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Abstract. The spectral effects of vocal tract length (VTL) changes are
one reason of why the recognition rate of today’s speaker-independent
automatic speech recognition (ASR) systems is considerably lower than
the one of speaker-dependent systems. By using certain types of filter-
banks these effects can be described by a translation in subband-index
space. In this paper, nonlinear translation-invariant transforms that orig-
inally have been proposed in the field of pattern recognition are investi-
gated for their applicability in speaker-independent ASR tasks. It will be
shown that the combination of different types of such transforms leads
to features that are more robust against VTL changes than the standard
Mel-frequency cepstral coefficients and that almost yield the performance
of vocal tract length normalization without any adaption to individual
speakers.

1 Introduction

The vocal tract length (VTL) is one of the intrinsic variabilities which causes the
error rate of today’s speaker-independent automatic speech recognition (ASR)
systems to be two to three times higher than for speaker-dependent ASR systems
[1]. Besides its shape it is the length of the vocal tract that determines the
location of the resonance frequencies (formants). The formants determine the
overall envelope of the short-time spectra of a voiced utterance. Given speakers
A andB their short-time spectra are approximately related asXA(ω) = XB(α·ω)
in case of the same utterance. The factor α is the VTL ratio of the two speakers
and is known as the warping factor. Typically, α ranges from about 0.8 to 1.2 in
a speaker-independent ASR task [2].

Several techniques for handling this warping effect have been proposed. One
group of techniques tries to adapt the acoustic models of the recognition system
to the individual speakers, e.g, [3]. Other methods try to normalize the spectral
effects of different VTLs at the feature extraction stage [4, 2]. A third group of
methods tries to generate features that are independent of the warping factor
[5–8].

Standard approaches for the time-frequency (TF) analysis of speech signals
locate the frequency centers of the filters equally spaced on the quasi-logarithmic
ERB scale that approximately represents the frequency resolution of the human



auditory system. In this domain linear frequency warping becomes a translation.
This effect can be utilized for the computation of features on basis of the TF-
analysis that are invariant under translation [6–8].

Nonlinear transformations that lead to translation-invariant features have
been investigated and successfully applied for decades in the field of pattern
recognition. Following the concepts of [9], the idea of invariant features is to
find a mapping T that is able to extract the features that are the same for
possibly different observations of the same equivalence class with respect to a
group action. Such a transformation T maps all observations of an equivalence
class into one point of the feature space. Given a transformation T , the set
of all observations that are mapped into one point is denoted as the set of
invariants of an observation. The set of all possible observations within one
equivalence class is called orbit. A transformation T is said to be complete, if
both, the set of invariants of an observation and the orbit of the same observation
are equal. Complete transformations have no ambiguities regarding the class
discrimination. On the other hand, incomplete transformations can lead to the
same features from observations of different equivalence classes and thus cannot
distinguish them [9].

The idea of the method proposed in this paper is to gain features that are ro-
bust against VTL changes by using nonlinear transformations that are invariant
to translations. Well known transforms of this type are, for example, the cyclic
autocorrelation of a sequence and the modulus of the discrete Fourier transform
(DFT). A general class of translation-invariant transforms was introduced by
[10] and further investigated in [11, 12] in the field of pattern recognition. It is
called the class CT .

In this paper, different transforms of the class CT will be investigated with
the aim of obtaining a feature set that has a high degree of completeness under
the group action induced by VTL changes. Experimental results will be given
for phoneme recognition tasks in which there is a mismatch in the average vocal
tract length between the training and test sets. While the experiments showed
that, under such conditions, the individual transforms of the class CT as well
as previously investigated individual transforms [6, 7] achieve at most a recog-
nition performance that is comparable to the one of Mel-Frequency Cepstral
Coefficients (MFCCs), it turned out that combinations of different transforms
increase the degree of completeness, so that combined invariant transforms sig-
nificantly outperform the MFCCs with respect to the problem of VTL changes.

The paper is organized as follows. The next section introduces the class of
transforms CT and explains our method for using these transforms for the calcu-
lation of features for speech recognition tasks. Section 3 describes the experimen-
tal setup. The results are presented in Section 4 with a subsequent conclusion in
the last section.



