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ABSTRACT

In this study, a fair comparison of human and machine
speech recognition is established by using the same para-
digms for human speech recognition (HSR) and automatic
speech recognition (ASR). In order to ensure equal condi-
tions, a speech database specifically designed for this task is
used. The results for HSR and ASR are broken down into sev-
eral intrinsic variabilities like speaking rate, speaking effort
and dialect. Across all conditions, ASR error rates are at least
300 % higher than those of humans, even though no contex-
tual knowledge can be exploited. A more detailed analysis of
errors in HSR and ASR is carried out by decomposing speech
into its phonetic features like voicing or manner and place of
articulation. Confusion matrices for these features show that
voicing information is crucial to distinguish between certain
consonants. The most prominent features for ASR often ne-
glect voicing information, which might contribute to the large
gap in performance between HSR and ASR.

1. INTRODUCTION

While ASR has seen many advances in recent years, the error
rates of machines are still an order of magnitude higher than
those of humans. This leads the interest to the sophisticated
mechanisms that give the human sense of hearing its excel-
lence in comprehension and error correction. To learn more
about these mechanisms, it is useful to have a direct compar-
ison between the recognition abilities of both HSR and ASR.
Former studies [2] support these arguments, but most of the
comparisons fail to establish equal conditions (e.g. because
different corpora were used for ASR and HSR). We elimi-
nated most of the unequal conditions by compiling a context
free speech database, on which both sides could perform unbi-
ased tests and which satisfies requirements for ASR and HSR
tests. This logatome speech database [1] is briefly described
in the first paragraph. The experimental setup, designed to
carry out an unbiased comparison of performance, is speci-
fied in Section 3. Results for HSR and ASR are presented
and an analysis based on decomposing speech into phonetic
features is described in detail (Section 5). Future experiments
that will use the same data analysis scheme and which are

based on speech resynthesized from ASR features are pre-
sented in Section 6. Finally, we draw the conclusions from
the comparison experiments in Section 7.

2. SUMMARY LOGATOME SPEECH DATABASE

The OLdenburg LOgatome Corpus (OLLO)[1] is specially
designed to allow for an unbiased human-machine com-
parison by comparing the recognition capabilities for indi-
vidual phonemes that are embedded in logatomes, namely
three-phoneme sequences with no semantic information [2].
These context-free phoneme-sequences were combined ei-
ther as CVC (consonant-vowel-consonant) or VCV (vowel-
consonant-vowel) logatomes. A balanced set of target-
phonemes important for human and automatic speech recog-
nition has been chosen, drawing on pilot ASR studies and
cross-fertilization from the field of human speech intelligibil-
ity testing. The preliminary studies resulted in 70 VCVs and
80 CVCs, for example:

• VCV: ata:, afa:, ada: Et@, Ef@, Ed@
• CVC: tat, tUt, tEt, ta:t, tut, tet

faf, fUf, fEf, fa:f, fuf, fef

The second purpose of the corpus is to cover speech in-
trinsic variabilities that affect recognition rates of humans and
machines. OLLO contains items with six different articula-
tion characteristics. These characteristics are:

• speaking rate (slow, normal, fast)
• speaking effort (quiet, normal, loud)
• speaking style (statement or question)

Dialect is another speech intrinsic variability of the cor-
pus, as OLLO contains recordings of 40 speakers (20 male
and 20 female) from four different German regions with dis-
tinct dialects. These dialects are East Frisian (EF), East
Phalian (EP), Bavarian (BV) and standard German.

Additionally, sets of 72 words and 20 sentences were
recorded per speaker, both phonetically balanced. Those are
designed for ASR training purposes and speaker adaptation.
All speakers were advised to speak in a natural manner and



not to suppress their dialect. To avoid systematic errors the
variabilities were recorded in random order. Each speaker
recorded 150 logatomes in six variabilities and three repe-
titions. This resulted in 2700 utterances per speaker and
a whole of 107,000 logatomes or 43.3 hours of speech in
OLLO.

