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ABSTRACT

Auditory filterbanks have a long history in the preprocessing
stage of automatic speech recognition systems, with the most
prominent examples being the mel frequency cepstral coef-
ficients (MFCCs). In this paper, we study the usefulness of
auditory-filterbank analyses as a preprocessor for the genera-
tion of frequency-warping invariant features. The resultsindi-
cate, that gammatone-filterbank analyses following the equiv-
alent rectangular bandwidth (ERB) scale yield the most robust
feature sets. The performance improvements are most signif-
icant when the vocal tract lengths in the training and test sets
differ, which is important when, for example, children speech
is to be recognized with a system that was mainly trained on
adult data.

1. INTRODUCTION

Vocal tract length normalization has become an integral part
of many automatic speech recognition engines [1, 2]. It is
based on the idea that the short-time spectra of two speakers
A andB are approximately related asXA(ω) = XB(αω),
whereα is the so-called warping factor. The value ofα de-
pends on the ratio of the vocal tract lengths of both speakers
and usually lies in the range between0.8 and1.2, relative to
an average speaker. The value ofα is typically selected as the
one that yields the highest likelihood scores in a subsequent
hidden Markov model (HMM) based recognizer [2, 3]. Re-
cent approaches even normalize the utterances from the same
speaker with optimalα on a frame-by-frame basis, in order to
better match the standard realizations of the phonemes [3].

Recently, a method for the generation of vocal tract length
invariant (VTLI) features has been proposed in [4]. In this
method, the wavelet transform was used as a preprocessor
that produces a time-frequency analysis in which linear fre-
quency warping results in a translation with respect to a log-
frequency parameter. While a strict wavelet analysis with log-
arithmically spaced center frequencies exactly carries out the
conversion of linear frequency warping of sinusoidal inputs
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into a translation in the log-frequency domain, it does not ex-
actly match the frequency analysis that is carried out in the
human auditory system. In this paper, we therefore study the
usefulness of auditory-filterbank motivated preprocessors.

While the MEL scale has been found from the analysis of
just noticeable differences in the frequency of sinusoids,the
so-called equivalent rectangular bandwidth (ERB) scale has
been found from masking experiments and better describes
the bandwidths of the auditory filters. Moreover, the anal-
ysis of the human auditory system as well as physiologi-
cal animal experiments have led to an approximation of the
cochlear frequency analysis by so-called gammatone filters.
Both paradigms can be combined, and gammatone filterbanks
can be used with center frequencies and bandwidths that fol-
low the ERB scale. Moreover, it has been suggested in [5]
to carry out vocal tract length normalization along the MEL
scale.

In this paper we study the usefulness of auditory-
motivated gammatone analyses as a preprocessor for gen-
erating robust feature sets that are nearly invariant to vocal
tract length variations. The paper is organized as follows.In
the next section, we briefly introduce the wavelet transform
and then describe the gammatone analysis. Section 3 then
presents the generation of the proposed, warping-independent
VTLI features. In Section 4 we describe the experimen-
tal setup and present results on phoneme recognition exper-
iments. Section 5 gives some conclusions.

2. PRIMARY TIME-FREQUENCY ANALYSIS

2.1. The discrete-time wavelet analysis

The discrete-time wavelet transform of a signalx(n) can be
computed as

wx(n, k) = 2−k/(2M)
∑

m

x(m)ψ∗

(m− nN

2k/M

)

, (1)

whereM is the number of voices per octave, andN is the
subsampling factor used to reduce the sampling rates in the
wavelet subbands. AssumingK octaves, the scaling param-
etera takes on valuesak = 2k/M , k = 0, 1, . . . ,MK − 1.



The continuous-time waveletψ(t), whose samples occur in
the sum in (1), is the so-called mother wavelet. For this, in
[4] the Morlet wavelet [6] given byψ(n) = exp(jω0n) ×

exp(− n2

2σ2
n

) was used with the parametersω0 = 0.9π and

σ2
n = 100. The transformwx(n, k) was carried out with
M = 12 voices per octave andK = 7 octaves, resulting
in primary feature vectors of length 84.

An important property of the wavelet transform (1) is that
it is computed on a regular time grid with the same subsam-
pling factorN applied to all frequency bands, regardless of
the bandwidth. This is in contrast to the discrete wavelet
transform (DWT), which operates on a dyadic grid and uses
different sampling rates in different octaves. Due to the con-
stant sampling rate in all frequency bands, the wavelet trans-
form (1) does not suffer from the shift-invariance problem
known from the DWT, provided that the factorN is suffi-
ciently small and chosen in accordance with the number of
voices (e.g., such thatN ≤M ).

