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Abstract— In this paper we present a novel, highly-adoptable,
state-estimation filter based on the framework of graphical
stochastical models and variational message passing inference.
We evaluate our method on both real and simulated data for
tracking applications.
Our experimental results show that the proposed approach offers
qualitative and computational advantages over established filter
methods in practical situations, where the noise within a process
is not simply a Gaussian noise, but rather described by a more
complex distribution.
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I. INTRODUCTION

In many practical applications, such as tracking applica-
tions, we need to deal with observations from a system
whose internal mechanics are too complicated to be modeled
directly. The method of choice in such cases is to use a
statistical model, that allows us to proceed by projecting
our lack of knowledge on an uncertinty term within an
established mathematical formalism. Within this framework,
ordered observations (in particular time-ordered) are related to
stochastic processes. These are thus models for systems whose
unknown internal states undergo a process thus changing from
observation to observation. The estimation of the internal state,
therefore, is a very challenging task. In general this estimation
requires the application of a state-estimation filter. These filter
methods allow the usage of prior system knowledge, as well
as complementary information in order to achieve the best
possible state estimation.
Extensive research has been conducted to design models for
processes with additive and Gaussian distributed measurement
and process noise. Probably the most popular representatives
of this filter class are the Kalman filter [15] and its derivatives,
such as extended Kalman filter [9] or unscentend Kalman filter
[14].
Nevertheless in many situations, the requirements for the usage
of one of these filters are not fulfilled. While the assumption
of additivity in the case of noise is often still feasible, the
assumption of zero-mean Gaussian distribution is not. These
situations require a more general and flexible filter approach.
An approach such as the particle filter [21] or an interacting
multi model filter (IMM) ([6],[8],[17],[19]).
However both methods have also significant weaknesses and
limitations. For example, a particle filter often struggles with
side effects of the sampling based approximation of the a

posterori density. Effects such as high computational effort
or informative depletion ([12],[22]). An IMM-filter, however,
is limited by the boundary conditions of the underlying filter
ensemble.
In this contribution, we introduce a novel filter approach to the
problem of state estimation in the context of hidden Markov
processes. A filter approach which is developed within the
framework of graphical stochastical models as well as
variational message passing. In Section IV we will argue
that this proposed method provides notable qualitative and
numerical advantages over state-of-the-art methods in multiple
practical situations.

II. VMP INFERENCE IN CHOSEN PROBALISTIC GRAPHICAL
MODELS

The research around graphical stochastical models is very
active and a constant source of many publications ([1],
[3],[16]).
This activity can be explained by fact, that the concept of
graphical stochastical models, including the existing modern
inference methods, represents a powerful and very generic
mathematical tool for modeling the behavior of coupled
stochastic processes.
An exemplary stochastic process, whose behavior is accurately
emulated in the form of a generative graphical stochastical
model, this is the one behind a Kalman filter (see Fig. 1).
The nodes in this graphical model depict random variables.
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Fig. 1. Generative graphical model of a hidden Markov process.

They represent the time evolving latent system states (white
nodes) as well as corresponding measurable observables (dark
nodes).
The directed edges reflect the time transitions between the
latent system states and the causal relationships between
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system states and their corresponding observables. Thereby
they indirectly represent the existing conditional probabilities
between those nodes.
In consequence of its cycle-free structure, this stochastic
process model is classifiable as a linear Bayesian network
[5], whose corresponding joint distribution can be formulated,
based on the existing likelihoods, as follows:

P (HHH0:N ,YYY 1:N ) = P (HHH0) ·
NY

i=1

P (HHHi|HHHi�1)

· P (YYY i|HHHi) . (1)

This definition of the joint distribution is the starting point of
all inference. And in this sense it is the origin for the calcu-
lation of estimation filter essential marginal P (HHHk|YYY 1:k).
If the dynamic and measurement behaviour of a process can
be described accurately by linear models and if all noise
within the process behaves according to zero-mean Gaussian
noise, the solution for this calculation can be derived in a
closed-analytical form, as evidenced by the Kalman equations
[15]. But if the characterisation of the process differs from
these strict conditions, the analytical calculation of the desired
marginal P (HHHk|YYY 1:k), in general, fails.
In order to solve this problem, we propose a deterministic-
working numerical inference approach called variational mes-
sage passing (VMP).
The principle of this inference approach was proposed by
Winn et al. ([23],[7]). The motivation for this approach was
the development of a deterministic method, which can be used
to optimally approximate the characteristic likelihood function
P (HHH|VVV ) of a process, based on a generated sampling set VVV ,
with VVV = {VVV 1, . . . ,VVV N}, by a tractable likelihood function
Q (HHH), according to:

