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ABSTRACT into a translation in the log-frequency domain, it does et e

) i . . . actly match the frequency analysis that is carried out in the
Auditory filterbanks have a long history in the preprocegsin p, ;15 auditory system. In this paper, we therefore study the

stage of automatic speech recognition systems, with thé Mo§qefyiness of auditory-filterbank motivated preprocessor

prominent examples being the mel frequency cepstral coef- : ;
ficients (MFCCSs). In this paper, we study the usefulness of While the MEL scale has been found from the analysis of

: : just noticeable differences in the frequency of sinusdids,
auditory-filterbank analyses as a preprocessor for thergene : .
. o : L so-called equivalent rectangular bandwidth (ERB) scake ha
tion of frequency-warping invariant features. The resiuits- X , .
cate, that gammatone-filterbank analyses following thévequ been found from masking experiments and better describes
alent rectangular bandwidth (ERB) scale yield the mosft:bbu the bandwidths of the auditory filters. Moreover, the anal

. -~ ysis of the human auditory system as well as physiologi-
feature sets. The performance improvements are most-5|gnca| animal experiments have led to an approximation of the
icant when the vocal tract lengths in the training and tefst se P pp

differ, which is important when, for example, children sglee (éocnlear f(;v_aquency inalysisb_by jo-czlled gammatofqe f:)lteri
is to be recognized with a system that was mainly trained on oth para 'gms can be combined, an gammato_ne llterbanks
adult data can be used with center frequer!mes and bandwidths thfit fol-
' low the ERB scale. Moreover, it has been suggested in [5]
to carry out vocal tract length normalization along the MEL

scale.

Vocal tract length normalization has become an integral par  In this paper we study the usefulness of auditory-
of many automatic speech recognition engines [1, 2]. It ignotivated gammatone analyses as a preprocessor for gen-
based on the idea that the short-time spectra of two speake@gating robust feature sets that are nearly invariant t@avoc
A and B are approximately related @, (w) = Xp(aw),  tractlength variations. The paper is organized as folldws.
wherea is the so-called warping factor. The valuemfde- the next section, we briefly introduce the wavelet transform
pends on the ratio of the vocal tract lengths of both speake@nd then describe the gammatone analysis. Section 3 then
and usually lies in the range betwe@s and1.2, relative to ~ presents the generation of the proposed, warping-independ
an average speaker. The valuewds typically selected asthe VTLI features. In Section 4 we describe the experimen-
one that yields the highest likelihood scores in a subsequei?! Setup and present results on phoneme recognition exper-
hidden Markov model (HMM) based recognizer [2, 3]. Re-iments. Section 5 gives some conclusions.
cent approaches even normalize the utterances from the same
speaker with optimak on a frame-by-frame basis, in order to 2. PRIMARY TIME-FREQUENCY ANALYSIS
better match the standard realizations of the phonemes [3]. 5 1 The discrete-time wavelet analysis

Recently, a method for the generation of vocal tract length
invariant (VTLI) features has been proposed in [4]. In thisThe discrete-time wavelet transform of a signéh) can be
method, the wavelet transform was used as a preprocessg?mputed as
that produces a time-frequency analysis in which linear fre m—nN
guency warping results in a tranglatlon with respect to a log we(n, k) = 27F/ (M) Zx(m) (' (W>’ (1)
frequency parameter. While a strict wavelet analysis wigh |0 m
arithmically spaced center frequencies exactly carriéshmu
conversion of linear frequency warping of sinusoidal irgput

1. INTRODUCTION

where M is the number of voices per octave, aidis the
subsampling factor used to reduce the sampling rates in the

This work was supported by the EU DIVINES Project under Got ~ Wavelet subbands. Assumirig o’ctaves, the scaling param-
IST-2002-002034. etera takes on values;, = 2¥/™ Lk =0,1,..., MK — 1.