The wavelet analysis will have better time resolution at
higher frequencies than needed for producing feature vec-
tors every 5 to 15 ms. Direct downsampling of features will
therefore introduce aliasing artifacts. Since we are mainly
interested in the signal-energy distribution over time andfre-
quency, we may take the magnitude ofwx(n, k) and filter it
with a lowpass filter in time direction before final downsam-
pling. The final primary features will then be of the form

yx(n, k) =
∑

ℓ

h(ℓ) |wx(nL− ℓ, k)| (2)

whereh(ℓ) is the impulse response of the lowpass filter,L is
the downsampling factor introduced to achieve the final frame
ratefs/(N · L), andfs is the sampling frequency. To avoid
that the filtered valuesyx(n, k) can become negative, we as-
sume a strictly positive sequenceh(n) like, for example, the
Hanning window. In [7], the lowpass filterh(n) was simply a
rectangular window of 200 coefficients, and the initial down-
sampling was set toN = 1.

Fig. 1 gives an example of a wavelet analysis. In Fig. 1(b),
which shows|wx(n, k)| as a grey-scale image (i.e., a scalo-
gram), the pitch is visible in most frequency bands. This
pitch pattern is no longer visible in Fig. 1(c), which depicts
yx(n, k).

2.2. The gammatone analysis

The wavelet transform described above is a true constant-Q
analysis with the same relative bandwidth in all frequency
bands. However, according to Patterson et al. [8], the assump-
tion of constant relative bandwidths as well as the strict log-
arithmical frequency-spacing as mentioned before, does not
correspond with the filtering process in the human auditory
system.

The impulse responses of the filters in the auditory sys-
tem can be approximated by the following sampled impulse

Fig. 1. Example of a wavelet analysis. (a) Time signal. (b)
Wavelet transform magnitude|wx(n, k)| with k ∝ − logω.
(c) Smoothed wavelet analysisyx(n, k).

response of a complex analog gammatone filter [9]

gγ(n) = nγ−1 · ãn , n ≥ 0 (3)

with

ã = λ · exp (jβ)

whereλ denotes the bandwidth or damping parameter,β de-
termines the center frequency andγ denotes the filter order.

The center frequencyfc of such a filter is parameterized
by the phaseβ of ã which takes the value

β = 2π
fc

fs
. (4)

Using the following analytical expression for the equiva-
lent rectangular bandwidth (ERB) of auditory filters as a func-
tion of the frequencyf as given in [10]

ERBauditory(f) = 24.7 +
f

9.265
(5)

Patterson et al. show in [8] that the damping parameterλ can
be well approximated by

λ = exp

(

−
2πb

fs

)

(6)



Fig. 2. Gammatone analysis.

with

b = ERB/aγ ,

aγ =
π (2γ − 2)! · 2−(2γ−2)

(γ − 1)!2

leading to an auditory motivated, constant bandwidth on the
ERB scale.

Keeping in mind that a linear frequency warping of the
signal by a factorα should yield in a translation in the log
frequency domain, the individual filters should be logarith-
mically spaced. The corresponding representation with log-
arithmically spaced center frequencies will be denoted as
glog

x (n, k) with superscript ”log”. From the physiological
point of view, however, the filters should be linearly spacedon
the ERB scale, which is only approximately logarithmic and
results only in an approximate translation in the log-frequency
domain for a linear frequency warping. This different spac-
ing will be labeled by the superscript ERB in the correspond-
ing representationgERB

x (n, k). Finally, we also used a MEL
spacing, labeled by the superscript MEL in the corresponding
representationgMEL

x (n, k).
Given a representationgx(n, k), the final primary repre-

sentation is then computed as in (2):

yx(n, k) =
∑

ℓ

h(ℓ) |gx(nL− ℓ, k)| (7)

In contrast to the linear-phase wavelet filters, the gamma-
tone filters are closer to being minimum phase. This implies
that, at the same bandwidth and center frequency, onsets will
be better represented with the gammatone filters, but at the
cost of longer tails in the responses. Fig. 2 illustrates this ef-
fect for the same signal as in Fig. 1.

3. WARPING-INVARIANT FEATURES

Due to the nature ofyx(n, k), warping-invariant features
can be easily generated by taking the Fourier transform of
yx(n, k) with respect to parameterk and retaining only the
magnitudes of the transform coefficients. However, this is
only one of several possibilities to obtain warping-invariant
features. Any feature extraction strategy that is independent

Fig. 3. Autocorrelation featuresrx(n, 0,m) for m ≥ 0.

of a translation with respect tok will allow us to achieve this
goal.

