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Abstract—We address the problem of automated fingerprints-
based person identification from poor-quality fingerprints. Our
solution includes the definition of a region of interest centered
over the fingerprint at a reference point. From this region of
interest a feature vector is computed that is invariant to some
geometrical transforms but also to point transforms of the gray
levels in the region of interest. This feature vector is then classified
by means of a sparse classifier. We successfully test our algorithms
on a publicly available fingerprints database and show that
they are robust to a set of issues afflicting current fingerprint-
identification systems in the case of poor-quality fingerprints.

I. INTRODUCTION

The pattern of ridges and valleys of the skin covering
the interior side of distal phalanges (at the tip of a finger)
represents a fingerprint. The fingerprints represent unique
characteristics of each human being and as such have been
the biometric feature of choice for a long time. Currently they
receive attention from the machine vision community in the
quest for automatic person-identification systems to be used
for various purposes ranging from access control to electronic
banking.

A typical fingerprint identification algorithm consists of
a feature extraction step followed by a classification step.
During classification, the query fingerprint is assigned to
one of the available classes – one for each person in the
target group—of enrolled fingerprints. The fingerprints are
considered to be available in the form of digital images coming
either from a sensor or from digitized latent fingerprints. The
latent fingerprints are collected by forensic modalities from
various items. Person identification with respect to a target
group/database is achieved only if the classification can be
conducted with sufficient confidence.

There are several types of features that can be extracted
from a fingerprint [11]. Level-1 features are related to general
characteristics of the fingerprint, like the location of singular
points (e.g., points characterized by large ridge curvature).
Level-2 features include more particular characteristics, these
so called minutiae features are, for example, the locations of
ridge bifurcations and endings. Level-3 features are related to
fingerprint details like ridge width, edge contour or pores.

The classification step is usually conducted with the help of
either image correlation, phase matching, skeleton matching or
minutiae matching [11]. Minutiae-based approaches are most
commonly used [6], [5]. They mimic to a certain extent the

way a human expert usually goes to work on classifying a
fingerprint.

It is considered that for fingerprint identification Level-2
and Level-3 features are needed [11], and under such cir-
cumstances, there are many effective solutions to the problem
of fingerprint identification [18]. However, the problem space
is not yet fully covered, as there are still some unanswered
questions that lead to new research opportunities [11]. Major
difficulties are encountered when working with poor quality
fingerprints, yet another difficulty is represented by the small
overlapping area between a query fingerprint and the enrolled
fingerprints. Fingerprints are additionally afflicted by nonlinear
distortions and, in the case of latent fingerprints, a complex
background. Under such circumstances, the extraction of fin-
gerprint features of Level-2 and Level-3, and hence fingerprint
identification by methods based on these types of features,
becomes challenging.

In this contribution we propose a fingerprint identification
method that works despite the above mentioned difficulties.
However, we assume that for each enrolled user, several
fingerprints of (at least) one finger are available. From the
above-mentioned feature categories, our solution uses only one
Level-1 feature, i.e., the location of the core point. The core
point is the most central point of the fingerprint, around which
the ridge orientation changes rapidly [12], [16]. We use the
core point as reference and select around it a region of interest
(ROI) of the fingerprint image. The ROI serves the purpose to
concentrate our analysis on the same area of the fingerprint,
irrespective of how it was positioned over the imaging sensor.
From the ROI, a feature vector is extracted that includes a
certain selection of Discrete Cosine Transform (DCT) coeffi-
cients. The feature vector concentrates information that is less-
likely to be afflicted by image noise, difficult backgrounds or
scars and scratches. Such information is related to the global
pattern of a fingerprint. A query fingerprint is then assigned
to a specific finger from the target database, with the help
of a sparse classifier. This classifier exhibits a set of charac-
teristics that make it well suited for our problem of robust
fingerprint recognition. The sparse classifier naturally offers
the possibility to compute the confidence in the computed
result. If this confidence is not high enough, the identification
of the respective fingerprint should be conducted—in the
case of poor-quality fingerprints—by a human expert. To



correctly identify a finger despite small fingerprint overlap
area, or the availability of a partial or partially corrupted
fingerprint, we harness the abilities of both the sparse classifier
and the feature vector to handle occlusions. Also, the sparse
classifier works well despite the availability of a very small
number of training samples per class, which is usually the
case for fingerprint identification. Furthermore, with a sparse
classifier the precise choice of features is less important than
the number of features [21]. The sparse classifier has been
previously used in the context of fingerprint analysis, but for
the purpose of pore-matching in high-quality fingerprints [15].
To handle distortions, we assume that, in general, the training
set includes fingerprints with the usual linear and nonlinear
geometric transformation caused by the acquisition procedure.
At the same time, the feature extraction is designed to offer
a feature vector with additional invariance properties to some
geometric transformations but also to point-transformations of
the fingerprint-image’s gray levels. Furthermore, the memory
footprint (measured in Bits) of the feature vector is far smaller
than that of the ROI or the original image.