The recording of the raw data was carried out with profes-
sional digital studio hardware (condenser-microphone AKG
C1000 S, RME QuadMic microphone pre-amplifier, RME
Hammerfall AD-Converter at 44,1 kHz and 32 bit resolution)
in unechoic recording chambers. A specially developed soft-
ware tool controlled the speaker instructions, the recording
and storage of the speech data. Finally, the following signal
processing steps were applied:

• limitation of silence at beginning and end of signal to
500 ms

• normalization of amplitudes to 99 %
• storage in 16 bit resolution
• low-pass filtering with 8 kHz cutoff frequency
• downsampling to 16 kHz

3. EXPERIMENTAL SETUP

3.1. Paradigms for ASR and HSR

The OLLO database contains a large amount of test items that
only a machine can process in acceptable time. For the recog-
nition experiments with humans, it is necessary to reduce the
test set and the number of response alternatives. This leads to
the necessity to change the test paradigms from semi-open to
closed tests.

In the semi-open test, 150 response alternatives (70 VCVs
+ 80 CVCs) exist for each logatome. When the results are
plotted in a matrix of confusion, all elements can be mixed up
and errors may appear anywhere beside the diagonal. Certain
errors (like confusions between short and long vowels) can be
identified easily if the matrix is ordered in a systematic way.

For speech intelligibility tests, it is not tractable to let the
listener choose between 150 alternatives when a large amount
of items is to be tested. Therefore, a forced choice test is
carried out, where the intelligibility of the middle phoneme is
tested so that the number of response alternatives is reduced.
For example, listeners have to choose between logatomes like
”Udu”, ”Utu”, ”Uku”, ”Ugu”, (with 14 alternatives for VCVs
and 10 for CVCs). The outer phonemes are the same for all
test items of the reduced set of answers.

In order to have similar paradigms in HSR and ASR,
closed test lists were used for ASR experiments as well.
This was realized by using 14 different HMM systems, cor-
responding to the 14 outer phonemes (5 outer vowels + 9
outer consonants). Each system was trained and tested with
speech files with same outer phonemes, which restricts ASR
errors to misclassification of the middle phoneme. This re-
duces response alternatives and therefore improves recogni-
tion scores.

3.2. OLLO subset for HSR experiments

It is also not tractable for humans to do recognition exper-
iments on the whole corpus with over 100,000 logatomes.
Due to this fact, a representative subset, covering variabili-
ties and dialects, had to be found. For the HSR experiments,
utterances of one male speaker were selected for each dialect
region. The choice was based on

• speaking quality (best realization of the logatomes)
• recording mistakes / missing files
• strength of dialect

Logatomes without any dialect are presented in all vari-
abilities to the listeners. Logatomes uttered by the three cho-
sen dialect speakers are only presented in condition ’state-
ment’.

The subset size is a tradeoff between having better statis-
tics and a reasonable time consumption for the listener. There
are more outer phonemes in the CVC sets than in the VCV
sets. To get similar statistics in the confusion matrices for the
middle phonemes, the HSR test lists include one repetition of
the CVC set and two repetitions of the VCV set, i.e. 5 long
and 5 short vowels with 8 outer phonemes result in 80 CVCs.
14 consonants with 5 outer vowels result in 70 VCVs. There-
fore, the subset consists of 140 VCVs and 80 CVCs for each
variability and dialect.

3.3. Experimental Setup for ASR

ASR experiments were carried out using a Hidden Markov
Model (HMM), where a three-state-model was used for each
phoneme and a word model exists for each logatome. The
HMM was built with the hidden Markov toolkit (HTK), avail-
able at http://htk.eng.cam.ac.uk/. It was trained and tested
with logatomes from the OLLO database. As defined in the
OLLO corpus segmentation files, 5 speakers from each di-
alect region are contained in the training and test sets. The
sets have the same number of utterances and exhibit the same
statistics regarding gender and intrinsic variabilities (includ-
ing dialect, speaking rate and speaking effort). Since speakers
are either in the training or in the test set, the task is to perform
speaker-independent recognition. A number of features have
been tested; the results presented here were obtained with mel
frequency cepstral coefficients (13 MFCCs with 25 ms win-
dow length, 10 ms frame shift + ∆ + ∆∆-features), which
produced lowest error rates.

4. EXPERIMENTAL RESULTS

The overall recognition rates in the ASR experiments with
closed test lists was 74.0 %. Results are plotted with respect
to the different variabilities contained in OLLO and compared
to human recognition rates in Figs. 1 and 2.