Q⇤
(HHH) ⇡ P (HHH|VVV ) . (2)

Winn et al. developed their approach based on the variational
inference idea, which was introduced by Attias ([2]), Ghahra-
mani and Beal ([11]) and Bishop ([7]). Essentially, it uses the
variational equation

ln (P (VVV )) =

X

HHH

ln

✓
P (HHH,VVV )

Q (HHH)

◆
·Q (HHH)

�
X

HHH

ln

✓
P (HHH|VVV )

Q (HHH)

◆
·Q (HHH)

= L (Q)�KL (Q||P ) , (3)

to indirectly identify an optimal approximation of the desired
likelihood P (HHH|VVV ) in form of a tractable function Q (HHH),
based on the well-known definition of the joint distribution,
according to

P (HHH,VVV ) = P (ZZZ) =

Y
P (ZZZi, Pa (ZZZi)) . (4)

This idea allows us to solve the main problem, the
minimum problem of Kullback-Leibler divergence
KL (P (HHH|VVV ) ||Q (HHH)), which leads to the desired
approximation Q (HHH), by solving the complementary

maximization problem L (Q), the so-called lower-bound
problem:

argmin

Q
(KL (Q||P )) = argmax

Q
(L (Q)) (5)

For developability of an inference approach, based this con-
structed complementary lower-bound problem, Winn et al. [23]
introduced some additional requirements:

Acyclic Graph: The stochastic process has to be accurately
modeled by an acyclic graphical Bayesian network.

Factorisation: For the mathematical handling, the solution
space of Q (HHH) is restricted. Only those solutions that meet
the condition

Q (HHH) =

Y

i

Qi (HHHi) (6)

are considered. This so-called mean-field approximation [5]
decouples the influence of a random variable HHHi on Q (HHH)

by introducing variable-individual partial functions Qi (HHHi).
Exponential Family: Each likelihood P (XXXi|Pa (XXXi)),

with XXX = (HHH,VVV ) being a component of the stochastic process
(Eq. 4) must be characterisable as a function of the exponential
family [18]. So their mathematical forms follows the structure:

ln (P (XXXi|Pa (XXXi))) = ���Xi (Pa (XXXi))
T · uuuXi (XXXi)

+ fXi (XXXi) + gXi (Pa (XXXi)) , (7)

where ���Xi (· · · ) is the so-called natural statistic vector and
uuuXi (· · · ) is the natural parameter vector. This requirement
is fulfilled by a large selection of unimodal and multimodal
distributions. Such as exponential, Wishart, Dirichlet, Discrete
or, with a little trick, Gaussian mixture distributions.
Based on these boundary conditions the proposed VMP
algorithm of Winn et. al recognises the optimal approxi-
mation Q⇤

(HHH) by identifying the optimal partial functions
Q⇤

i (HHHi). For this purpose the algorithm uses a specific it-
erative message-passing scheme, which constantly exchanges
and allocates information between the nodes. This scheme
finally identifies the optimal partial functions Q⇤

i (HHHi) that
maximise the lower-bound L (Q) and minimise the Kullback-
Leibler divergence KL (Q||P ).

III. ITERATIVE FORMULATION OF VMP BASED
ESTIMATION FILTER

If a stochastic process can be accurately represented by a
linear-chain graphical model as described in Fig. 1 and if it
is also compatible to the previous mentioned restrictions (Sec.
II), then the VMP inference method allows us to create a state-
estimation filter for this exact process.
By directly applying the VMP inference to such a stochastic
process, the result will be a tractable approximation of the
likelihood P (HHH|VVV ) in the form of

P (HHH|VVV ) ⇡ Q⇤
(HHH) =

Y

i

Q⇤
i (HHHi) . (8)

Even if this factorised definition easily allows to infer arbitrary
likelihoods, a typical state estimation filter is just interested



in a specific likelihood: The marginalization P (HHHk|VVV 1:k),
which represents the distribution of last system state HHHk based
on all previous measurements. For practical reasons a state-
estimation filter simplifies that likelihood to its corresponding
stochastic moments. In this sense, an estimation of the last
system state HHHk is defined according to