We summarize our main contributions as follows: first, we
introduce a new definition of the core point and describe meth-
ods to detect it accordingly, second, we define a transform-
based feature vector that captures basic fingerprint-information
that is available even in the most difficult fingerprint images,
and third, we introduce the sparse classifier for fingerprint
identification.

In Section II we describe the feature extraction process
and the sparse classifier. In Section III we demonstrate our
solution on a public database. Finally Section IV contains the
conclusions.

II. METHODS

For each fingerprint image, from a ROI placed at the core
point, a feature vector is computed. The sparse classifier then
assigns a feature vector to the class whose training vectors
span the subspace closest to it. For sparse classification, the
dimension of the feature space is also important. It needs to be
chosen in relation to the number of training samples and the
mean number of representatives per class (see Section II-B2).

A. Feature extraction

To detect the core point, we use the orientation of the
ridges. The features we’ve used are some DCT coefficients
of the core-point-centered ROI. The particular choice of DCT
coefficients offers mild rotation and translation invariance and
at the same time robustness to changes in the mean of the
fingerprint image. To find out which DCT features to include
in the feature vector we have applied a feature selection
procedure [10].

1) Core-point detection: The core point is currently defined
as the point of maximal curvature of the concave ridges of a
fingerprint [12]. Initial approaches to detecting the core point
were based on the Poincar index [13]. They work well only
for good-quality fingerprints. To detect the core point in poor-
quality fingerprints, robust methods are needed. Such methods
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Fig. 1. Various types of fingerprints: loop (a), whorl (b) and plain arch (c).

are proposed in [12], [3], [16] but they have difficulties with
arch-type fingerprints (see Figure 1), due to the definition
used for the core point. In this contribution, we use another
definition of the core point. First we assume that the available
fingerprints are approximately vertically oriented, then we use
the observation that starting from the top of the fingerprint and
going down, the ridges are less and less flat—whereby with
flat we mean similar to a horizontal line (see Figure 1). We
define the core point as the point where such ridge flatness
becomes minimal.

Next we measure ridge-flatness by the sine of the angle
between the orientation vector and the x axis in a fingerprint
image (see Figure 2 (a)). The orientation vector is evaluated
from a local neighborhood Ω at each pixel as the eigenvector of
the orientation tensor corresponding to the minimal eigenvalue.
The orientation tensor is computed as [1]:

J =

[
B(Ry ·Ry) B(Rx ·Ry)
B(Rx ·Ry) B(Rx ·Rx)

]
with B being a smoothing kernel whose impulse response is
related to Ω, and Ri is the directional derivative in the direction
i. Therefore, the grey-level variation along the orientation
vector is minimal.

The sine image (with the values of the sine function of
the orientation angle at each pixel) is considered to exhibit
two classes, one for orientation angles close to π

2 and one
with orientation angles close to zero. Using Otsu’s method
for unsupervised binary classification [19]—that optimizes a
separability measure—we binarize the sine image, defining
labels such that the class of pixels with orientation close to
zero represent the object and the rest the background (see
Figure 2 (b)).

The binarized sine image is then morphologically processed
[9] to detect the core point. First, we break it into two
parts at the region of the core point by eroding with an
appropriate disc-like structuring element of diameter d1 and
then dilating with a similar structuring element but with a
diameter d2 < d1 (see Figure 2 (c)). Then we select the
object region in the upper central part of the image. For this
purpose we use as seed points the object pixels in the upper
quarter (along the y axis) of the image. As the pixels may be
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Fig. 2. Processing chain for core-point detection: sine image (a), binarization result (b), breaking at the core-point region (c), upper central object-part with
skeleton and detected terminations – the core point is marked by a disc and the reference position by a circle (d), final result (e).