Other possibilities include, but are not limited to correla-
tion sequences between transform values or nonlinear func-
tions thereof at two time instancesn andn − d (correlation
with respect to the log-frequency indexk). In particular, we
here consider

rx(n, d, m) =
∑

k

yx(n, k)yx(n − d, k + m) (8)

and

cx(n, d, m) =
∑

k

log(yx(n, k)) · log(yx(n − d, k + m)). (9)

The parameterd is a time lag, andm is the lag for the log-
frequency indexk. The featuresrx(n, 0,m) will give infor-
mation on the signal spectrum in time framen. For d 6= 0
the featuresrx(n, d,m) will give information on the devel-
opment of short-time spectra over time. A feature vector for
time indexn can contain any collection of the above men-
tioned features computed for the same time indexn. More-
over, any linear or nonlinear combination and/or transform
or filtering of rx(n, d,m) andcx(n, d,m), including taking
derivatives (i.e., delta and delta-delta features) will also yield
warping invariant features.

To give an illustration of the properties of the correlation-
based features, we consider the setrx(n, d,m) for d = 0 (i.e.,
autocorrelation features). Fig. 3 shows the features for the sig-
nal of Fig. 1. It is interesting to see that the autocorrelation, al-
though it is in some sense phase-blind, still retains the formant
structure. This is due to the fact that noticeable correlation
values are achieved when the high-energy pitch component
is shifted and multiplied with the formant components dur-
ing the correlation operation. Under the assumption that the
linear warping model is true for vocal tract length variations,
these formant-related structures will indeed be independent of
the warping factor. For real speech, of course, this is only an
approximation [11], but it leads to formant-like structures that
are robust to vocal tract length variations.

4. EXPERIMENTAL RESULTS

In our experiments, different setups using the linear-phase
wavelet transform described in Section 2.1 and the nonlinear-



phase, auditory-system motivated gammatone filterbank ac-
cording to Section 2.2 were used.

For the gammatone filterbank, three approaches were ex-
amined:

• 90 logarithmically spaced center frequencies

• 90 ERB spaced center frequencies

• 90 MEL spaced center frequencies

Center frequencies were considered in the range of 40-
6700Hz, each with a bandwidth of one ERB. The lowpass
filter h(n) was a rectangular window of 200 coefficients.

The original speech signals were sampled at 16 kHz sam-
pling rate, and the final frame rate was set to 10 ms. The fol-
lowing 45 vocal-tract length invariant features (VTLI-F) were
used:

• the first 20 coefficients of the discrete cosine transform
(DCT) of log(r(n, 0,m)) with respect to parameterm
for m = 0, 1, . . . , 83.

• the first 20 coefficients of the DCT ofc(n, 4,m) with
respect to parameterm with m = −83, . . . , 83.

• log(r(n, 4,m)) for m = −2,−1, . . . , 2

The warping-invariant features were also amended with
classical MFCC features. For this, the 12 MFCCs and the
single energy feature of the standard HTK setup were used
(denoted by 13 MFCC in the following). Moreover, the first
15 DCT coefficients (DCT with respect to frequency param-
eter k) of the logarithmized wavelet featureslog(yx(n, k))
were used for feature set amendment as well. Finally, for
all features, also the delta and delta-delta coefficients were in-
cluded. Altogether, this makes a total number of 219 features.
In a subsequent step, the number of features was reduced, us-
ing either feature selection or a linear discriminant analysis
(LDA) [12].

The following feature sets were considered, where the fac-
tor 3 stands for the inclusion of delta and delta-delta features:

• 3×13 MFCC

• All 219 features, reduced via an LDA to 47 features.
In each case, it has been indicated which filterbank and
frequency spacing was used. We have

◦ WT wavelet-transform

◦ GTlog log-spaced gammatone filter

◦ GTERB ERB-spaced gammatone filterbank

◦ GTMEL MEL-spaced gammatone filterbank

• 3×13 MFCC + 8 VTLI-F. These are the MFCCs,
amended with the 8 most important features from the
plain VTLI-F setting above.

• 3×13 MFCC + 3×5 VTLI-F. These are the
MFCCs, amended with first five DCT coefficients
of log(r(n, 0,m)) with respect to the frequency lagm.

Table 1. Accuracies in % for phoneme recognition using a
HMM recognizer with eight mixtures and diagonal covari-
ance matrices.