˜HHHk = hP (HHHk|VVV 1:k)i = hQk (HHHk)i (9)

as the most probable realisation of the latent random variable
HHHk, inferred from the corresponding likelihood Q⇤

k (HHHk).
But as Eq. 4 indirectly implies, a naive application of the
VMP inference on a time-infinitely progressing stochastic pro-
cess, like previously discussed, would inevitably cause critical
issues, because an estimation filter based on the growing
graphical model of the process would simply numerically
diverge over time.
Since this circumstance complicates the practical usage of such
a estimation filter, we propose the following measures:

Motivated by an assumed Markovian character of the con-
sidered process, we introduce a sliding window concept,
which, starting from the current time k, limits, in the per-
spective of VMP inference approach, the back lying history
of the process. In this regard, state estimations from earlier
time steps (which have left the sliding window) are declared as
constants or observables, based on their last known estimation
HHHi. So, for the estimation of the last system state HHHk these
nodes outside of the sliding window are now insignificant.
This set of rules is now graphically reflected in the schematic
diagram in Fig. 2.
We point out that in order to receive a numerical efficient
implemention, we recommend to choose the sliding window
size, with regard to the characteristics of the process and the
estimation accuracy, as small as possible.
Finally, the algorithm of the proposed estimation filter sum-
marises to the pseudocode shown in Alg.1. We like to mention
that the form of the presented algorithm is completely generic.
Consequently, the proposed approach is suitable for all those
time-driven stochastic processes, whose stochastic behavior is
accurately emulated by a graphical model shown in Fig. 2.
In this respect, the proposed filter concept is compatible and
accessible to a large range of stochastic processes and can
therefore be used in a variety of applications.

IV. RESULTS AND DISCUSSIONS

In the following section we will analyse the performance of
the proposed filter approach. For this purpose, we will evaluate
the filter in the context of simulated and real object tracking
scenarios that are each quite challenging for conventional filter
approaches. In order to validate the results of the proposed
method, we compare it with various state-of-the-art methods.

A. Simulated Scenearios: Tracking of vehicle

The considered test scenarios are different-configured cor-
nerings of a vehicle in a two-dimensional space. The simulated
movements of the tracked vehicle will be fully accurately
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Fig. 2. Proposed sliding window concept (e.g. size = 3).

Algorithm 1 VMP-Based Estimation Filter
% Initialisation Of Basic Parameter
xxx0  xxxInit . xxxInit: Initial State
PPP 0 (xxx) PPP Init (xxx) . PPP Init (xxx): Initial State Distribution
sPsPsP 0  sPsPsP Init . sPsPsP Init: Filter Structure Parameter

% Initialisation Of Graphical Filter Structure
graph⇤

0  fConfigFilterGraph (xxx0,PPP 0, sPsPsP 0)

% Estimation
while 1 do

% Modify Graph Configuration
graphk  fModifyFilterGraph

�
graph⇤

k�1, yyyk,uuuk

�

% Execute VMP Inference
graph⇤

k  fInference (graphk)

% Extraction Of Estimation
xxxk  fExtractEstimation (graph

⇤
k)

end while

described by a linear CWPA-model [24]. Hence, we have an
accurate process model. The specific pathway of the trajecto-
ries will be determined over temporarily active accelerations
in horizontal and vertical direction.
Moreover, we assume that the position of the moving vehicle is
measured by an external sensor. Occurring measurement errors
within the sensor are assumed to be distributed according to a
Gaussian mixture model (GMM). Overall, the characteristics
of the test data-generating process, summarises as follows:

WWW k ⇠
X

i

ai ·N (µµµi,⌃⌃⌃i) ,

HHHk+1 = AAAk ·HHHk +BBBk ·UUUk ,
VVV k = CCCk ·HHHk +WWW k . (10)

To be as close as possible to real conditions in tracking
applications, all the subsequently discussed estimation filters
are implemented as unknown-input systems. Therefore,



only the sensor-measured position-signals affect the state-
estimation.
In advance, it should be noted that we created all of the
following results by multiple reruns of the corresponding
experiments. Stochastic fluctuations within the estimation
results are therefore opposed as best as possible.
In order to respond to the stochastic characteristics of the test
data generating process, our proposed filter will be based on
the following process emulating graphical model Fig. ??.