divided among several object structures in the upper quarter,
we take only those pixels belonging to the structure closest
to the image center. All object points linked to these over an
eight-neighborhood (i.e., all neighboring pixels situated at an
Euclidian distance d ≤

√
2) are selected. We then compute the

morphological skeleton of the result and detect the termination
points [14] (see Figure 2 (d)). The (usually) lowest most
central termination point is the sought core point. We find
this point as the termination point closest to the empirically
established reference position given by

[
5m
6 ,

n
2

]
, with m the

number of lines and n the number of columns in the image.
2) The feature vector: As our purpose is to design a system

robust to partial occlusions of the fingerprint as well as to
partial and total corruptions (like e.g., overlays), the feature
vector must also exhibit such properties. At the same time, we
would like to reduce the number of dimensions with respect
to the size of the training sample to avoid problems related
to the curse of dimensionality. Therefore, in contrast to other
appearance-based methods [12] we use here transform fea-
tures. We did not use LDA and other related methods, because
we want a method unrelated to the number of classes—i.e.,
the number of fingers in the query database. The PCA is of
limited use, as there are hardly any common high-eigenvalue
variation modes, considering how dissimilar the various types
of fingerprints are (see Figure 1). Furthermore, with PCA
we would theoretically need to recompute the transformation
matrix with each new finger enrolled in the database. Here we
make use of the DCT. To find out which DCT coefficients to
use, we have used feature selection.

The feature vector is computed from an ROI centered at the
core point (see Figure 3 (a)). The size of the ROI should be
chosen in relation to the resolution of the fingerprint imaging
device. For some fingerprint images the ROI may go over
the boundaries of the image, the corresponding region is filled
with zeros—being thus treated as total occlusions. Our feature
vector contains DCT coefficients of the ROI from a certain
region of the DCT space (see Figure 3 (b)).

The selected DCT coefficients are largely invariant to trans-
lation. By eliminating the coefficients corresponding to DC
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Fig. 3. ROI (a), DCT coefficients – the marked region gives our feature
vector (b) and ROI reconstructed with the selected coefficients (c).

and very low frequencies, the feature vector is invariant to
changes in the mean of the gray-levels of the fingerprint image.
The specific choice of DCT coefficients represents a sub-
sampled, alias-pledged representation (see Figure 3), that in
comparison to the original ROI has mild rotation invariance
properties. We concentrate thus on the global pattern of a
fingerprint, the most general and often available fingerprint
information.

a) Feature selection: Assuming we have a small labeled
data set at our disposal, we can use it to conduct fast feature
selection similar to [10]. The objective function is the squared
training error of a set of linear discriminants. We start from a
vector with k DCT coefficients randomly selected from the
DCT space with a total of N � k coefficients. For each
selected coefficient, we compare the objective function for a
feature vector including it with that obtained for a feature
vector excluding it. At the same time we rank the coefficients
by the value of the difference between the two objective
functions. We then eliminate the least relevant coefficient and
replace it with another one randomly chosen from the remain-
ing N − k coefficients. We then repeat the procedure q times.
After q repetitions, the better coefficients will be selected more
often (see Figure 4). We compute our feature vector from
that region of the DCT space which has the coefficients most
often selected during feature selection. We select this region of
feature concentration, instead of using precisely the selected
features, because we can’t assume that the data sample used



for feature selection is optimally representative for the random
variable feature vector.

b) Mild rotation invariance: By mild rotation invariance
we mean that for relatively small rotations, the selected DCT
coefficients of the original and the rotated image differ in-
significantly. To clarify further what we mean by mild rotation
invariance here, we use the analogy of a fingerprint to a planar
wave. We observe that a planar wave of frequency ω1 is less
variant to rotations than a planar wave of frequency ω2 > ω1,
when both are considered within the same finite area. For
example, a rotation of five degrees (with the center of the
coordinate system at the center of the image) the squared error
between the original and the rotated image increases with the
frequency.

A similar phenomenon takes place in the case of our feature
vector as well. It contains a low-frequency representation of
the ROI, similar to the low-frequency planar wave form above,
while the original ROI behaves similar to the higher-frequency
planar wave.

