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Abstract. In this paper, we present an alternating retrospective MRI
reconstruction framework based on a parameterised motion model. An
image recovery algorithm promoting sparsity is used in tandem with
a numeric parameter search to iteratively reconstruct a sharp image.
Additionally, we introduce a multiresolution strategy to restrict the numeric
complexity. This algorithm is then tested in conjunction with a simple
motion model on simulated data and provides robust and fast reconstruction
of sharp images from severely corrupted k-spaces.

1 Introduction

In the context of medical imaging, magnetic resonance imaging (MRI) is particularly
sensitive to patient movement during data acquisition. Even though the scanning
process was sped up considerably during recent years through improvements of
scanner hardware and image recovery algorithms, the duration of a full scan often
is prohibitively long even for cooperative patients. In addition, some involuntary
movements - such as pulsatile expansions and contractions due to blood flow or
intestinal peristalsis - are impractical to stop for a scan.

Autofocussing recovery algorithms used to reduce these motion artifacts
require only the data measured in a conventional scan and approximates motion
and the sharp image by minimizing some error metric after the scan is finished.
Algorithms utilizing autofocussing do not require specialized scanner hardware
nor do they influence the measurement or increase acquisition time. Generally,
these approaches utilize the gradient of an error function for image updates
while regularizing the motion parameters over time (e.g. in [1]). However, up
to this point, blindly retroactively removing nonaffine motion remains an open
challenge. As these models might not be readily differentiable, prior approaches
employing gradients are not readily applicable.

We propose a general framework for such an algorithm, which allows us to
fit arbitrary parameterised motion models in a blind MRI reconstruction. We
employ a novel regularization scheme using path searching algorithms to find
suitable time-dependent parameter sets. By iteratively approximating the image
using a sparse recovery approach and numerically updating the motion model,
the unknown motion is compensated effectively.
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2 Methods

Let x ∈ RM2

be a vectorized a square image and Dθ a known motion model.
Generally, Dθ can be understood as a linear transform matrix of size M2 ×M2

with an underlying structure compactly described by a set of parameters θ ∈ RT .
In MRI, trajectories through k-space are evaluated approximately at once.

If we measure N trajectories described by k-space coordinate vectors fn with
n ∈ {0, 1, . . . N − 1}, we are interested in the deformation of the image Dθx at
N points in time and therefore affected by N distinct motion parameter sets θn.

The whole measurement can then be described with a k-space data vector
y = [y0, . . . ,yN−1]T . Each yn ∈ CUn represents a partial measurement of the k-
space acquired by the trajectory through frequency coordinates fn with a number
of captured coefficients Un � M2 defined by yn = FfnDθn

x. In this, Ffn is a

partial Fourier transform which can be expressed as a CUn×M2

matrix.
Disregarding Dθ in the reconstruction of x will lead to ghosting artifacts

which degrade image quality and, in the worst case, will make the resulting image
unfit for medical evaluation. The exact recovery of x requires the approximation
of the underlying motion. In blind MRI image reconstruction, where no additional
data is acquired, we are left with the partial measurements yn and the corresponding
fn and tasked with the simultaneous approximation of both image and the motion
through Θ = {θ0, . . .θN−1}.

2.1 Optimization Scheme

The objective function of our reconstruction problem can - and, in comparable
approaches, is - generally be expressed as

fΘ̃,x̃ =

N−1∑
n=0

‖FfnDθ̃n
x̃− yn‖22 (1)

for a fixed measurement y. To jointly approximate image and motion parameters
we split the optimization problem into an alternating algorithm in which we
iteratively reduce the artifacts corrupting y and fit the motion model to better
describe the updated image. Beginning with some arbitrary starting points x0

and Θ0 we seek an updated image through

xk+1 = arg min
x̃

fΘk,x̃ + αRx(x̃), (2)

where k ∈ {0, 1, . . .K − 1} is the current iteration with a maximum number of
iterations K. Since the problem is ill-posed, Rx is a regularization term for the
image with Lagrange multiplier α. We then seek an updated motion parameter
set through

Θk+1 = arg min
Θ̃

fΘ̃,xk+1 s.t. Θ̃ ∈ Ψ (3)
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which fits the parameter set to the updated image. Since acquisition time in MRI
is generally short, we expect that the motion state does not change too much
between consecutive time steps. To quantify this change, we define a distance
function φ(·, ·) which is used as a difference measure of parameterised motion
states. Using this, we define a set of admissible motion parameter sets

Ψ = {Θ | φ(θn,θn−1) < τ ∀ n ∈ {1, . . . , N − 1}} (4)

with a maximal allowed distance between time steps τ .
We will now describe the two update steps and their motivation in greater

detail while providing some implementation details.

