel
realizations of each IEEE 802.15.3a channel models (CM 1,
2, 3 and 4) were considered for the transmission of each MB-
OFDM symbol. In simulations, SNR is defined to be the
signal-to-noise ratio (dB) per sample in a MB-OFDM symbol
(consisting of 165 samples), at each Rx antenna. It means
that, at a certain Rx antenna, SNR is the subtraction between
the total power (dB) of the received signal corresponding to
the sample of interest and the power of noise (dB) at that
Rx antenna. To fairly compare the error performance of MB-
OFDM systems with and without STFCs, the average power
of the signal constellation points in the STFC MB-OFDM
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Fig. 7. Alamouti STFC MB-OFDM UWB performance with DCM modu-
lation/demodulation, and with 1 Rx antenna.
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Fig. 8. Alamouti STFC MB-OFDM UWB performance with DCM modu-
lation/demodulation, and with 2 Rx antennas.

system is scaled down by a factor of 1/M , which is 1/2 for
the Alamouti code and 1/8 for our order-8 code. Thereby,
the average transmitting power from all M Tx antennas at
a certain time is kept the same for both MB-OFDM systems
with and without STFCs. Both modulation schemes QPSK and
DCM are simulated. The simulation parameters are listed in
Table IV.

The simulation results show that a significant improvement
in bit error ratios (BER) can be achieved with the proposed
STFC MB-OFDM system, compared to the conventional MB-
OFDM system. Fig. 5 shows that an improvement of at least
5 dB at BER = 10−4 can be achieved in the Alamouti STFC
MB-OFDM 2ISO system (2 Tx, 1 Rx antennas), compared
to the conventional MB-OFDM SISO system (1 Tx, 1 Rx
antennas) with a QPSK scheme. Fig. 6 shows that a similar
improvement as above can also be achieved in the Alamouti
STFC MB-OFDM 2I2O system compared to the conventional
MB-OFDM SI2O system. By comparing Figs. 5 and 6, the use
of two Rx antennas advances the error performance of MB-
OFDM systems (with or without STFCs) by approximately
3 dB at BER = 10−4, compared to that of a MB-OFDM
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Fig. 9. Order-8 STFC MB-OFDM UWB performance with QPSK modula-
tion/demodulation, and with 1 Rx antenna.

−5 0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SND (dB)

B
E

R

 

 

MBOFDM,SI2O,CM1
MBOFDM,SI2O,CM2
MBOFDM,SI2O,CM3
MBOFDM,SI2O,CM4
STFC MBOFDM,8I2O,CM1
STFC MBOFDM,8I2O,CM2
STFC MBOFDM,8I2O,CM3
STFC MBOFDM,8I2O,CM4

Fig. 10. Order-8 STFC MB-OFDM UWB performance with QPSK modu-
lation/demodulation, and with 2 Rx antennas.

system (with or without STFCs, respectively) with only 1 Rx
antenna.

Further, by comparing Fig. 7 with Fig. 5 (and Fig. 8 with
Fig. 6), we can realize that the STFC MB-OFDM system
associated with a DCM scheme provides a better performance
of at least 1 dB at BER = 10−4, compared to that associated
with a QPSK scheme, due to the fact that DCM provides
more time and frequency diversity than QPSK. A much bigger
improvement can be observed in conventional MB-OFDM
systems, in both cases of one and two Rx antennas.

Similarly, for the code S8, Fig. 9 shows that an improvement
of at least 11 dB at BER = 10−4 can be gained in the
order-8 STFC MB-OFDM 8ISO system, compared to the
conventional MB-OFDM SISO system with a QPSK scheme.
In Fig. 10, the similar advance as above can be achieved
in the order-8 STFC MB-OFDM 8I2O system, compared
to the conventional MB-OFDM SI2O system. By comparing
these two figures, it is clear that the error performance of an
MB-OFDM system (either with or without STFCs) can be
advanced by approximately 3 dB at BER = 10−4 when the
number of Rx antennas is doubled.
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Fig. 11. Order-8 STFC MB-OFDM UWB performance with DCM modula-
tion/demodulation, and with 1 Rx antenna.
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Fig. 12. Order-8 STFC MB-OFDM UWB performance with DCM modula-
tion/demodulation, and with 2 Rx antennas.