Our considered selection of state-of-the-art methods is
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Fig. 3. Graphical model of the considered test process.

orientated towards the challenging non-Gaussian measurement
noise within the simulated process. Therefore, we will consider
to two different state-of-the-art methods.
The first method is a particle filter [21]. Its configuration
has been chosen as follows: Both the measurement and
process model, as well as the measurement and process
noise characteristics are the direct correspondence of the
configuration of simulated process (see Eq. 10).
Its initial MCMC-sampled particle set [4] corresponds to a
normal distribution around the initial filter state. It covers
N = 200 particles. The resampling is happing in accordance
to a residual strategy [13]. Thus, the number of particles will
always be constant. The subsequent shift of all resampled
particles is done by a Gaussian kernel function.
The second state-of-the-art method is an IMM-filter ([6],[8]).
To optimally respond to both aspects in the considered
cornering scenarios, a variant movement dynamic of the
vehicle along the trajectory and a desired efficient filter
implementation, we choose filter ensemble with four different
designed Kalman filters.
In detail, the ensemble includes two CWPA-model-based
filters for sinuous trajectory sections, as well as two CWNA-
model-based for straight sections. The measurement and the
process model of CWPA-model-based filters, comparable
to the configuration of the particle filter above, directly
correspond to those of the simulated process (Eq. 10).

Therefore, the CWPA-model-based filters do not consider
any kind of process noise. This changes in the context of
CWNA-model-based filters. As consequence of inaccurate
emulated motion dynamics, these filters have to consider
lightweight process noise.
The diversity between our identical CWNA-[24] or CWPA-
model-based filters results from different chosen measurement
noise configurations (Eq. 10). Within the limits of the Kalman
filter, this diversity is used to optimally adapt to the non-
Gaussian distributed measurement noise. Since the simulated
trajectories are characterised by varying dynamics, the initial
model weights and transition matrix of the IMM-filter are
parameterised neutrally. Consequently, no particular filter of
the ensemble is emphasised by the initialisation.

The achieved results of the filter comparison for three
different measurement noise configurations are now presented
in Fig. 4, 5 and 6 in form of the estimated trajectories, as
well as in table 1 in form of the corresponding computational
effort analysis.
These three considered measurement noise configurations
correspond to Gaussian (g), weak Gaussian mixture model
(w) and strong Gaussian mixture model (s) distributed noise.
In advance to the subsequent discussion of the results, we
point out that all trajectory-estimation-containing figures apply
to the following scheme: Calculated trajectory-estimations
are drawn in color, while the ground truth trajectory is drawn
in dotted-black.

If we first analyze the achieved results of the considered
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Fig. 4. Estimated trajectories in case of Gaussian distributed measurement
noise.

filters in the case of Gaussian (g) distributed measurement
noise, it can be noted that the estimations of the various
methods are not only almost identical, but also very accurate.
All three filter concepts are directly benefiting from the shape
of the measurement noise.
But this, however, changes if the shape of measurement noise
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Fig. 5. Estimated trajectories in case of weak Gaussian mixture model
distributed measurement noise.
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Fig. 6. Estimated trajectories in case of strong Gaussian mixture model
distributed measurement noise.

is modified. This is easily noticeable in the case of weak
Gaussian mixture model (w) distributed measurement noise
(see Fig. 5).
Here, in this situation the proposed VMP-based filter differs
qualitatively from the other two estimation methods. The
new shape of the measurement noise now formally violates
the application requirements of the Kalman filter-based
IMM-filter, which ultimately causes an inaccurate IMM-filter
estimation. On the contrary, the VMP-based filter estimation is
not much effected. With a few exceptions, the filter identifies
that GMM-component of the simulated measurement noise,
which is responsible for the noise impact to time step k and
estimates the system state HHHk, unlike the IMM-filter, very
accurately. Something similiar is also achieved by the particle
filter. In consequence of its design, the filter also manages
to react appropriately to the changed shape of the noise.
The calculated estimations are fairly accurate in comparison

to ground truth pathway. Although, if compared with the
VMP-based filter, the estimated trajectory is noticeably
noisier. However, more striking than the qualitative difference
between these two methods is the difference between their
average computational effort for calculating these estimations
(see Table 1). As the table reflects, the numerical effort of the
particle filter exceeds the numerical effort of the VMP-based
filter several times. In that context we point out that here the
IMM-filter requires the least computational effort.
This described constellation of the computational effort
between the three compared filter methods formally maintains
even after increasing the measurement noise distribution
towards a more extensive Gaussian mixture model (s) (see
Fig. 6). Qualitatively, however, the differences between the
trajectory estimations of the diverse filter methods are now
more pronounced than before. Even with the more complex
measurement noise distribution, the proposed VMP-based
filter continues to produce a relatively accurate trajectory
estimation. The two other methods are failing in doing so. The
trajectory estimation of the particle filter formally follows the
ground truth, but due to its lack of compensating the strong
measurement (s), it is very noisy. The same applies for the
estimated trajectory of the IMM-filter. Moreover, as a result
of the partly inaccurate dynamic assumption (influences of
the CWNA-model-based ensemble part) the IMM-estimated
trajectory also has, similar to the previous situation of weaker
measurement noise (w), a larger bias to the ground truth
trajectory.
Finally, by reflecting all the previously discussed results,
we retain that the proposed filter approach stands out of the
state-of-the-art estimation filter methods.
The IMM-filter is qualitatively outperformed by the proposed
filter approach in situations with non-Gaussian distributed
measurement noise. Similar is the situation in the case of the
particle filter. But here the filter is not only outperformed
qualitatively, but also computationally.