2.2 Image reconstruction

The optimization probem in Eq. (2) is regularly found in literature and research
concerning sparse data recovery. In the latter, the regularization term is chosen
so that structure of the underlying data is exploited and a solution is chosen
which is sparse in a transform basis.

Using this approach, we chose Rx(x) = ‖Wx‖1, where W ∈ RM2xM2

is an
invertible wavelet transform matrix. It is well known from literature that natural
images can be represented sparsely in the wavelet domain. Since the ghosting
artifacts afflicting the image reduce its sparsity, we can expect to improve image
quality by this approach.

Thus, Eq. (2) is an unconstrained convex optimization problem which can be
solved in numerous ways. Because of the size of the involved system matrices,
algorithms requiring system matrix inversion are not feasible for larger images.
We instead use the (scaled) alternating direction method of multipliers (ADMM)[2]
to find a solution iteratively.

Using the ADMM framework, the problem can be decomposed into an alternating
algorithm consisting of the three sub-steps

uj+1 = arg min
ũ

N−1∑
n=0

||FfnDθ̃n
ũ− yn||22 +

λ

2
‖ũ−

(
vj + wj

)
‖22 (5)

vj+1 = Tα/λ
(
W
(
uj+1 + wj

))
, wj+1 = wj + uj+1 −W−1vj+1 (6)

starting from some arbitrary u0, w0 and v0 with j denoting the iteration and
λ being the penalty parameter of the augmented Lagrangian. With a soft-
thresholding function Tz(·) with threshold z, the updates for vj+1 and wj+1

are trivial. The update of uj+1 can be solved using convex optimization - we
used a conjugate gradient descent to find an update.

2.3 Motion Update

The optimization of Θ is unfortunately not as straight-forward for arbitrary
motion modelsDθ. Since we seek a general solution independent of the underlying
motion model, we cannot optimize using convex optimization.
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The objective function Eq. (1) however can be split to a number of N
smaller problems by splitting the sum. For a fixed measurement and image
approximation we end up with

f̂nθ = ||FHfnyn −Dθxk+1||22. (7)

By defining a search space for the parameter set, we can then numerically
evaluate every partial objective function f̂nθ on possible values for θn and look
for the set which minimizes Eq. (1) while being in Ψ .

To sample the partial objective function with respect to θ, we create a
parameter lattice Ω ⊂ RT . We approximate a maximum absolute value Gt and
a step size γt for each value in the parameter representation θt, so that we end
up with

Ω =

{
T−1∑
t=0

atθt | at ∈ {−Gt,−Gt + γt, . . . , Gt}

}
. (8)

The parameters Gt and γt are crucial for the algorithm, as they define the
maximum value for every parameter as well as its resolution.

Using a linear index v ∈ {0, 1, . . . , V − 1} with V =
∏T
t=0

⌈
2Gt

γt

⌉
we then

calculate the error term for every motion state ωv on the lattice and collect
them into a matrix Q ∈ RNxV with entries qn,v = f̂nωv

.
The update of Θk then reduces to a path search problem through Q. We use

a modified variant of the Viterbi algorithm [3], but other path search algorithms
might be applicable as well.

For the path search algorithm, we initialize a path storage p0,v = v , state
transition sets βv = {ωh | φ(ωv,ωh) ≤ τ} and a path error matrix E ∈ RN×V
with entries e0,v = q0,v. We then update paths and error matrix by

p̃v = arg min
c ∈ βv

[en−1,c] , en,v = en−1,p̃v + qn,v, pn,v = [pn−1,v, p̃v] (9)

while iterating through n = {1, . . . , N−1}. The ’optimal’ path pj,N−1 corresponding
to the smallest eN−1,v then defines the updated motion parameter set by Θk+1 = {ωpj,0 , . . . ,ωpj,N−1

}.
This formulation allows us to find the optimal path in O(V N), once Q is
calculated.