B. Sparse Classification

Sparse classification is a type of nearest subspace method.
The distance function used is the quality of the reconstruction
of a test sample by a linear combination of basis vectors from
a class subspace. The coefficients of this reconstruction are
computed based on the principle of parsimony. It offers thus a
principle-based approach in comparison to the rather heuristic
methods employed in other nearest-subspace methods. In the
case of sparse classification it is assumed that any sample in a
class can be expressed as a linear combination of other samples
in the same class. Thus, a new sample will lie in the linear
span of the training samples. The training samples represent
the basis vectors for the class subspace. Such considerations
have previously been used for classification as early as [20]
and have ignited research in the field of appearance-based
classification. Sparse classification is usually fast. It has a
complexity order O(t3 + ndt) [8], with t being the number
of nonzero elements in the sparse vector, n denoting the size
and d the dimension of the training set. In comparison, fast
nearest-subspace methods have a complexity order of O(nd2)
[2]. For sparse classification to work properly, the assumption
that the basis vectors of each class subspace are present in the
training set must hold.

Building on such premises, sparse-representation based clas-
sification looks for the sparsest representation of a test sample
in terms of a matrix of training samples. This representation is
sparse because it should contain only samples from the class
to which the test sample belongs [21].

1) Sparse representations: Let the training matrix be de-
noted by T = [T1, . . . ,Tk], containing the class-submatrices
Ti = [vi,1, . . . ,vi,Ni

] with i = 1, . . . , k, where Ni is the
number of samples in class i and k the number of classes.
The total number of vectors in T is n =

∑k
i=1Ni, and each

vector [vj ]
n
1 has m entries. Then, for each new sample y we

ideally have:

y = Tx
= xj,1vi,1 + · · ·+ xj,Nivi,Ni

(1)

where the coefficient vector x = [xj ]
n
1 has entries xj different

from zero only for the training-space samples from the class
i to which y belongs. This system of equations is usually
overcomplete with the number n of vectors in the training
space being well larger than the dimension m of the vectors.
Thus, there are infinitely many solutions to (1), and the ones
that interest us are the ones with a sparse representation x.

Assuming an equal number of training samples per class, the
more classes the more sparse x. Thus we search not for some
x̂ ∈ Rn, but for the sparsest vector that solves equation (1).
We find it by optimizing over the `0 pseudo norm, solving:

x̂ = arg min ‖ x ‖0 subject to Tx = y (2)

Ideally, assuming that a vector y is represented solely with the
training vectors from the correct class (that is, the coefficients
in x for training vectors from other classes are all zero), the
vector y can be classified by looking up to which class the
nonzero entries in x belong. In practice, of course, questions
about the required amount of sparsity and the uniqueness of
the sparsest solution arise. In [7] it was shown that if some x
with less than m

2 nonzero entries verifies y = Tx, then this is
the unique sparsest solution. This means that we have a good
chance of finding the correct and unique sparsest solution to
(1) even for two-class problems or for configurations where
the number of training samples per class is not the same over
all classes, provided we have enough samples in the training
set.

2) Classification: In practice, because the solution to equa-
tion (2) is computationally difficult to find, we solve instead:

x̂ = arg min ‖ x ‖1 subject to Tx = y (3)

Minimizing over the `1 norm instead of the `0 pseudo norm
yields the same solution if x is sparse enough [4].

The vector x found after we solve (3) will usually have the
largest entries for one class only, and small non-zero entries
for other classes as well. Next, to introduce the decision rule,
we use the following notation: 1i(x) is the indicator function
for class i and v1�v2 is the component-wise product of two
vectors v1 and v2, i.e., the Hadamard product. Thus, 1i(xj)�x
selects the entries of x that belong to class i. C(y), with
C : Rm → {1, . . . , k} is the function that assigns a class
label to the vector y. A classification rule that harnesses the
class-subspace structure has been proposed in [21]. It assigns
the test sample y to the class whose training-set vectors best
reproduce y. The decision rule reads:

C(y) = arg min
i
‖ y −T(1i(xj)� x̂) ‖2 (4)

a) Confidence index: The sparse classification frame-
work provides room for the introduction of a degree of
confidence in the classification result. In order to express
such a confidence, for the decision rule in (4), a sparsity



concentration index is defined as [21]:

SCI(x) =

l max
i

(
‖ 1i(xj)� x ‖1
‖ x ‖1

)
− 1

l − 1
(5)

A decision is accepted only if SCI(x̂) ≥ τ , otherwise the
corresponding y is labeled as “unsure”. The parameters l and
τ need to be set empirically. Here we propose heuristically to
choose the parameter l of the SCI as l = 1.5 · C, where C
is the number of classes. The precise value for τ should be
established by cross-validation.

b) Number of features: It can be shown that, if x0 has
t � n nonzero elements, then d ≥ 2t log(nd ) features are
sufficient to obtain the correct sparse solution by means of
the optimization (2).