Table 1. Average computational effort per iteration relative to the fastest
method (smaller is better) and in brackets relative accumulated

L2-estimation-error between estimation and ground truth relative to the most
accurate method (smaller is better).

Gaussian-noise (g) GMM-noise (w) GMM-noise (s)
IMM 1 [1.1] 1 [4.4] 1 [4.1]
PAR 202.4 [1.1] 245.8 [2.0] 275.1 [1.5]
VMP 23.7 [1] 38.2 [1] 54.3 [1]

B. Real Scenarios: Tracking of detected objects

In addition to the considered simulative environment, we
evaluate the discussed filter methods in the context of real-
data image-based object-tracking. For this purpose we exploit
the KITTI-framework [10]. Within this framework, we use the
estimation filter for improving the positioning of classifier-
detected objects (e.g. cars) [20] in 2D image space by in-
cluding track-information and model-knowledge of the object
movement. In order to extensively survey the performance of



the proposed approach, we consider three different constella-
tions within this application context: In a first constellation
we improve the positioning of the classifier-detected object-
measurements, which are assumed as Gaussian distributed. In
the second and third constellation, we first artificially super-
impose the original classifier-detected object measurements
by adding different magnitudes of GMM-noise to simulate
an insufficiently-trained classifier and then try to improve the
positioning of these noisy object-detections with help of the
filters.
For validation reasons, we compare the generated object-
bounding-boxes of the different filter methods with manu-
ally labeled object-bounding-boxes of the KITTI-framework
based on a catalog of 2945 frames with 78 different object-
tracks. The results of this analysis, along with corresponding
computational efforts, are presented in Table 2. The results
show that all the filters provide nearly the same estimation
performance, if the observable data is accurately modeled as a
Gaussian-distributed signal. But this changes when the original
classifier-detections are superimposed by additional GMM-
noise. Here, the particle filter and the VMP-based filter are able
to excel significantly from the IMM-filter. Whereby we outline
that the VMP-based filter achieves the same performance as
a particle filter, but with less computational effort. So our
proposed VMP-based filter seems to be a capable method for
this kind of real-data constellation.

Table 2. Average computational effort per iteration relative to the fastest
method (smaller is better) and in brackets quality measure relative to the

best method (higher is better).

none active noise GMM-noise (w) GMM-noise (s)
IMM 1 [0.99] 1 [0.58] 1 [0.54]
PAR 3.9 [1] 6.37 [0.99] 6.2 [0.96]
VMP 2.1 [0.98] 4.4 [1] 4.5 [1]

V. CONCLUSIONS AND FURTHER WORK

In this paper we presented a novel estimation filter
approach based on the framework of graphical stochastical
models and variational message passing (VMP) inference.
We evaluated the performance of this method in the context
of various trajectory estimations in a simulative and real-data
environment.
We showed that the presented filter approach offers accuracy
advantages over an IMM- or a particle filter in situations
where the noise within the process is not simply Gaussian
distributed, but rather described by a more complex
distribution.
We also indirectly presented that the lower-level VMP
inference allows the proposed filter approach to dynamically
adjust its estimation accuracy according to available
computational resources. This is a very valuable feature in
real-time capable filter implementations.

In future work, we plan to expand the generality of the
approach. Therefore, our development will be focusing

on two central aspects. The first is the obvious transfer
of the approach to processes with nonlinear process and
measurement models as well as non-Gaussian process noise.
The second is the adaptation of the approach to higher-order
Markov order processes.
In addition to that, we aspire to increase the numerical
efficiency of the approach. In order to accomplish this, we
will reanalyse all the various facets of the approach, such as
the VMP inference method or the general filter framework
itself.
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