For HSR experiments, signals were presented with a pair
of Sennheiser HDA 200 headphones at a level of 70 dB SPL in



Fig. 1. Recognition rates for ASR (grey shading) and HSR
(no shading) depending on speech intrinsic variabilities.

Fig. 2. Recognition rates for ASR (grey shading) and HSR
(no shading) depending on regional dialect.

a soundproof booth. Six normal hearing listeners participated
in the intelligibility tests. Recognition rates are very high for
the clean speech condition. The averaged recognition rates
are best for standard German and slightly decrease for the
dialects (see Fig. 3).

Fig. 3. HSR performance for consonant and vowel recogni-
tion (CVC and VCV, respectively) in clean speech, depending
on dialect.

Fig. 4. HSR performance for consonant and vowel recogni-
tion (CVC and VCV, respectively) in clean speech, depending
on variability.

In Fig. 4, the recognition results for clean speech are
sorted depending on variabilities. The accuracies for all con-
ditions are nearly 100 %, a small variation about 1 % is no-
ticeable. However, these differences are not statistically sig-
nificant.

Obviously, there are too few errors in clean speech exper-
iments with humans to gain much insight into which tasks are
more and which are less difficult for humans. Since we try to
learn from the mechanisms in human speech perception we
need to complicate the conditions for humans for finding the
critical points in their information transmission. Due to this
fact we conducted experiments with added noise at a level of
70 dB SPL and an SNR of 0 dB. The results are presented in
Figs. 5 and 6. Results for CVCs and VCVs are plotted sepa-
rately and can be compared with the results for clean speech
in Figs. 3 and 4. In this paradigm, it is much more difficult for
humans to recognize consonants, as one can see from the de-
crease of recognition rates for VCVs in noisy condition. The
recognition rates for CVCs stay on the same level as in clean
speech. These results suggest to carry out an analysis of the
errors for VCVs in a more detailed way, which is described in
Section 5.

Fig. 5. HSR performance for consonant and vowel recogni-
tion (CVC and VCV, respectively) in noisy speech, depending
on dialect.

Fig. 6. HSR performance for consonant and vowel recogni-
tion (CVC and VCV, respectively) in noisy speech, depending
on variability.

5. ANALYSIS OF RESULTS & DISCUSSION

5.1. General Results

Across all conditions, humans outperform ASR systems. The
differences are clearly visible in the noise-free conditions,



where the average human performance is 99.6 % and the ASR
performance is 74.0 %. For the East Frisian dialect, the dif-
ference in terms of absolute error rates is only 16.2 %. Still,
even in this condition, the relative ASR error rates are more
than 300 % higher than the HSR error rates.

A comparison of HSR and ASR performance depending
on dialects (see Fig. 2) shows that for both experiments stan-
dard German is the condition with best performance (HSR:
99.7 % accuracy; ASR: 81.1 % accuracy). The ASR accuracy
is reduced by 2.5 to 10.2 % absolute for the dialects. For the
HSR test, an average performance drop of 4 % is observed.
Other than for the ASR experiment, the differences between
dialects are not significant.

The ASR results depending on variabilities (Fig. 1) show
that logatomes spoken as statements lead to best results with
almost 84 % accuracy. The condition ”question” decreases
accuracy by only 1.8 %. For the variabilities ”loud”, ”slow”
and ”fast” another 2 % drop is observed. The conditions
”soft” is the most problematic for the HTK system, since the
absolute accuracy is more than 10 % worse than for the ”state-
ment” condition. It is difficult to compare the corresponding
HSR results with this performance, because the differences
between intrinsic variabilities are not significant, as stated ear-
lier.

5.2. Consonant Confusion and Phonetic Features

Most of the errors in HSR tests occurred when VCVs were
presented, i.e. when a consonant had to be classified. This
becomes most obvious in the HSR noisy test condition (c.f.
Section 4). Therefore, a detailed analysis of consonant con-
fusions is carried out. The confusion matrices are shown in
Figs. 7 and 8.