Finally, by comparing Fig. 11 with Fig. 9 (and Fig. 12 with
Fig. 10), the use of a DCM scheme provides slightly better
error performance to STFC MB-OFDM systems. However,
a great improvement of at least 3.5 dB can be achieved at
BER = 10−4 in conventional MB-OFDM systems, and in
both cases of one and two Rx antennas.

VIII. CONCLUSIONS

The paper proposes a general STFC MB-OFDM UWB
model. A great similarity between the STFC MB-OFDM UWB
systems and conventional wireless STBC MIMO systems is
discovered. This similarity allows the authors to derive a) the
PEP, b) the diversity gain and coding gain, c) the design criteria
for STFCs, and d) the general decoding method for STFCs
implemented in MB-OFDM UWB systems. The analysis is
carried out directly for the log-normal distribution of UWB
multipath amplitudes in a general scenario, without any restric-
tion on the time delay and average power of transmit-receive
links as in [12].
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Fig. 13. E{e−αx} and 1
α

e−E{x} as functions of α. (a) µ = 0, σ = 0.5. (b) µ = 0.25, σ = 0.75.

APPENDIX I
PROOF OF INEQUALITY

In this appendix, we consider the term E{e−αx}, where α
is a positive coefficient and x is a log-normally distributed RV
x ∼ Log −N(µ, σ2). We will prove that

E{e−αx} ≤ 1
α

e−E{x}, (43)

when α is large enough.
By definition, E{e−αx} can be quantified as

E
{
e−αx

}
=

∫ ∞

0

e−αxp(x)dx, (44)

where p(x) is the pdf of the log-normally distributed RV x.
Therefore, (43) becomes

∫ ∞

0

αe−αxp(x)dx ≤ e−E{x}. (45)

Using the property [25]

lim
α→∞

αe−αx → δ(x),

where δ(x) is the Dirac delta distribution, we have

lim
α→∞

∫ ∞

0

αe−αxp(x)dx =
∫ ∞

0

δ(x)p(x)dx

= p(0). (46)

By definition of the log-normal distribution [17], we have
p(0) = 0. Clearly, the left-hand side of (45) approaches zero
when α goes to infinity, while the right-hand side is a positive
constant. Therefore, the inequality (45) (and thus (43)) holds
when α is large enough, i.e. α ≥ α0, where α0 is a function
of µ and σ2. The inequality (43) has been proved. ¥

Example 1: For illustration, the simulation 13(a) shows the
values of E{e−αx} and 1

αe−E{x} as functions of α for the
case µ = 0, σ = 0.5. We realize that E{e−αx} ≤ 1

αe−E{x}

when α ≥ 2.1.
Example 2: We present another example for µ = 0.25, σ =

0.75. Fig. 13(b) shows that E{e−αx} ≤ 1
αe−E{x} when α ≥

3.8.

ACKNOWLEDGMENT

The authors are grateful to Prof. Vahid Tarokh, Harvard
University, U.S.A for helpful advices about distribution and
PEP; Assoc. Prof. Xiaojing Huang and Assoc. Prof. Tadeusz
A. Wysocki, University of Wollongong, Australia for the
helpful comments about the OAAO and the appendix; Prof.
Lutz Mattner, University of Luebeck, Germany, for his help
with the proof of the inequality (43); Assoc. Prof. Tan-Hsu
Tan and Mr. Kuan-Chih Lin for helping us to have deep
understanding of their work [11]; and anonymous reviewers
for insightful comments.

REFERENCES

[1] A. Batra et al., “Multiband OFDM physical layer specification,”
WiMedia Alliance, Release 1.1, July 2005.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecom., vol. 10, no. 6, pp. 585–595, 1999.

[3] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs Technical Journal, vol. 1, no. 2, pp. 41–59, Autumn 1996.

[4] G. J. Foschini and M. J. Gans, On limits of wireless communications in a
fading environment when using multiple antennas, vol. 6 of 3, Wireless
Personal Communications, Printed in the Netherlands, Mar. 1998.