The continuous-time wavelet(t), whose samples occur in 1
the sum in (1), is the so-called mother wavelet. For this, in
[4] the Morlet wavelet [6] given by (n) = exp(jwon) X

exp(—%) was used with the parametetg = 0.97 and of

o2 = 100. The transformw,(n, k) was carried out with

n

M = 12 voices per octave and’ = 7 octaves, resulting

in primary feature vectors of length 84. -1(; 2000 2050 5000 000 000012000
An important property of the wavelet transform (1) is that (@) n—»
it is computed on a regular time grid with the same subsam-

the bandwidth. This is in contrast to the discrete waveletT
transform (DWT), which operates on a dyadic grid and usess L
different sampling rates in different octaves. Due to the-co &
stant sampling rate in all frequency bands, the wavelestran -
form (1) does not suffer from the shift-invariance problem =
known from the DWT, provided that the factd¥ is suffi-
ciently small and chosen in accordance with the number of
voices (e.g., such thaf < M).

The wavelet analysis will have better time resolution at T

T
higher frequencies than needed for producing feature vec<s
tors every 5 to 15 ms. Direct downsampling of features will e
therefore introduce aliasing artifacts. Since we are myainl
interested in the signal-energy distribution over time fied — —
(c) n—»

guency, we may take the magnitudewf(n, k) and filter it

with a lowpass filter in time direction before final downsam-Fig. 1. Example of a wavelet analysis. (a) Time signal. (b)
pling. The final primary features will then be of the form Wavelet transform magnitudev, (n, k)| with & o« — log w.

¢) Smoothed wavelet analygjs(n, k).
ya(n, k) = 3" h(0) [w, (nL - €, k)| 2 © ygis(n, k)
0

pling factor N applied to all frequency bands, regardless of : m

whereh () is the impulse response of the lowpass filfers
the downsampling factor introduced to achieve the final #am
rate f;/(IN - L), and f is the sampling frequency. To avoid g,(n) = nha" . n>0 (3)
that the filtered values, (n, k) can become negative, we as-

sume a strictly positive sequengén) like, for example, the  With

response of a complex analog gammatone filter [9]

Hanning window. In [7], the lowpass filtér(n) was simply a @ = A-exp(jf)
rectangular window of 200 coefficients, and the initial dewn
sampling was set t&/ = 1. where\ denotes the bandwidth or damping parametede-

Fig. 1 gives an example of a wavelet analysis. In Fig. 1(b){ermines the center frequency andenotes the filter order.
which shows|w,(n, k)| as a grey-scale image (i.e., a scalo-  The center frequency. of such a filter is parameterized
gram), the pitch is visible in most frequency bands. Thisby the phase of a which takes the value
pitch pattern is no longer visible in Fig. 1(c), which depict

Yo (n, k). 68 = 271'%. 4)
2.2. Thegammatone analysis Using the following analytical expression for the equiva-

The wavelet transform described above is a true constant-§Nt rectangular bandwidth (ERB) of auditory filters as acfun
analysis with the same relative bandwidth in all frequency!!on of the frequency as given in [10]
bands. However, according to Patterson et al. [8], the ggsum f

tion of constant relative bandwidths as well as the strigt lo ERBauaitory(f) = 24T+ 55 ®)

arithmical frequency-spacing as mentioned before, doés ng

correspond with the filtering process in the human auditor;E""tterson etal. show in [8] that the damping paramgtean
system. e well approximated by

The impulse responses of the filters in the auditory sys- 2mh
tem can be approximated by the following sampled impulse A= exp— s

(6)



logw —»

n —»
n—» ) .
Fig. 3. Autocorrelation features, (n, 0, m) for m > 0.
Fig. 2. Gammatone analysis.
) of a translation with respect towill allow us to achieve this
with goal.
b = ERB/a Other possibilities include, but are not limited to correla
o i tion sequences between transform values or nonlinear func-
m(2y—2)!- 272 tions thereof at two time instancesandn — d (correlation
Ay (y —1)12 with respect to the log-frequency indé¥. In particular, we

_ _ _ _ here consider
leading to an auditory motivated, constant bandwidth on the

ERB scale. (n,d, m) Zyz n,k)yz(n —d, k +m) (8)
Keeping in mind that a linear frequency warping of theand
signal by a factor should yield in a translation in the log
frequency domain, the individual filters should be logarith ¢, (n,d, m) Zlog Yo (n, k)) - log(ye(n — d, k +m)). (9)
mically spaced. The corresponding representation with log
arithmically spaced center frequencies will be denoted a
gled(n, k) with superscript "log”. From the physiological
point of view, however, the filters should be linearly spaced
the ERB scale, which is only approximately logarithmic and
results only in an approximate translation in the log-freoey
domain for a linear frequency warping. This different spac-,
ing will be labeled by the superscript ERB in the correspond;
ing representatiop”f5 (n, k). Finally, we also used a MEL

spacing, labeled by the superscript MEL in the corres:pcg1dinOr filtering of r, (n, d,m) andc, (n, d,m), including taking

representation,” " (n, k). , , derivatives (i.e., delta and delta-delta features) wébatield