2 Method

2.1 Translation-invariant transformations of class CT

A general class of translation-invariant transforms was originally introduced by
[10] and later given the name CT [11]. Their computation is based on a gener-
alization of the linear, fast Walsh-Hadamard transform (WHT). Given a vector
x := (x0, x1, . . . , xN−1) with N = 2M as input and following the notation of [9],
members of the class CT are defined by the following recursive transformation
T with commutative operators f1(., .), f2(., .):

T (x) :=
(
T (f1(x1|2,x2|2)), T (f2(x1|2,x2|2))

)
, (1)

where x1|2 and x2|2 denote the first and second halves of the vector x, re-
spectively. The recursion starts with T (xi) = xi. Fig. 1 shows a corresponding
signal-flow diagram for N = 4.

x = x(0) x(1) x(2) = T (x)

x0 f1 f1 T0(x)

x1 f1 f2 T1(x)

x2 f2 f1 T2(x)

x3 f2 f2 T3(x)

xi

xj

fk fk(xi, xj)

f1, f2 commutative

Fig. 1. Signal-flow diagram for transformations of the class CT for N = 4.

The pairs of commutative operators that are examined in this work have
found applications in pattern recognition tasks before [13, 10, 11]. One represen-
tative of the class CT is the “Rapid Transform” (RT) which has found a notably
wide application [14, 15, 9]. In comparison to the RT, it was shown in [10] that
taking the min(., .) and max(., .) functions as f1 and f2, respectively, can lead to
a higher separability. This transformation with its pair of functions is denoted as
MT. It was shown in [11] that the power spectrum of the modified WHT can be
computed with a transformation of CT by choosing f1 := a+b and f2 := (a−b)2.
This transformation is denoted as QT. The mentioned transformations together
with their according pairs of commutative functions are shown in Table 1.



Table 1. Common pairs of commutative operators

RT MT QT

f1 a + b min(a, b) a + b
f2 |a− b| max(a, b) (a− b)2

In [12] a preprocessing operator b for the RT was presented that destroys
the unwanted property of invariance under reflection of the input data. This
operator works elementwise and is defined as

x′i = b(xi, xi+1, xi+2) := xi + |xi+1 − xi+2|. (2)

This particular preprocessing followed by the RT is called“Modified Rapid Trans-
form” (MRT).

2.2 Translation-invariant feature candidates for ASR

The translation-invariant features are computed on the basis of primary features
given by the result of a TF-analysis of an input signal x. The TF analysis will be
denoted by yx(t, k) in the following. Here, t is the frame index, 1 ≤ t ≤ T , and k
is the filter index with 1 ≤ k ≤ K. The transformations RT, MRT, MT and QT
are applied framewise to the primary features. In addition to the transformations
described above, individual translation-invariant features from previous work [6,
7] will also be considered in this study. These are based on the logarithmized
correlation sequences of spectral values,

log ryy(t, d,m) with ryy(t, d,m) =
∑

k

yx(t, k)yx(t− d, k +m), (3)

and on the correlation sequences of logarithmized spectral values,

cyy(t, d,m) =
∑

k

log(yx(t, k)) · log(yx(t− d, k +m)). (4)

In addition to using the TF analysis yx(t, k) directly, we also consider multi-
scale representations of it. The method of multi-scale analysis has been success-
fully applied to various fields of speech processing [16–19]. Therefore, multiple
scales of spectral resolution of each frame were computed. The length of each
frame of scale n was half of the length of scale n − 1. Each scale was used as
input to the described transformations and the results of the transformations
on each scale were concatenated. Following this procedure, the resulting number
of features for an input of size N = 2M is 2M+1 − 1. Features of this type are
denoted with the subscript “Scales”. For the experiments, also a subset of 50
features of the “Scales”-versions of the features was determined by applying a
feature selection method according to [20]. These feature sets are denoted with
the subscript “Scales-50”.