III. EXPERIMENTS AND DISCUSSION

In the last decade fingerprint-based biometric applications
have received a lot of attention from the machine vision
community. Fingerprint Verification Contest (FVCs) have been
organized in 2000 [17], 2002, 2004 [6] and 2006 [5]. These
are mainly geared towards fingerprint verification and not
fingerprint identification/recognition as is the case with this
contribution. Therefore, a direct comparison is not possible.

Furthermore, the sparse classifier offers the possibility to de-
fault a decision in favor of a higher-accuracy classifier/human
observer, if the confidence is not high enough. This has a
major influence on the way our algorithm is used. The test
setup is designed to take into account such particularities of
our approach.

We have conducted experiments on the DB3 database.
This database has been used within the FVC 2004 [6] and
is currently available online. The DB3A database contains
800 fingerprints, eight fingerprints for each of 100 different
fingers and is meant for test purposes. The DB3B database
contains 80 fingerprints, eight fingerprints for ten different
fingers. They have been acquired with a thermal sweeping
sensor (Atmel FingerChip), at a resolution of 512 dpi and an
image size of 300×480 pixels. To test our algorithm we have
divided the data from DB3A into eight equal parts, each part
containing 100 different fingerprints and conducted eight-fold
cross validation. The establishment of various parameters for
our method has been done with the help of DB3B. The size
of the ROI was 141×141 pixels.

For our algorithm, the enrollment time for a fingerprint is
approximately 0.4 seconds. This includes 0.39 seconds for
detecting the core point and 0.016 seconds for computing
the feature vector. The match time for a fingerprint with
respect to a database containing 700 fingerprints, i.e., seven
fingerprints per finger and 100 different fingerprints is 1.29
seconds, including about 0.88 seconds for classification. The
experiments were conducted under MATLAB R2010b on a
Core 2 Duo E6600 (2.66 GHz) machine with 4 GB of RAM.

A. Core-point detection
The parameters of the core-point detection method are:

Ω = 11 , d1 = 5 and d2 = 4. The filters implementing

Fig. 4. Results of feature selection. The chosen coefficients are those in
the white rectangle. The brighter a pixel is the more often the DCT at the
corresponding position has been selected.

the directional derivative had a length ld = 9. For testing we
have used a manual ground-truth of core points, established by
the first author. To account for human imprecisions, we have
declared a core point to be found successfully if it falls into
a region of 21×21 pixels centered at the manual core point.
Within this setup, we have successfully found the core point
in 720 cases from 800.

B. Feature vector

To find out which DCT coefficients are optimally suited
for our purposes, we have conducted a feature selection using
DB3B. The number of potentially available DCT coefficients
is N = 1412. We’ve conducted feature selection with k =
500 coefficients, and iterated q = 1500 times. The results are
shown in Figure 4. The brighter the pixels, the more often
the respective DCT coefficient was selected. Our DCT region
corresponds with the concentration region of the most selected
DCT coefficients. The region Rb has the size 17× 35. Thus,
we get a feature vector with dRb

= 595 dimensions. We have
also conducted experiments with the DCT coefficients from
a smaller region Rs of the size 17 × 17, such that it covers
approximately the left half of Rb. With the resulting vector of
dRb

= 289 dimensions, we obtained very similar identification
results. For our experiments we had n = 700 and t = 7,
therefore in both cases d verifies the bound on the minimal
number of features.

C. Finger identification

We have computed a type of ROC by varying the confidence
threshold τ between zero and one in steps of 0.01 and com-
puting for each threshold the mean rate of correct decisions
and the mean rate of “uncertain“ decisions, where the means
were taken over the cross-validation results

To find out how sensitive is our method to an accurate
detection of the core-points, we have computed two ROCs.



Fig. 5. Left: the ROC for automatically detected core-points and right: the ROC for manually detected core-points. Target gives the ”uncertain“ rate and
output the ”correct decision“ rate.

For the first we used features computed based on the set of
automatically detected core points and for the second based
on the manually selected core points. The results are shown
in Figure 5. As it can be seen, the accuracy of the detection
of the core point influences the results up to an ”uncertain”
rate of 0.5.