Given a representatio, (n, k), the final primary repre- warping invariant features.

sentation is then computed as in (2): To give an illustration of the properties of the correlation
Z h(t) |go(nL — £, k)] 7) based featur_es, we conside.r thersétr, d, m) ford = 0 (i.(_a.,
autocorrelation features). Fig. 3 shows the features &osity
nal of Fig. 1. Itis interesting to see that the autocorretatal-

In contrast to the linear-phase wavelet filters, the gammathough itis in some sense phase-blind, still retains thaémt
tone filters are closer to being minimum phase. This impliestructure. This is due to the fact that noticeable corremati
that, at the same bandwidth and center frequency, onséts wilalues are achieved when the high-energy pitch component
be better represented with the gammatone filters, but at the shifted and multiplied with the formant components dur-
cost of longer tails in the responses. Fig. 2 illustrates & ing the correlation operation. Under the assumption that th

SThe parameteti is a time lag, andn is the lag for the log-
frequency indext. The features:,(n, 0, m) will give infor-
mation on the signal spectrum in time frame Ford # 0

the features,(n, d, m) will give information on the devel-
opment of short-time spectra over time. A feature vector for
time indexn can contain any collection of the above men-
tioned features computed for the same time indexMore-
over, any linear or nonlinear combination and/or transform

fect for the same signal as in Fig. 1. linear warping model is true for vocal tract length variagp
these formant-related structures will indeed be indepetnafe
3. WARPING-INVARIANT FEATURES the warping factor. For real speech, of course, this is only a

Due to the nature of,(n, k), warping-invariant features approximation [11], but it leads to formant-like structsitbat
. a1, 1), Warping . z?re robust to vocal tract length variations.
can be easily generated by taking the Fourier transform o

y.(n, k) with respect to parametér and retaining only the 4. EXPERIMENTAL RESULTS

magnitudes of the transform coefficients. However, this is

only one of several possibilities to obtain warping-ingati  In our experiments, different setups using the linear-phas
features. Any feature extraction strategy that is indepahd wavelet transform described in Section 2.1 and the nontinea



phase, auditory-system motivated gammatone filterbank ac- e¢ 3x13 MFCC + 35 VTLI-F. These are the
cording to Section 2.2 were used. MFCCs, amended with first five DCT coefficients
For the gammatone filterbank, three approaches were ex-  0f log(r(n, 0, m)) with respect to the frequency lag.
amined:
e 90 logarithmically spaced center frequencies Table 1. Accuracies in % for phoneme recognition using a
e 90 ERB spaced center frequencies HMM recognizer with eight mixtures and diagonal covari-