Features Train. Test Acc.
3×13 MFCC M+F M+F 69.19
VTLI-WT-F+MFCC+WT M+F M+F 67.84
VTLI-GT logF+MFCC+GTlog M+F M+F 68.15
VTLI-GTERBF+MFCC+GTERB M+F M+F 68.82
VTLI-GTMELF+MFCC+GTMEL M+F M+F 68.45
3×13 MFCC + 8 VTLI-WT-F M+F M+F 70.74
3×13 MFCC + 8 VTLI-GTERB-F M+F M+F 70.38
3×13 MFCC + 3×5 VTLI-WT-F M+F M+F 69.33
3×13 MFCC + 3×5 VTLI-GTlog-F M+F M+F 67.69
3×13 MFCC + 3×5 VTLI-GTERB-F M+F M+F 68.02
3×13 MFCC + 3×5 VTLI-GTMEL-F M+F M+F 67.96

3×13 MFCC M F 56.84
VTLI-WT-F+MFCC+WT M F 63.56
VTLI-GT logF+MFCC+GTlog M F 62.49
VTLI-GTERBF+MFCC+GTERB M F 63.15
VTLI-GTMELF+MFCC+GTMEL M F 62.22
3×13 MFCC + 8 VTLI-WT-F M F 62.27
3×13 MFCC + 8 VTLI-GTERB-F M F 61.53
3×13 MFCC + 3×5 VTLI-WT-F M F 59.38
3×13 MFCC + 3×5 VTLI-GTlog-F M F 58.47
3×13 MFCC + 3×5 VTLI-GTERB-F M F 59.76
3×13 MFCC + 3×5 VTLI-GTMEL-F M F 59.04

3×13 MFCC F M 55.53
VTLI-WT-F+MFCC+WT F M 62.98
VTLI-GT logF+MFCC+GTlog F M 62.15
VTLI-GTERBF+MFCC+GTERB F M 63.00
VTLI-GTMELF+MFCC+GTMEL F M 62.61
3×13 MFCC + 8 VTLI-WT-F F M 60.79
3×13 MFCC + 8 VTLI-GTERB-F F M 60.09
3×13 MFCC + 3×5 VTLI-WT-F F M 59.13
3×13 MFCC + 3×5 VTLI-GTlog-F F M 57.48
3×13 MFCC + 3×5 VTLI-GTERB-F F M 58.49
3×13 MFCC + 3×5 VTLI-GTMEL-F F M 57.75

We present results for phoneme recognition on the TIMIT
corpus (including the SA files). The training and test sets
were both split into male and female subsets in order to allow
for training and testing under different conditions. In thefol-
lowing, M+F, M, and F denote training/test on male+female,
male, and female data, respectively. Following the procedure
in [13], 48 phonetic models were trained, and the classifica-
tion/recognition results were folded to yield 39 final phoneme
classes that had to be distinguished. The LDA was based on



the 48 phonetic classes.
Table 1 contains the results for HMM-based phoneme

recognition using monophone models, three states per
phoneme, eight Gaussian mixtures per state, and diagonal
covariance matrices. The recognizer was based the Hidden-
Markov-Toolkit (HTK).

For the M+F setting, where both male and female data
was used during training and test, we see that all examined
feature sets yield almost the same performance as the MFCCs,
best performance is achieved by the 3×13 MFCC + 8 VTLI-
WT-F setup. However, when only male or only female data is
used for training, the degradation for the linear-phase wavelet
based feature sets as well as for the gammatone based fea-
ture sets are far less than for the MFCCs.In contrast to the
M+F setting andalbeit the nature of preprocessing, the best
performances are achieved when VTLI features, preprocess-
ing features and MFCCs are combined via an LDA to a fi-
nal number of 47 features. This combined feature set is also
the most robust one when the training and test conditions are
different. A closer examination of these results for the dif-
ferent preprocessing steps shows that only the incorporation
of all mentioned audiology aspects can slightly enhance the
detection rates. Using the presented approach incorporating
both ERB-based bandwidth and ERB-based frequency scal-
ing (GTERB) best recognition rates were achieved although
the center frequencies are not strictly logarithmically spaced.
Interestingly, the GTlog case leads to lowest recognition rates
of all three approaches. The MEL spacing performs slightly
better than the logarithmic one, but it cannot reach the perfor-
mance obtained with the ERB scale.

As the results show, for the GTERB feature set, the ac-
curacy for the M+F condition is nearly the same as for the
MFCCs, and at the same time, it is significantly better for all
other conditions: When training on male and testing female
data, the accuracy is about 6% better than for MFCCs. When
training on female and testing male data, it is even 7.5% better
than for MFCCs.

5. CONCLUSIONS

We have proposed a technique for the extraction of vocal tract
length invariant features with an auditory-filterbank based
preprocessing. The performance of the new features has been
demonstrated for phoneme recognition tasks. The results
have shown that the incorporation of knowledge about the
human auditory system can lead to an enhancement of recog-
nition rates and to more robustness. The optimal choice of
the primary frequency analysis and the best feature selection
depend on the task at hand and are still open issues.
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