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Abstract—In many industrial processes the need for better
quality assurance leads to a higher degree of process automa-
tion which often includes an optical inspection system. In our
case the mechanical dimensions of printed micro structures
on ceramic substrates have to be evaluated. Therefore an op-
tical inspection system providing high resolution images with
12288 pixel x 14000 pixel was developed. The segmentation task
in this setup is challenging caused by the huge amount of data
and the different appearances of the micro structures depending
on size, material, and humidity. For this purpose we present a
multiple segmentation method and evaluate the results against
common used segmentation methods on a number of different
real images. Experimental results show that the proposed optical
inspection system and algorithms can achieve an illumination
invariant high resolution measurement of the micro structures.

Index Terms—high resolution, optical inspection system, max-
imally stable extremal regions, MSER, adapted maximally stable
extremal regions, AMSER, segmentation, illumination invariant,
region of interest, ROI

I. INTRODUCTION

The production of passive electronic devices such as chip
resistors has the need of high throughput in order to generate
profit. The processes are sometimes not optimally configured
and thus lots of rejects and therefore higher production costs
are produced. In order to keep the costs low the invalid
products have to be excluded from the production process as
soon as possible. In this paper we present an optical inspection
system for evaluating the print process in the chip resistor
production.
An optical inspection system for measuring mechanical di-
mensions can be divided into three main parts:

1) image acquisition
2) image improvement
3) image and data analysis

Section II describes briefly the image acquisition focussing on
the hardware design of the system including the selection and
formation of the hardware. Image improvement concentrates
on image enhancement and restauration [1]. This is not a
topic of this work. Interpreting the content of the image
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is done in the image analysis part containing methods for
feature extraction, segmentation, detection, and registration.
The image and data analysis for a single inspection task which
is focussed on segmentation, is described in Section III, where
the proposed approach is presented.
Due to the various objectives of inspection systems the top-
ics mentioned for image improvement and analysis are still
focussed by actual research [2], [3], [4], [5]. Segmentation is
mostly based on amplitude, clustering, region, edge or texture
segmentation methods. Caused by high variance of the surface
structure (from homogeneous to heterogeneous reflectance
behavior) and varying illumination, simple segmentation meth-
ods are not applicable in our case. Evaluations in literature
[6], [7], [8] show that maximally stable extremal regions
and watershed methods for segmentation lead to good results
in the respective test cases. Our approach for segmentation
is a novel multiple segmentation method based on adapted
maximally stable extremal regions and analytical segmentation
approaches. Our Method is focussed on decreasing false-
positive errors in comparison to single segmentation methods
while considering a few assumptions. Experimental results
are presented in Section IV and Section V introduces a
measurement model for determining the uncertainty of the
measurement system. Conclusion remarks are made in the last
section.

II. HARDWARE SETUP AND REQUIREMENTS

Our proposed optical inspection system was designed for
measuring mechanical dimensions of printed structures on
ceramic substrates. These substrates have the dimension of
5cm x 6cm and the printed structures can scale down to less
than 50 microns. A monochrome line scan camera with 12288
pixels combined with a lens of 0.7 magnification and a linear
motion transport system leads to a spatial resolution of 6.5µm
in both directions. In order to adapt to multiple inspection
tasks a front and background illumination are installed. The
processing unit is a standard PC with additional framegrabber
and I/O card as shown in Fig. 1.

III. PROPOSED APPROACH

In Fig. 2 a blockdiagram of the segmentation algorithm
is shown. In this section we first describe our illumination
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Fig. 1. Schematic Overview of the Inspection System

Fig. 2. Blockdiagram of the Segmentation Algorithm

invariant approach for finding region of interests (ROIs) and
our solution for segmentation of horizontal notches.