Matrix of confusion for voicing (accuracy 90.6 %)

V U

V 86.9 13.1

U 5.7 94.3

Matrix of confusion for place of articulation (accuracy: 91.0)

A M P

A 90.9 6.3 2.9

M 5.8 89.6 4.7

P 2.8 4.6 92.6

HSR

TS4

Matrix of confusion for consonants (accuracy 98.7 %)

p t k b d g s f v n m

p 97.1 0 0 2.5 0 0 0 0.5 0 0 0  

t 0 99.5 0 0 0.5 0 0 0 0 0 0  

k 0 0 100 0 0 0 0 0 0 0 0

b 2 0 0 94.6 0 0 0 0 3.4 0 0  

d 0 0 0 0 100 0 0 0 0 0 0

g 0 0 2.4 0 0 97.6 0 0 0 0 0  

s 0 0 0 0 0 0 100 0 0 0 0

f 0 0 0 0 0 0 2 98 0 0 0  

v 0 0 0 0 0 0 0 0 100 0 0

n 0 0 0 0 0.5 0 0 0 0 99.5 0  

m 0 0 0 0 0 0 0 0 0 0 100

Fig. 7. Matrix of confusion for consonants, obtained from
human listening tests (accuracy 98.7 %)

Results man-machine-comparison

ASR System: HTK, closed test, MFCC features from Jan (D +DD), 

39 feature components, Trained / tested on OLLO. No noise added

TS20 / HSRL

Matrix of confusion for consonants (accuracy 81.1 %)

p t k b d g s f v n m

p 88.7 1.6 2 4.4 1.4 1.4 0 0 0.3 0.1 0.1  

t 4.8 84.2 3.7 0.1 5.9 1.2 0.1 0 0.1 0 0  

k 1.8 1.7 91 0.1 0.3 5 0 0 0.1 0 0  

b 21.3 0.5 0.9 59.2 6.8 4.7 0.1 0.2 4.6 0.2 1.5

d 1.9 11.2 1.9 1.6 71.6 9.9 0.2 0 0.6 1 0.1

g 0.9 0.6 24.3 1.3 5.3 64.9 0.1 0.1 0.9 1.1 0.5

s 0.2 0.5 0 0.2 1.3 0.7 91.3 1.6 4 0.2 0.1  

f 0.5 0.6 0.2 0.2 0.3 0.2 3.9 92.8 1.1 0.1 0  

v 2.4 0.1 1 4.6 2.1 1.9 0.3 7.7 76.6 0.6 2.6  

n 0 0.1 0.4 0 1.4 1.2 0.1 0.1 0.8 89 7  

m 0.1 0.1 0.9 0.3 0.3 1.1 0.3 0.3 2.1 11.7 82.8

Matrix of confusion for manner of articulation (accuracy 95.4)

S F N

S 97.9 1.3 0.8

F 5.7 93.1 1.2

N 2.9 1.9 95.3

Fig. 8. Matrix of confusion for consonants, obtained from
ASR experiments (accuracy 81.1 %)

Our method of data analysis is based on the work by
Christiansen and Greenberg [3]: The acoustic cues impor-
tant for consonant identification are analyzed by decompos-
ing consonants into their phonetic features. Eleven conso-
nants are partitioned into three (overlapping) groups on the
basis of the phonetic properties of voicing, articulatory man-
ner and place of articulation, as illustrated in Table 1. Voicing
refers to the presence (or absence) of glottal vibration. Man-
ner refers to the mode of articulatory production (stop, nasal,
fricative) and place of articulation refers to the locus of artic-
ulatory constriction (anterior, medial, posterior). Voicing is
a binary distinction, while manner and place both have three
class distinctions.

consonant p t k b d g s f v n m
voicing 0 0 0 1 1 1 0 0 1 1 1
manner 0 0 0 0 0 0 1 1 1 2 2
place 0 1 2 0 1 2 1 0 0 2 1

Table 1. Phonetic features for the 11 consonants used in the
experiments. Voicing is a binary feature, while manner and
place are ternary features.

Confusion matrices for each phonetic feature dimension
can be derived from the original consonant confusion matrix:
For each element in the original matrix, the values of the cor-
responding phonetic features are determined according to Ta-
ble 1 (e.g. for the confusion p → b, the values would be un-
voiced → voiced). The number of confusions is added to the
appropriate matrix element (e.g. element (U,V) in the voicing
matrix).