[5] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes
for high data wireless communications: performance criterion and code
construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744 –
765, Mar. 1998.

[6] Y. Gong and K. B. Letaief, “Space-time-frequency coded OFDM for
broadband wireless communications,” Proc. IEEE Global Telecommu-
nications Conference GLOBECOM ’01, vol. 1, pp. 519–523, Nov. 2001.

[7] A. F. Molisch, M. Z. Win, and J. H. Winters, “Space-time-frequency
(STF) coding for MIMO-OFDM systems,” IEEE Commun. Lett., vol.
6, no. 9, pp. 370–372, Sept. 2002.

[8] Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded
OFDM over frequency-selective fading channels,” IEEE Trans. Sign.
Process., vol. 50, no. 10, pp. 2465–2476, Oct. 2002.

[9] M. Fozunbal, S. W. McLaughlin, and R. W. Schafer, “On space-time-
frequency coding over MIMO-OFDM systems,” IEEE Trans. Wireless
Commun., vol. 4, no. 1, pp. 320–331, Jan. 2005.

[10] W. Su, Z. Safar, and K. J. R. Liu, “Towards maximum achievable
diversity in sapce, time, and frequency: performance analysis and code
design,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1847–1857,
July 2005.

[11] T.-H. Tan and K.-C. Lin, “Performance of space-time block coded MB-
OFDM UWB systems,” Proc. 4th Annual Communication Networks and
Services Research Conference (CNSR’06), pp. 323 – 327, May 2006.

[12] W.P. Siriwongpairat, W. Su, M. Olfat, and K.J.R. Liu, “Multiband-
OFDM MIMO coding framework for UWB communication systems,”
IEEE Trans. Sign. Process., vol. 54, no. 1, pp. 214 – 224, Jan. 2006.



13

[13] J. Hou and M. H. Lee, “High rate ultra wideband space time coded
OFDM,” Proc. 58th IEEE Veh. Technol. Conf. VTC 2003 - Fall, vol. 4,
pp. 2449–2451, Oct. 2003.

[14] J. Wang, G. Zhu, and J. Jin, “Optimal power allocation for space-
time coded OFDM UWB systems,” Proc. IEEE Int. Conf. Wireless
Communications, Networking and Mobile Computing WCNM.2005, vol.
1, pp. 189 –192, Sept. 2005.

[15] J. Foerster et. al., “Channel modelling sub-committee report final,” IEEE
P802.15 Working Group for Wireless Personal Area Networks (WPANs),
IEEE P802.15-02/490r1-SG3a, Oct. 2005.

[16] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp.
1451 – 1458, Oct. 1998.

[17] E. L. Crow and K. Shimizu (Ed.), Lognormal distributions, vol. 88,
Marcel Dekker, Inc, New York, 1988.

[18] L. C. Tran, T. A. Wysocki, A. Mertins, and J. Seberry, Complex Or-
thogonal Space-Time Processing in Wireless Communications, Springer,
New York, USA, 2006.

[19] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE
802.15 task group 3a,” IEEE P802.15-04/0493r1, Sept. 2004.

[20] A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak,
“Design of a multiband OFDM system for realistic UWB channel
environments,” IEEE Trans. on Microwave Theory and Techniques, vol.
52, no. 9, pp. 2123–2138, Sept. 2004.

[21] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time blocks
codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45,
no. 5, pp. 1456 – 1467, July 1999.

[22] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
coding for wireless communications: performance results,” IEEE J.
Select. Areas Commun., vol. 17, no. 3, pp. 451 – 460, Mar. 1999.

[23] L. F. Fenton, “The sum of log-normal probability distributions in scatter
transmission systems,” IRE Trans. Commun. Syst., vol. CS-8, pp. 57–67,
1960.

[24] X.-B. Liang, “Orthogonal designs with maximal rates,” IEEE Trans.
Inform. Theory, vol. 49, no. 10, pp. 2468–2503, Oct. 2003.

[25] L. W. Couch, II: Digital and analog communication systems, vol. 6,
Prentice Hall, Upper Saddle River, 2001.