We consider 80% correct decisions to be the minimal
rate for successful fingerprint identification from poor-quality
fingerprints. Using the automatic core points, we obtain 80%
correct decisions for a 30% “uncertain“ rate. This means that
from the 70% of the data for which a decision is obtained,
80% are correct decisions. For manual core-point detection,
we reach an 80% correct decision rate for 0% ”uncertain”
rate.

To simulate bad fingerprints, we have low-pass filtered the
images using a Gaussian kernel. The performance of our
method remained unchanged when using filters up to a mini-
mal 3dB bandwidth of π

6 . Our method can handle occlusions
up to 30% of the ROI. We have encountered such occlusions
in our database for those fingerprints whose core points were
placed near the borders of the analyzed image, such that only
about 70% of the ROI was filled with fingerprint information,
the rest being filled with zeros. As long as the core point was
correctly detected, all these images were correctly classified.

Besides the DCT, we have tested several other feature ex-
traction methods on DB3B, these are the Linear Discriminant
Analysis (LDA), the Principal Components Analysis (PCA),
and we have also tested a feature vector that contains a
downsampled (by a factor of three) ROI. As expected, none of
them worked well, with correct-decision rates of under 15%
for τ = 0.

IV. SUMMARY, CONCLUSIONS AND OUTLOOK

We have described a fingerprint-identification framework
designed to work with poor-quality fingerprints. Under these
circumstances we make use only of the most basic fingerprint

features, the core point. At the same time, we build a feature
vector that captures only part of the information found in the
ridge-pattern of a finger, namely that part that is imprinted on
a grabbed item under most difficult conditions for the subse-
quent fingerprint acquisition. Therefore, the feature-extraction
process yields a feature vector that is not particularly rich
in information, and to obtain satisfactory results, we need
to compensate for this in the classification phase. By its
properties the sparse classifier is optimally suited to work
under such conditions. It works well despite occlusions or
corruptions of large parts of the analyzed fingerprint image
as well as with a less-informative feature vector (as long as
the size of the feature space is well chosen and the training
set covers most of the variability to be expected in the test
sample), and with a small number of training examples per
class.

We believe that the novel definition of the core point
proposed here is able to deal with all types of fingerprints,
i.e., including arch-type fingerprints, however, the particular
method we use for the detection of the core point leads to
slightly imprecise results. This makes our core-point detection
method not optimally suited to detect core points for finger-
print alignment (with respect to rotation and translation). The
algorithms we describe here profit from the ability to work
with arch-type fingerprints and are designed to be robust to
such imprecision.

While our method is not heavily influenced by small errors
in positioning the core point, a complete failure definitely
leads to a wrong decision for the analyzed fingerprint. We
are currently investigating both improved core-point detection
methods and enrollment-failure detection methods that evalu-
ate if the core point can be detected at all in a given image.

The feature vector contains actually a downsampled band-
pass representation of the fingerprint ROI. The low frequencies
related to average gray level and large, low-frequent structures,
like, e.g., a cut or bruise, are ignored as are high-frequency



noise structures. At the same time the ridge pattern is blurred
(and undersampled). The autocorrelation of the fingerprint
ROI remains high over larger rotations and/or shifts after
the blurring as opposed to before the blurring. Therefore our
algorithms are insensitive to both small translations of the ROI
due to imprecise core-point detection and small rotations due
to differences in placing the fingerprint over the sensor. The
precise choice of DCT coefficients has been established by
feature selection.

In contrast to many previous works, we use the implicit
assumption that several fingerprints of the same finger are
available—even though theoretically the sparse classifier could
return a decision with even one training sample per class. This
assumption becomes increasingly valid the more ubiquitous
fingerprint-based systems become. Even if in the beginning
a finger gets just one impression stored, the more often the
respective person uses the system, the more impressions of
the same finger—under various transformations/influences—
become available. Clearly this information should be har-
vested. In our simulations we worked under the assumption
that the query fingerprint is bad, but the enrolled fingerprints
are relatively good. Should bad fingerprints also be available
we expect an improvement of the results of our method.

The “uncertain“ decision, which comes naturally for the
sparse classifier, should be interpreted as there is not enough
information to make a decision with enough confidence, thus,
in this case, a human observer should analyze the respective
fingerprint. This is the setup for which our algorithm has been
designed. Clearly, under such circumstance the combined cor-
rect decision rate of our framework will be greatly improved.
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