A. Finding Region of Interests

In order to reduce computational costs and increase stability
of analyzing locally varying images it is common to analyze
only a subset of the image called regions of interests. For
finding the ROIs we use a global illumination invariant seg-
mentation method and prior knowledge.
[2] introduced the reflection model for the sensor output

ρ (x) =
∫ λmax

λmin

E (x, λ)L (x, λ)F (λ) dλ , (1)

while λmin, λmax are the limits of the spectral sensitivity
F (λ) of the camera including the optics. E (x, λ) is the
spectral power distribution of the incident light and L (x, λ)
describes the spectral reflection behavior caused by the mate-
rial and surface structure at location x. We assume that our
image contains N different regions Ri with uniform reflection
behavior inside these regions:

L (x ∈ Ri, λ) = Li (λ) , (2)

(a)

(b)

Fig. 3. Distance Measuring Between the Horizontal Notches
(a) White Square: ROI of Bright Square, Black Squares: ROIs of Notches
(b) White Lines: Reference Notch Lines

while i = 1, . . . , N . Assuming that the spectral power distri-
bution of the incident light in our scene is homogeneous

E (x, λ) = E (λ) (3)

and in our illumination setup we expect E (λ) to be time
variant

∀t0∃∆t : E (λ, t0) 6= E (λ, t0 + ∆t) . (4)

This is caused by temperature drift and aging of the illumina-
tion source. Further we assume that the relative spectral power
distribution

Erel (λ, t) =
E (λ, t)∫ λmax

λmin
E (λ, t) dλ

=
E (λ, t)
Etot (t)

(5)

is not affected by these influences:

Erel (λ, t0) = Erel (λ, t) . (6)

This leads to the relationship

E (λ, t) =
Etot (t)
Etot (t0)

· E (λ, t0) = k (t) · E (λ, t0) (7)

and with respect to (4) and inserting (7), (2) in (1) the sensor
output dependending on time can be expressed as

ρ (x ∈ Ri, t) = k (t)
∫ λmax

λmin

E (λ, t0)Li (λ)F (λ) dλ . (8)
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The sensor output is proportional to the intensity image

ρ (x, t) ∝ I (x, t) . (9)

It is obvious that a variation of illumination leads to a scaling
of the intensity values. We chose a global threshold segmen-
tation method with thresholds derived from characteristical
histogram properties which are unaffected by scaling of the
intensity values. In our case these properties are local minima
extracted from the histogram at intensity values Tl and Th.
These local minima bound a maxima, Th in upward direction
and Tl in downward direction. In the respective maxima we
expect the intensity values of the object to be segmented. The
segmentation can be expressed as

BR (x, Tl, Th) =
{

1 Tl ≤ I (x) < Th (10a)
0 otherwise . (10b)

The dark horizontal stripes shown in Fig. 3b are expected to
be located in the first maxima thus Tl is omitted:

BR1 (x, Th,1) =
{

1 I (x) < Th,1 (11a)
0 otherwise , (11b)

while Th,1 is the threshold containing the value of the upper
bounding minima of the first maximum. BR1 (x) = 1 indicates
that the pixel at x is a member of region R1.
The segmentation of the area exemplarily bounded by the
white box in Fig. 3a includes also analyzing of the histogram.
We use the prior knowledge that this area, named bright
squares, has the brightest elements except of some total
reflectance points. We also know that the total area of the
bright squares is less than 20 percent of the image area. Thus
we use the lower threshold Tl = T80% and a higher threshold
is not applicable:

BR2 (x, T80%) =
{

1 I (x) > T80% (12a)
0 otherwise . (12b)

The binary image BR2 (x) includes K connected regions
R2,k with k = 1 . . .K containing the squares but also total
reflectance points which are assumed to be smaller than the
squares. Excluding the latter with

R̃2,k =
{
R2,k A (R2,k) ≥ Amin (13a)
∅ otherwise , (13b)

while A (R2,k) is the area of R2,k and Amin is the minimum
area of the bright squares.

B. Segmentation of Horizontal Notches

The measurement of the distance between notches is done
by determining the distance between the white lines shown
in Fig. 3b. These lines are generated by interpolating the
segmented notches region points. As shown in Fig. 3a the
notches sometimes appear brighter and sometimes darker than
the background. The dark rectangles indicate the ROIs for
the segmentation of the horizontal notches. These ROIs are
directly derived from the ROIs of the bright squares.
Fig. 2 shows the segmentation algorithm for the horizontal
notches. The histogram analysis segmentation, AMSER and
segmentation selection are described below.