Consonant identification was scored in terms of how well
the according phonetic features (voicing, manner and place)



were decoded. If a consonant was correctly classified, its
constituent phonetic features were also correctly decoded. If
a consonant was incorrectly classified, not all phonetic fea-
tures were necessarily also misclassified. For example, if the
logatome ’apa:’ was presented, but ’aka:’ was classified, then
the phonetic features ’voicing’ and ’manner’ were correctly
decoded. Figs 9 and 10 show confusion matrices for the pho-
netic features.

Matrix of confusion for manner of articulation (accuracy 99.7 %)

S F N

S 99.3 0.7 0  

F 0 100 0

N 0.2 0 99.8

Matrix of confusion for voicing (accuracy 99.3 %)

V U

V 99.3 0.7

U 0.6 99.4

Matrix of confusion for place of articulation (accuracy: 99.9)

A M P

A 99.6 0.4 0  

M 0 100 0

P 0 0 100

(a) Manner

Matrix of confusion for manner of articulation (accuracy 99.7 %)

S F N

S 99.3 0.7 0  

F 0 100 0

N 0.2 0 99.8

Matrix of confusion for voicing (accuracy 99.3 %)

V U

V 99.3 0.7

U 0.6 99.4

Matrix of confusion for place of articulation (accuracy: 99.9)

A M P

A 99.6 0.4 0  

M 0 100 0

P 0 0 100

(b) Place

Matrix of confusion for manner of articulation (accuracy 99.7 %)

S F N

S 99.3 0.7 0  

F 0 100 0

N 0.2 0 99.8

Matrix of confusion for voicing (accuracy 99.3 %)

V U

V 99.3 0.7

U 0.6 99.4

Matrix of confusion for place of articulation (accuracy: 99.9)

A M P

A 99.6 0.4 0  

M 0 100 0

P 0 0 100

(c) Voicing

Fig. 9. Matrices of confusion for different phonetic features,
obtained from human listening tests. a) Manner of articula-
tion, total accuracy: 99.7 %. Meaning of labels: S = Stop, F =
Fricative, N = Nasal. b) Place of articulation, total accuracy:
99.9 %. Meaning of labels: A = Anterior, M = Medial, P =
Posterior. c) Voicing, total accuracy: 99.3 %. Meaning of
labels: V = Voiced, U = Unvoiced.

Results man-machine-comparison

ASR System: HTK, closed test, MFCC features from Jan (D +DD), 

39 feature components, Trained / tested on OLLO. No noise added

TS20 / HSRL

Matrix of confusion for consonants (accuracy 81.1 %)

p t k b d g s f v n m

p 88.7 1.6 2 4.4 1.4 1.4 0 0 0.3 0.1 0.1  

t 4.8 84.2 3.7 0.1 5.9 1.2 0.1 0 0.1 0 0  

k 1.8 1.7 91 0.1 0.3 5 0 0 0.1 0 0  

b 21.3 0.5 0.9 59.2 6.8 4.7 0.1 0.2 4.6 0.2 1.5

d 1.9 11.2 1.9 1.6 71.6 9.9 0.2 0 0.6 1 0.1

g 0.9 0.6 24.3 1.3 5.3 64.9 0.1 0.1 0.9 1.1 0.5

s 0.2 0.5 0 0.2 1.3 0.7 91.3 1.6 4 0.2 0.1  

f 0.5 0.6 0.2 0.2 0.3 0.2 3.9 92.8 1.1 0.1 0  

v 2.4 0.1 1 4.6 2.1 1.9 0.3 7.7 76.6 0.6 2.6  

n 0 0.1 0.4 0 1.4 1.2 0.1 0.1 0.8 89 7  

m 0.1 0.1 0.9 0.3 0.3 1.1 0.3 0.3 2.1 11.7 82.8

Matrix of confusion for manner of articulation (accuracy 95.4)

S F N

S 97.9 1.3 0.8

F 5.7 93.1 1.2

N 2.9 1.9 95.3

(a) Manner

Matrix of confusion for voicing (accuracy 90.6 %)

V U

V 86.9 13.1

U 5.7 94.3

Matrix of confusion for place of articulation (accuracy: 91.0)