3 Experimental setup

On the basis of the described feature types, different feature sets have been
defined and evaluated in a number of phoneme recognition experiments. The
experiments have been conducted using the TIMIT corpus with a sampling rate
of 16 kHz. To avoid an unfair bias for certain phonemes, we chose not to use the
“SA” sentences in training and testing similar to [21]. The remaining training
and test sets were both split into female and male utterances. This was used to
create three different training and testing scenarios: Training/testing on both,
male and female data (FM-FM), training on male and testing on female data
(M-F) and training on female and testing on male data (F-M). According to [21],
48 phonetic models were trained and the recognition results were folded to yield
39 final phoneme classes that had to be distinguished.

The recognizer was based on the Hidden-Markov Model Toolkit (HTK) [22].
Monophone models with three states per phoneme, 8 Gaussian mixtures per state
and diagonal covariance matrices were used together with a bigram language
model.

MFCCs were used to obtain baseline recognition accuracies. The MFCCs
were calculated by using the standard HTK setup which yields 12 coefficients
and a single energy feature for each frame. For comparison with a vocal tract
length normalization (VTLN) technique, the method of [2] was used.

We chose to use a complex-valued Gammatone filterbank [23] with 90 filters
equally-spaced on the ERB scale as basis for computing the translation-invariant
features. This setup was chosen to allow for a comparison with previous works
(cf. [6, 7]). The magnitudes of the subband signals were lowpass filtered in order
to decrease the time resolution to 20 ms. These filtered magnitudes were then
subsampled to obtain a final frame rate of one frame every 10 ms. Because the
transforms of the class CT require the length of the input data to be a power of
two, the output of the filterbank was frame-wise interpolated to 128 data points,
and then a power-law compression [24] with an exponent of 0.1 was applied
in order to resemble the nonlinear compression found in the human auditory
system.

The following feature types known from [6, 7] were investigated in addition to
class-CT features: The first 20 coefficients of the discrete cosine transform (DCT)
of the correlation term (3) with d = 0 (“ACF”) have been used as well as the
first 20 coefficients of the DCT of the term (4) with d = 4 (“CCF”). The features
belonging to the class CT as described in the previous section were considered
together with their “Scales” and “Scales-50” versions. The “Scales-50” versions
were used for feature set combinations of size four and five.

All feature sets were amended by the logarithmized energy of the original
frames together with delta and delta-delta coefficients [22]. The resulting fea-
tures were reduced to 47 features with linear discriminant analysis (LDA). The
reduction matrices of the LDAs were based on the 48 phonetic classes contained
in both, the male and female utterances.



4 Results and Discussion

At first, each of the previously described feature types were tested individually in
the three scenarios. The resulting percentage accuracies [22] of these experiments
are shown in Table 2. It can be seen that the MFCCs have the highest accuracy
for the FM-FM scenario compared to the other considered feature types. The
features resulting from the RT and MRT obtain similar accuracies as the MFCCs
in the gender-separated scenarios, but perform worse in the general FM-FM
scenario. The inclusion of different scales in the feature sets leads to accuracies
that are comparable to those of the MFCCs in the FM-FM scenario and already
outperform the MFCCs in the gender-separated scenarios M-F and F-M. Using
only the 50 best features from the “Scales”-feature sets leads to accuracies that
are similar to the feature sets that include all scales. However, in the gender
separated scenarios the “Scales-50” versions perform worse than the “Scales”
version.

Table 2. Percentage accuracies of individual feature types [%]

Feature type FM-FM M-F F-M

1. MFCC 66.57 55.00 52.42

3. RT 58.39 55.30 51.99
4. MRT 57.90 53.88 50.75
5. QT 53.00 48.03 46.12
6. MT 59.96 56.53 54.45

7. RTScales 64.29 57.36 56.67
8. MRTScales 64.27 58.90 58.42
9. QTScales 62.64 56.75 55.34

10. MTScales 64.05 58.79 58.02

11. RTScales-50 64.47 55.49 54.28
12. MRTScales-50 64.08 55.66 54.03
13. QTScales-50 62.25 53.07 52.15
14. MTScales-50 64.19 53.77 52.38

15. ACF 58.85 46.97 48.76
16. CCF 62.46 54.54 53.41

As a further performance benchmark, the VTLN method has been tested on
the three scenarios. Since this method adapts to the vocal tract length of each
individual speaker, it gave the best performance in all cases. The results were as
follows: FM-FM: 68.61%, M-F: 64.02%, F-M: 63.39%.