1) Histogram Analysis Segmentation: We assume that that
notches appearing bright are leading to a maximum next to
Imax, the segmentation is done by using (10). Imax is the
maximum and Imin the minimum intensity value of I (x).
Tl,3 is the respective minimum and Th,3 = Imax and thus is
omitted:

BR3 (x, Tl,3) =
{

1 I (x) ≥ Tl,3 (14a)
0 otherwise . (14b)

In addition to (14) a segmentation analogue to the method
described in Section III-A by using (12) with an adapted
threshold

BR4 (x, T95%) =
{

1 I (x) ≥ T95% (15a)
0 otherwise . (15b)

For dark appearance of notches equations (14) and (15) can
be easily adapted.

2) AMSER Segmentation: For segmentation of different el-
ements in the respective ROI we modify the maximally stable
extremal region (MSER) approach to the adapted maximally
stable extremal region (AMSER) method. In order to find the
MSER threshold for a connected black (BRi (x) = 0) region
Ri the initial threshold Tl = T0 is increased to Th = Tj as
long as the area change

∆ARi,Tj ,T0 =
A (Ri (Tj))−A (Ri (T0))

A
(
Ri
(
T0+Tj

2

)) (16)

is smaller than the maximum area change ∆Am. If this is
not fulfilled and the difference ∆T between Tj and T0 is
larger than the minimum margin M the regions Ri (Tj−1)
and Ri (T0) are called extremal regions of Ri. In order to use
the MSER for connected white regions Th is hold on its initial
value and Tl is decreased and the segmented regions can be
expressed as

R̃i =
{
Ri (Tj−1)

(
∆ARi,Tj ,T0 < ∆Am

)
∧ (∆T > M) (17a)

∅ otherwise . (17b)

A more detailed description of MSER is given in [6], [7], [8].
In our case we assume that the horizontal notches regions
are either located at the lower bound or higher bound of the
histogram. Thus Tl = Imin for dark notches and Th = Imax
for bright ones. We select the minimum margin M = 0
caused by the consideration that for an illumination invariant
algorithm the notch intensities could be completely at the
boundaries of the histogram. This would lead for M > 0
to no maximum stable extremal regions and thus the notches
would not be segmented. (17) changes for dark notches to

R̃i =
{
Ri (Tj−1) ∆ARi,Tj ,0 < ∆Am (18a)
∅ otherwise (18b)

and for bright notches

R̃i =
{
Ri (Tj−1) ∆ARi,Th,Tj < ∆Am (19a)
∅ otherwise , (19b)

while ∆Am is chosen to be 2.5 percent of the total ROI area.
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3) Segmentation Selection: As shown in Fig. 2 the seg-
mentation methods described in the previous Sections III-B1
and III-B2 can result in more than one segmentation for each
ROI. Thus we propose an analyzing module for selecting the
most appropriate segmentation. Given K segmented regions
Rk with k = 1, . . . ,K the region count is reduced by

R̃i =
{
Ri (Wi > Wm) ∧ (Ai < Am) ∧

(
|φi| < |φ|m

)
(20a)

∅ otherwise , (20b)

while Wi is the width, Ai the area, and φi the orientation of
Ri. Wm = 3px is the minimal width and Am = AROI/3
is the maximal expected area of the notch region. |φ|m
describes an orientation range of the smallest bounding rect-
angle including the respective region. This ensures that the
detected region has approximately the same orientation as the
expected notches. We assume that the horizontal notches have
an orientation of |φ| < 0.4rad. If (20) returns more than one
region for a ROI then all regions are rejected.

IV. EXPERIMENTAL RESULTS

This section evaluates the multiple segmentation method
described in Section III-B against the single methods within
invariant and variant illumination settings.

1) Invariant Illumination Setup: The evaluation of the pro-
posed method for the horizontal notches segmentation includes
the analyzing of 80 ROIs taken from the same image. The
analytical segmentation, the AMSER and the segmentation
selection module are evaluated each for themselves and in
combination. Therefore we define the relative class error 1 ε1
and relative class error 2 ε2 as

ε1 =
sbg
nbg

; ε2 =
sfg
nfg

, (21)

while ε1 includes the ratio between segmented background
pixel sbg and total count of background pixel nbg and ε2
analogue for foreground. ε1 is a relative false-positive error
criterion. n∅ contains the count of ROIs where sfg = sbg = 0.
The mean µ and standard deviation σ are calculated on the
distance of the interpolated lines to the real notches. The
sample set includes ten notches. The results are shown in
TABLE I.
It is obvious that combining of all methods leads to the best
results for ε1 and the statistical parameters of the measured
values. The omitting of the selection module leads to less
n∅ and lower ε2 but also to a strong increase of ε1. The
performance of the AMSER segmentation method is poor
but nevertheless in combination with the other methods it
decreases both errors and the standard deviation of the distance
measurement.