) ance matrices.
e 90 MEL spaced center frequencies

Features Train. | Test | Acc.
Center frequencies were considered in the range of 403x13 MFCC M+F | M+F | 69.19
6700Hz, each with a bandwidth of one ERB. The lowpassVTLI-WT-F+MFCC+WT M+F | M+F | 67.84
filter h(n) was a rectangular window of 200 coefficients. VTLI-GT'°9F+MFCC+GT°9 M+F | M+F | 68.15
The original speech signals were sampled at 16 kHz samVTLI-GT #*BF+MFCC+GT* ¥ M+F | M+F | 68.82
pling rate, and the final frame rate was set to 10 ms. The fol-VTLI-GT M PLF+MFCC+GT/FL M+F | M+F | 68.45
lowing 45 vocal-tract length invariant features (VTLI-Fgre 3x13 MFCC + 8 VTLI-WT-F M+F | M+F | 70.74
used: 3x13 MFCC + 8 VTLI-GT*#E-F M+F | M+F | 70.38
o the first 20 coefficients of the discrete cosine transform 3x13 MFCC + 3<5 VTLI-WT-F M+F | M+F | 69.33
(DCT) of log(r(n, 0,m)) with respect to parameter, ~ 3x13 MFCC +3<5 VTLI-GT'*-F | M+F | M+F | 67.69
form =0,1,...,83. 3x13 MFCC + 3«5 VTLI-GT**5-F| M+F | M+F | 68.02
3x13 MFCC + 3«5 VTLI-GTMFL.F| M+F | M+F | 67.96
o the first 20 coefficients of the DCT @fn, 4, m) with 3x13 MECC M = 56.84
respect to parametes with m = —83,...,83. VTLIEWT-F+MECC+WT M E 63.56
e log(r(n,4,m)) form = —2,-1,...,2 VTLI-GT "*9F+MFCC+GT?¢ M F 62.49
VTLI-GT #*BF+MFCC+G T M F | 63.15
VTLI-GTMFLEF+MFCC+G T EL M F | 6222
The warping-invariant features were also amended with3x13 MECC + 8 VTLI-WT-F M E 62.27
classical MFCC features. For this, the 12 MFCCs and the3y13 MECC + 8 VTLI-GTERB-F M = 61.53
single energy feature of the standard HTK setup were used, 13 MECC + 3¢5 VTLI-WT-F M F | 5938
(denoted by 1.3' MFCC in thg following). Moreover, the first 3, 13 MECC + 3¢5 VTLI-GT9-F M F 58.47
15 DCT Coeffl(:lents_ (DC_?T with respect to frequency param- 3%13 MECC + 3¢5 VTLI-GTERE-E| M = 59.76
eter k) of the logarithmized wavelet featurs}atiig(ym(@, k)) 3% 13 MECC + 3¢5 VTLI-GTMEL.E| M F 59.04
were used for feature set amendment as well. Finally, for3X13 MECC = M 5553
all features, also the delta and delta-delta coefficients e '
. VTLI-WT-F+MFCC+WT F M 62.98
cluded. Altogether, this makes a total number of 219 feature tog oo
In a subsequent step, the number of features was reduced, ugTLI'GTER';MchG REB F M) 6215
ing either feature selection or a linear discriminant asialy VTLI'GTMELF"LMFCCJ’GTEIEL F M 63.00
(LDA) [12]. VTLI-GT MELE+MFCC+GT F M | 62.61
The following feature sets were considered, where the fac->*13MFCC +8 VTL"WT'FRB F M 60.79
tor 3 stands for the inclusion of delta and delta-delta festu <13 MFCC +8 VTLI-GT*"2-F F M 60.09
3x13 MFCC + 3«5 VTLI-WT-F F M 59.13
e 3x13 MFCC 3%x13 MFCC + 35 VTLI-GT!*9-F F M 57.48
o All 219 features, reduced via an LDA to 47 features. 3x13MFCC + &SVTU_GTZIZ'F F M~ | 58.49
In each case, it has been indicated which filterbank ang>X 13 MFCC + SO VILI-GT 7-F|  F M | 5775

frequency spacing was used. We have
o WT wavelet-transform We presen§ results for phoneme recog.ni_tion onthe TIMIT
corpus (including the SA files). The training and test sets
were both split into male and female subsets in order to allow
o GT""P  ERB-spaced gammatone filterbank  for training and testing under different conditions. In fbe
o GTMEL MEL-spaced gammatone filterbank lowing, M+F, M, and F denote training/test on male+female,
male, and female data, respectively. Following the proczdu
e 3x13 MFCC + 8 VTLI-F. These are the MFCCs, in [13], 48 phonetic models were trained, and the classifica-
amended with the 8 most important features from theion/recognition results were folded to yield 39 final phioree
plain VTLI-F setting above. classes that had to be distinguished. The LDA was based on

o GT log-spaced gammatone filter



the 48 phonetic classes. [2] L. Lee and R. C. Rose, “A frequency warping approach
Table 1 contains the results for HMM-based phoneme  to speaker normalization/EEE Trans. Speech and Au-
recognition using monophone models, three states per dio Processing, vol. 6, no. 1, pp. 49-60, Jan. 1998.

phoneme, eight Gaussian mixtures per state, and diagon . .
covariance matrices. The recognizer was based the Hidder?[-lg'] A. Miguel, E. Lleida, R. Rose, L. Buera, and A. Ortega,

i . “Augmented state space acoustic decoding for modeling
Markov-Toolkit (HTK). local variability in speech,” irProc. Interspeech 2005,