A M P

A 90.9 6.3 2.9

M 5.8 89.6 4.7

P 2.8 4.6 92.6

HSR

TS4

Matrix of confusion for consonants (accuracy 98.7 %)

p t k b d g s f v n m

p 97.1 0 0 2.5 0 0 0 0.5 0 0 0  

t 0 99.5 0 0 0.5 0 0 0 0 0 0  

k 0 0 100 0 0 0 0 0 0 0 0

b 2 0 0 94.6 0 0 0 0 3.4 0 0  

d 0 0 0 0 100 0 0 0 0 0 0

g 0 0 2.4 0 0 97.6 0 0 0 0 0  

s 0 0 0 0 0 0 100 0 0 0 0

f 0 0 0 0 0 0 2 98 0 0 0  

v 0 0 0 0 0 0 0 0 100 0 0

n 0 0 0 0 0.5 0 0 0 0 99.5 0  

m 0 0 0 0 0 0 0 0 0 0 100

(b) PlaceMatrix of confusion for voicing (accuracy 90.6 %)

V U

V 86.9 13.1

U 5.7 94.3

Matrix of confusion for place of articulation (accuracy: 91.0)

A M P

A 90.9 6.3 2.9

M 5.8 89.6 4.7

P 2.8 4.6 92.6

HSR

TS4

Matrix of confusion for consonants (accuracy 98.7 %)

p t k b d g s f v n m

p 97.1 0 0 2.5 0 0 0 0.5 0 0 0  

t 0 99.5 0 0 0.5 0 0 0 0 0 0  

k 0 0 100 0 0 0 0 0 0 0 0

b 2 0 0 94.6 0 0 0 0 3.4 0 0  

d 0 0 0 0 100 0 0 0 0 0 0

g 0 0 2.4 0 0 97.6 0 0 0 0 0  

s 0 0 0 0 0 0 100 0 0 0 0

f 0 0 0 0 0 0 2 98 0 0 0  

v 0 0 0 0 0 0 0 0 100 0 0

n 0 0 0 0 0.5 0 0 0 0 99.5 0  

m 0 0 0 0 0 0 0 0 0 0 100

(c) Voicing

Fig. 10. Matrices of confusion for different phonetic features,
obtained from ASR experiments. a) Manner of articulation,
total accuracy: 95.4 %. b) Place of articulation, total accu-
racy: 91.0 %. c) Voicing, total accuracy: 90.6 %. Meaning of
labels as in Fig. 9.

5.3. Information Transmission

In order to compute the amount of information transmission
associated with a particular feature and stimulus condition it
is necessary to measure the relationship between a specific
stimulus x and the response categories y without the influ-
ence of a response bias. To explain the method, let us as-
sume that the input variable x can assume the discrete values
i = 1, 2, , k (e.g. the index number of a spoken logatome
or value of a phonetic feature) with probabilities pi. The re-
sponse variable y can assume the values j = 1, 2, , m (e.g. the
index of a recognized logatome or the value of a phonetic fea-
ture) with probabilities pj . A joint probability pij is defined
as the probability of the joint occurrence of an input value i
and the output value j. The information transmission can then
be computed using the expression

T (x, y) = −
∑
i,j

pij log
pipj

pij

as described in [5]. This method can be used to obtain the
information transmission for each phonetic feature (Voicing,
Manner and Place) by determining T (x, y) from the confu-
sion matrices for the phonetic features. The results of the
analysis are presented in Table 2.

ASR and HSR results based on tests with closed lists and
clean speech have been used for the comparison. As for
the matrix of confusion for logatomes, spoken features cor-
respond to rows and recognized features to columns. For rea-
sons of comparability, performance is reported in terms of rel-
ative accuracy, i.e. elements of each matrix row add up to 100
%. Shaded elements point out features or consonants with the
highest relative error rates.

The matrices of confusion for consonants indicate that in
ASR experiments the most frequent errors are ’g’ → ’k’ (i.e.
spoken: ’g’, recognized ’k’) and ’b’ → ’p’, which are also
problematic in human listening tests. On the other hand, the
errors ’b’→ ’v’ and ’f’→ ’s’ are prominent in the HSR con-
fusion matrix, while they are not as noticeable in the corre-
sponding ASR matrix. Errors that often occur in ASR are ’m’
→ ’n’ and ’d’ → ’g’, which weren’t confused in HSR tests a
single time.