2) Variant Illumination Setup: In TABLE II are the seg-
mentation error rates and statistic parameters of the distance
measurement for four images which were taken from four
different scenes with different illuminations. The proposed
segmentation method combining all methods described above
was used. Fig. 4 shows the varying histograms of the images.
The sample set consists of 80 ROIs and ten reference notches.

TABLE I
EVALUATION OF SEGMENTATION METHODS IN AN ILLUMINATION

INVARIANT SETUP

Method ε1 ε2 n∅ µ[µm] σ[µm]

All Combined 0 7.7e-1 15 2.5 3.4
All Combined

without Selection
Mod.

1.2e-1 6.9e-1 1 12.7 5.2

AMSER with
Selection Mod. 4.8e-3 9.1e-1 66 382.0 570.1

Analytical Seg.
with Selection

Mod.
1.0e-4 8.0e-1 21 2.5 4.1

Fig. 4. Histograms of the Different Images

TABLE II
EVALUATION OF SEGMENTATION METHODS IN AN ILLUMINATION

INVARIANT SETUP

Image No. ε1 ε2 n∅ µ[µm] σ[µm]

1 0 7.76e-1 15 2.5 3.4
2 0 6.9e-1 2 1.5 2.3
3 0 7.1e-1 3 1.5 2.3
4 0 7.6e-1 9 3.1 2.5

The mean values of the distances between the reference
notches and the detected notches vary from 1.5µm to 3.1µm
and the standard deviations are less than 3.4µm. The relative
class 1 error is for all illumination settings zero. The variation
of ε2 and the standard deviation are maximal between the
segmentations of image 1 and image 2 which have similar
histograms but different image context. Although the mean
of the histograms and therefore the illumination of image
2, 3 and 4 differ significantly the variations are smaller
than in the first case. Thus for the evaluated images the
segmentation and measurement errors vary more influenced by
the image context than by illumination changes. This indicates
that our segmentation method is within the tested boundaries
illumination invariant.
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Fig. 5. Blockdiagram of the measurement model

V. MEASUREMENT UNCERTAINTY

This section introduces a model for the measurement pro-
cess in order to characterize the measuring system. As in-
troduced in [9], [10] the measurement uncertainty expresses
the degree of belief based on probabilities. In this section
we concentrate on the random errors assuming that the sys-
tematic errors are compensated within the calibration of the
measurement system which is not topic of this work. In Fig.
5 the multistage measurement model is shown. The input of
the measurement model are the notch locations and can be
described for every notch with a linear equation

f (x) = m · x+ c , (22)

while x is the respective horizontal position, m the gradient,
c the offset and f (x) is the vertical position. Caused by the
horizontal direction of the notches m is assumed to be [−1, 1].
This information is forwarded to the image acquisition. The
output generates degraded notch positions f̂ (x) with an un-
certainty of σf̂ ≈ 10µm determined by previous calibration
of the measurement system. These positions are passed to the
segmentation algorithms described in Section III. The output
can be parted into segmented notch points Ptrue and segmented
background points (class error 1 as decribed in Section IV)
Pfalse. The distribution of the vertical component ytrue and
horizontal component xtrue of Ptrue is given by

ytrue (x) ∼ N
(
f (x) , σf̂

)
(23)

and
xtrue (x) ∼ N

(
x, σf̂

)
(24)

derived from the uncertainty resulting from the image acquisi-
tion process. The distribution of the vertical component yfalse
and xfalse of Pfalse is assumed to be uniformly distributed
bounded by the borders of the ROI and excluding the region
of the notch locations described with equations (23) and (24).
This results in the distribution function

gy (y′;x) =
{
ky y′ > f (x) + σf̂ ∨ y

′ < f (x)− σf̂ (25a)
0 otherwise (25b)

for yfalse and

gx (x′;x) =
{
kx x′ > x+ σf̂ ∨ x

′ < x− σf̂ (26a)
0 otherwise (26b)

for xfalse with the normalization constants

ky =
1

HROI − 2σf̂
and kx =

1
WROI − 2σf̂

(27)

including the height HROI and width WROI of the ROI.
In our case the ROI is expected to be square resulting in
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Fig. 6. Uncertainty resulting from linear regression using Ptrue. U shows
the statistically determined uncertainty values and u the estimated function
of U .