For the M+F setting, where both male and female data Lishon, Portugal, in press, 2005.

was used during training and test, we see that all examined
feature sets yield almost the same performance as the MFCCg4] A. Mertins and J. Rademacher, “Vocal tract length in-

best performance is achieved by the13 MFCC + 8 VTLI- variant features for automatic speech recognition,” in
WT-F setup However, when only male or only female data is Proc. 2005 IEEE Automatic Speech Recognition and
used for training, the degradation for the linear-phasectedyv Understanding Workshop, San Juan, Puerto Rico, Nov.

based feature sets as well as for the gammatone based fea- 27 -Dec. 1 2005, pp. 308-312.

ture sets are far less than for the MFCQs.contrast to the

M+F setting ancalbeit the nature of preprocessing, the best [3] S. Umesh, L. Cohen, and D. Nelson, “Frequency warp-
performances are achieved when VTLI features, preprocess- Ing and the Mel scale [EEE Sgnal Processing Letters,

ing features and MFCCs are combined via an LDA to a fi-  Vol- 9, no. 3, pp. 104-107, Mar. 2001.

nal number of 47 features. This (;o_mbined feature sgt is als 6] M. Vetterli and J. Kovievie, Wavelets and Subband
the most robust one When thg training and test conditions are = i ng, Prentice-Hall, Englewood Cliffs, NJ, 1995.
different. A closer examination of these results for the dif
ferent preprocessing steps shows that only the incorporati [7] A. Mertins and J. Rademacher, “Frequency-warping in-
of all mentioned audiology aspects can slightly enhance the  variant features for automatic speech recognition,” in
detection rates. Using the presented approach incorpgrati ICASSP, accepted 2006.

both ERB-based bandwidth and ERB-based frequency scal-

ing (GT”#%) best recognition rates were achieved although [8] R. D. Patterson, J. Nimmo-Smith, J. Holdsworth, and

the center frequencies are not strictly logarithmicallscs. P. Rice, “An efficient auditory filterbank based on the
Interestingly, the G case leads to lowest recognition rates ~ 9ammatone function,” irProc. Meeting of the 10C

of all three approaches. The MEL spacing performs slightly ~ Speech Group on Auditory Modelling at RSRE, Decem-
better than the logarithmic one, but it cannot reach theoperf ber 14-15 1987.

mance obtained with the ERB scale.B [9] V. Hohmann, “Frequency analysis and synthesis using
As the results show, for the GT feature set, the ac- a Gammatone filterbank,"Acta Acustica United with

curacy for the M+F condlt!on is r_1ea_r|y _the same as for the Acustica, vol. 88, pp. 433-442, 2002.

MFCCs, and at the same time, it is significantly better for all

other conditions: When training on male and testing femalg¢10] B. R. Glasberg and B. C. J. Moore, “Derivation of audi-

data, the accuracy is about 6% better than for MFCCs. When  tory filter shapes from notched-noise data,”Hearing

training on female and testing male data, it is even 7.5%bett Research, 1990, vol. 47, pp. 103-138.

than for MFCCs. ) L
[11] G. Fant, “A non-uniform vowel normalization3eech

5. CONCLUSIONS Transmssion Lab. Rep., Royal Inst. Technol., Stock-
holm, Sweden, vol. 2-3, pp. 1-19, 1975.

We have proposed a technique for the extraction of vocal trac
length invariant features with an auditory-filterbank hhse [12] K. Fukunagantroduction to Satistical Pattern Recog-
preprocessing. The performance of the new features has been  Nition, Academic Press, New York, 1972.
demonstrated for phoneme recognition tasks. The resulli
have shown that the incorporation of knowledge about th
human auditory system can lead to an enhancement of recog-
nition rates and to more robustness. The optimal choice of
the primary frequency analysis and the best feature setecti
depend on the task at hand and are still open issues.

3] Kai-Fu Lee and Hsiao-Wuen Hon, “Speaker-
independent phone recognition using hidden Markov
models,” IEEE Trans. Acoust., Speech, Sgnal Process-

ing, vol. 37, no. 2, pp. 1641 — 1648, Nov. 1989.
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