ASR: TS20
HSR: TS4

Total Manner Voicing Place
Source Entropy H(x) 3.46 1.43 0.99 1.5
HSR: T(x,y) 3.37 1.40 0.94 1.48
ASR: T(x,y) 2.41 1.17 0.55 0.98
HSR: T(x,y)/H(x) 0.97 0.98 0.94 0.99
ASR: T(x,y)/H(x) 0.70 0.81 0.55 0.66

Table 2. Amount of information transmitted in bits T (x, y)
and source entropy H(x) in bit, calculated from the matrix
of confusion for consonants (corresponding to label ’Total’),
Manner, Voicing and Place. In addition, the relative through-
put T (x, y)/H(x) is listed.



A look at the phonetic features reveals that voicing and
place of articulation exhibit the worst ASR recognition rates.
The voicing and place features have a recognition score of
90.9 % and 91.0 %, respectively, while manner is classified
correctly in 95.4 % of all cases. Due to the type of analysis,
the scores for phonetic features are better or equal to the origi-
nal recognition rate, based on the matrix of confusion for con-
sonants. In the HSR tests, this original score was at 98.7 %,
and the accuracies for phonetic features are in the range from
99.3 to 99.9 %. The largest difference of relative throughput
T (x, y)/H(x) between ASR and HSR can be observed for
the voicing feature with a value of 0.39. The differences for
the features place and manner are 0.33 and 0.17, respectively.

With such high recognition scores, it is difficult to extract
statistically valid information from the data. However, from
the ASR results it can be concluded that voicing information
is important for good ASR performance: The voicing feature
is often considered as redundant for ASR, because speech
usually remains intelligible, even when voicing is discarded
and noise is used as excitation signal. Our data suggests that
the voicing feature is not redundant but is needed to distin-
guish between consonants like ’b’ and ’p’ or ’g’ and ’k’. The
fact that MFCC features neglect voicing information and the
errors ’b’ → ’p’ and ’g’ → ’k’are the most frequent in ASR
experiments support this argument.

6. PERSPECTIVE ON FUTURE WORK

The different recognition scores for humans and machines
complicate a comparison of results. With HSR results close
to 100 %, a large number of logatomes has to be contained in
listening tests in order to ensure results with statistical signif-
icance.
A possible solution to this problem is to use resynthesized
speech in listening experiments. By reversing the signal
processing of ASR systems, feature vectors used internally
by the speech recognizer can be decoded to speech. Using
the results of the decoding process for HSR tests could give
an answer to the question whether all the information needed
for recognition of speech is still present in the feature vectors.
Furthermore, the process of resynthesis is likely to introduce
distortions to the speech signal, so that human recognition
performance is expected to drop and comparable results are
obtained in ASR and HSR tests. An algorithm to calculate
speech signals from MFCC features is described in [4]. The
software used in this study was obtained from the Katholieke
Universiteit Leuven and will be used in future experiments.
HSR experiments based on this paradigm are to be conducted
in the future.

7. CONCLUSIONS

A fair comparison of speech recognition of humans and ma-
chines has been carried out. Our results show that even if
humans cannot exploit contextual knowledge, error rates of

ASR systems are at least 300 % higher than human error rates.
The results motivate a further investigation of to what extent
principles of human hearing can be used as blueprint for ASR
feature extraction.

An interesting analysis regarding consonant confusions
has been carried out by Sroka and Braida [6], who com-
pared recognition scores of humans and machines. Since we
used the OLLO database for the man-machine-comparison,
a wider range of speech intrinsic variabilities (like articula-
tion characteristics and different dialects), a larger number of
speakers and the recognition scores of consonants and vowels
were taken into account for ASR and HSR experiments.

The results from speech intelligibility tests with human
listeners suggest that consonant identification is a more diffi-
cult task for humans than recognition of vowels is. This be-
comes most obvious in noisy test conditions, where recogni-
tion accuracies are constantly better for CVCs that for VCVs.

An analysis of phonetic features shows that voicing is
a feature crucial for discrimination of certain consonants.
While human listeners seem to optimally exploit the voicing
information, this feature is often misclassified by ASR sys-
tems, which leads to the most prominent errors in the conso-
nant matrix of confusion. This suggests to use features for
ASR where the voicing information is taken into account.
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