ky = kx. Both Ptrue and Pfalse are used to perform a linear
regression for estimating the linear equation describing the
notch locations

f̃ (x) = m̃ · x+ c̃ . (28)

The estimation of m̃ and c̃ by means of the linear regression
depending on Ptrue and Pfalse is described by

m̃ =

N∑
i=1

(xi − x̄) (yi − ȳ)

N∑
i=1

(xi − x̄)2
(29)

and
c̃ = ȳ − m̃ · x̄ , (30)

while N is the total count of segmented notches, x̄ the mean of
x, ȳ the mean of y, xi and yi are the coordinate components of
segmented point i. For describing the measurement uncertainty
resulting in f̃ (x) the Monte Carlo method described in [9],
[10] was used. The resulting function for Ptrue is shown in Fig.
6. and for Pfalse in Fig. 7. The estimated function u depends
on the uncertainty σf̂ and the total count of segmented points
N

u
(
N, σf̂

)
= 91.49µm · e−9.1·10−6·N + 1.15µm · e−0.036·N

+ σf̂ · 0.25− 91.46µm (31)

and shows in the relevant intervals

σf̂ = [5µm, 20µm] (32)

and
N = [50, 150] (33)

low deviations to the statistical determined uncertainty U . The
estimated function v depends on the Height of the ROI HROI
and the total count of segmented points N

v
(
N,HROI

)
= 4.23µm · e−1·10−4·N + 1.27µm · e−1.44·10−2·N

+ HROI · 0.135− 2.01µm (34)
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TABLE III
MEASUREMENT UNCERTAINTY IN AN ILLUMINATION INVARIANT SETUP

Id Method N̄true N̄false w (Θ) [µm]

1 All Combined 109 0 2.5
2 All Combined

without Selection
Mod.

153 341 5.0

3 AMSER with
Selection Mod. 100 3 2.7

4 Analytical Seg.
with Selection

Mod.
50 14 3.7

and shows in the relevant intervals

HROI = [50µm, 100µm] (35)

and
N = [100, 300] (36)

low deviations to the statistical determined uncertainty V . Both
uncertainty functions u and v were determined by forwarding
only Ptrue and Pfalse separately to the linear regression
process. If both components are passed to the process the
combined uncertainty function is expected to be

w (Θ) =
Θ2 · u (Θ1,Θ2) + Θ4 · w(Θ3,Θ4)

Θ2 + Θ4
(37)

with

Θ = [Θ1,Θ2,Θ3,Θ4] =
[
σf̂ , Ntrue, HROI, Nfalse

]
(38)

while Ntrue is the total count of Ptrue and Nfalse for Pfalse.
The results of the measurement uncertainty calculation are
shown in TABLE III. N̄true and N̄false are the mean values of
the respective counts of segmentation points. The mean width
and height of the ROI was determined to be 80 microns in
all cases. The differences between the evaluated uncertainty
shown in TABLE I and the estimated uncertainty listed in

TABLE III are for methods 1, 2, and 4 less than 0.9 microns
although the intervals given in equations (33) and (36) have
been weakly exceeded. The uncertainty determined for method
3 differs significantly from the evaluated uncertainty. This
indicates that the measurement model developed in this section
does not fit to method 3. This can be caused by disregarding
n∅ or inhomogeneous distribution of segmentation points over
the ROIs.

VI. CONCLUSION

Experimental results show that the proposed hardware setup
and the illumination invariant multiple segmentation method
lead to an optical inspection system which is able to measure
the position of notches with a mean measurement error of
less than 3.1 microns and a standard deviation of less than
3.4 microns in an illumination variant environment. It is shown
that the influence of the scene variation on the measurement
results are higher than the variation of the illumination.
The uncertainty of the measurement system determined by the
introduced measurement model shows only small differences
of less than 0.9 microns to the experimental results for the
preferred segmentation methods.
In order to improve the segmentation results the adapted
maximally stable extremal regions segmentation method and a
more appropriate segmentation selection algorithm have to be
investigated. Future work will also concentrate on evaluation
of our approach with more samples in different illumination
settings.
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