Due to the nature of Q, accurately approximating a large number of parameters
in a big region would be infeasible using this approach. However, if the partial
objective functions are ’smooth enough’ for a step size γt we can utilize a different
approach. Refining the grid between iterations by progressively lowering Gt and
γt and centring the search space on Θk−1 - that is, evaluating qn,v = f̂n

(ωv−θk−1
n )

-

yields a multiresolution approach. This approach will fail if the partial objective
function changes rapidly for a step size γt, which depends on the motion model
and the underlying image.

Regardless whether the grid is refined or not, the update formulation comes
with a slight caveat: The resulting motion set is ambiguous in that every Θ which
fulfills yn = FfnDθn

Dξx is a possible solution. In essence, we cannot directly
influence the ’stating state’ of x, which might still be warped with a constant
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bias motion Dξ. Although this might be unproblematic in practical situations,
we circumvent this problem after the final iteration of the algorithm. Modifiying
ΘK−1 with a bias term κ ∈ RT yields a final set Θ̂ = {θK−10 −κ, . . . ,θK−1N−1−κ}
so that Dθ̂0

I = I and the image at the n = 0 is recovered.

2.4 Test Setup

Up to this point, we have outlined a general reconstruction framework for arbitrary
motion. The model driving the reconstruction is part of ongoing research. However,
we still evaluate the performance using a simplistic model to provide preliminary
results.

We used PROPELLER [4] (Periodically Rotated Overlapping ParallEL Lines
with Enhanced Reconstruction) as a k-space acquisition scheme with 50 blades.
Translational movements of the underlying image between blade acquisitions
were used to corrupt the measured k-space. This motion model results in a very
small set of parameters (T = 2) and an intuitive parameter distance function
φ(θa,θb) = ‖θa − θb‖2. As a base image, we used a simulated tomography of
the human brain [5] with a size of 150× 150 pixels.

Approximately smooth random motion curves were used with a varying
maximum amplitude of θmax.

Preliminary numerical evaluations show the partial objective functions to
be almost convex in a region around the true minimum. Therefore, we utilize
multiresolution and refine the lattice between iterations. Starting with a maximum
allowed motion of Gt = 30 pixels and step size γt = 3 for both parameters, both
were halved every three iterations. The maximum number of iterations was fixed
to K = 18. The starting step size was found to be inconsequential and fixed to
γt = 3. The maximum parameter distance τ was set to 2/10 ·Gt.

Parameters concerning image recovery were chosen empirically - we used
a separable wavelet transform with a Daubechies mother wavelet, a shrinking
parameter α = 1/2 and an ADMM penalty parameter of λ = 1.

For error measurements we used an l2-norm between base image and reconstruction
to quantify the recovery error as well as the structural image similarity measure
(SSIM) and total variation (TV) for artefact quantisation.

3 Results

Fig. 1 shows the simulated data prior to the algorithm and after its final iteration.
Sharp images are recovered even from harshly corrupted k-spaces, while the
multiresolution iteration allows for the improvement of images with θmax > Gt.
We expect the image to further improve with more iterations of the algorithm.

Fig. 2 shows the error measurements at the last iteration of the algorithm
for different θmax as well as different starting values for γt. As expected, the
l2-error is robustly decreased for all θmax, yielding near perfect results for small
movements1 while SSIM is increased.
1 Note that PROPELLER oversamples central regions of k-space while undersampling
edge regions, which in itself yields an l2-error even for unmoving subjects.
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(a) θmax = 10 (b) Reconst. (c) θmax = 40 (d) Reconst.

Fig. 1. Corrupted image and reconstruction for two maximal motion amplitudes.

10 20 30 40

θmax

10

20

30

40
l2-error

10 20 30 40

θmax

8300

8400

8500
TV

10 20 30 40

θmax

0

0.5

1
SSIM

Fig. 2. Error values for images before (cross) and after (square) reconstruction

Recovery of a sharp image using this approach takes about 5 minutes.

4 Discussion

In this work, we present an algorithm with which the parameter set of an a-priori
defined motion model can be approximated using partially sampled k-spaces.
This algorithm can be used to find a robust approximation of both sharp image
and corrupting motion simultaneously. Although it can be computationally intensive,
we propose a scheme to find a good solution with a reduced number of numeric
evaluations using multiresolution. The development of suitable low-parametric
motion models is subject of ongoing research.
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