To investigate in how far the performance of the translation-invariant features
can be increased through the combination of different feature types, all possible
combinations of the “Scales”-versions of the features and the ACF and CCF
features have been considered. These include feature sets of two, three, four, and



five types of features. For each of these feature sets of different size, the results
for the best combinations are shown in Table 3.

Table 3. Highest percentage accuracies for feature sets with different sizes and energy
amendment [%]

Feature type combination + energy FM-FM M-F F-M

MTScales + CCF 65.74 61.13 60.52
MRT + CCF 65.36 60.60 60.51
MRTScales + CCF + ACF 65.90 61.75 61.94
MRTScales + MTScales + CCF 65.71 62.01 61.94
MRTScales-50 + CCF + ACF + RTScales-50 66.01 61.27 60.59
MRTScales-50 + CCF + ACF + RTScales-50 + QTScales-50 65.94 61.77 61.17

As the results show, already the combination of two well-selected feature sets
leads to an accuracy that is comparable to the MFCCs in the general FM-FM
scenario. In contrast to the MFCCs the gender separated scenarios lead to an
accuracy that is 5.6% to 7% higher in the M-F scenario and 8.1% to 9.5% higher
in the F-M scenario. In particular, the results indicate that the information con-
tained in the CCF features is quite complementary to the one contained in the
class-CT features. Also the MRT and MT features seem to contain complemen-
tary information. The fact that the accuracies do not increase by considering
combinations of four or five feature sets could either be explained by the fact
that the “Scales-50” features in comparison to the “Scales” features have a much
lower accuracy for the gender separated scenarios or by the assumption that the
RT, MRT and QT do contain quite similar information.

In a third experiment, we amended the previously considered, fully translation-
invariant features with MFCCs, as this had been necessary to boost the perfor-
mance with the method in [6, 7]. The results of the experiment are shown in Table
4. It is notable that the MFCCs do not increase the accuracies significantly in the
FM-FM scenarios in all combinations. This means that the MFCCs do not carry
additional discriminative information compared to the feature set combinations
that consist of translation-invariant features.

Table 4. Highest percentage accuracy for feature type combinations with different
sizes and MFCC amendment [%]

Feature type combination + MFCC FM-FM M-F F-M

MTScales + CCF 65.58 61.62 61.46
MRTScales + CCF + ACF 66.45 62.08 62.40
MRTScales-50 + CCF + ACF + RTScales-50 66.34 61.90 61.23
MRTScales-50 + CCF + ACF + RTScales-50 + QTScales-50 66.46 61.85 61.96



Using the improved feature set (based on Gammatone analysis) presented in
the previous work [7] within the described experimental setup of this work leads
to the following accuracies: FM-FM: 65.70%, M-F: 60.75% and F-M: 59.90%.
These results indicate a better performance in the gender separated scenarios
than the MFCCs. However, the new translation-invariant feature sets presented
in this paper perform even better.

5 Conclusions

Vocal tract length changes lead to translations in the subband-index space of
time-frequency analyses when they are performed on a (quasi-) logarithmic fre-
quency scale. Well-known translation-invariant transformations that were origi-
nally proposed in the field of pattern recognition have been applied in this paper
in order to obtain features that are more robust to the effects of VTL changes.
We showed that combining certain types of translation-invariant feature leads
to accuracies that are similar to those of MFCCs in case of training and testing
on male and female data and outperform MFCCs in case of gender-separated
training and testing. This may lead to significantly more robustness in scenarios
in which VTLs differ significantly, as, for example, in children speech. There-
fore, children speech and further feature optimization will be subject of future
investigations of nonlinear feature-extraction methods. Compared to the VTLN
method, our features do not require any speaker adaptation and are therefore
much faster to compute and to use than VTLN.
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