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ABSTRACT

Based on the well-known relationship between vocal tract
length (VTL) variation and linear frequency warping, we
present a method for generating vocal tract length invariant
(VTLI) features. These features are computed as transla-
tion invariant, correlation-type features in a log-frequency
domain. In phoneme classification and recognition exper-
iments on the TIMIT database, their discrimination capa-
bilities and robustness to mismatches between training and
test conditions turned out to be considerably better than for
Mel-frequency cepstral coefficients (MFCCs). The best re-
sults are obtained when VTLI features and MFCCs are com-
bined.

1. INTRODUCTION

The short-time spectra of two speakers A and B are ap-
proximately related as XA(ω) = XB(αω), where α is the
so-called warping factor. The value of α depends on the ra-
tio of the vocal tract lengths of both speakers and usually
lies in the range between 0.8 and 1.2, relative to an average
speaker.

Vocal tract length normalization based on the above re-
lationship has become an integral part of many automatic
speech recognition engines [1, 2]. Recent approaches even
normalize the utterances from the same speaker with opti-
mal α on a frame-by-frame basis, in order to better match
the standard realizations of the phonemes [3]. The value
of α is typically selected as the one that yields the high-
est likelihood scores in a subsequent hidden Markov model
(HMM) based recognizer [2, 3].

Besides warping of short-time spectra, also the com-
putation of warping-invariant features has been proposed
[4, 5]. In [4] the invariance was achieved with the scale
transform, which has the property that the magnitude spec-
tra of two signals x(t) and 1√

α
x(t/α) are the same. In [5],

the continuous wavelet transform was used as a preproces-
sor, in order to obtain a speech representation in which lin-
ear frequency warping is converted to a translation in the
log-frequency direction. In a second step, vocal tract length
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invariant (VTLI) features were generated by analyzing the
wavelet representations in a translation-invariant manner.
The methods studied in [5] include the auto- and cross-
correlations of local wavelet spectra magnitudes as well as
linear and nonlinear transforms thereof.

In this paper, we extend the work of [5] by looking at
several ways of combining VTLI and classical MFCC fea-
tures and analyzing the performance in various classifica-
tion and recognition tasks. In particular, we look at the
robustness of combined feature sets with respect to mis-
matches between the training and test conditions.

The paper is organized as follows. In the next sec-
tion, we briefly discuss the wavelet transform from which
warping-independent features are generated in a subsequent
step. Section 3 then presents the proposed VTLI features.
In Section 4 we describe the experimental setup and present
results on phoneme classification and recognition experi-
ments. Section 5 gives some conclusions.

2. THE WAVELET TRANSFORM

The wavelet transform of a continuous-time signal x(t) is
given by

Wx(t, a) = |a|− 1
2

∫ ∞

−∞
x(τ)ψ∗

(τ − t

a

)
dτ (1)

where ψ(t) is the so-called mother wavelet, a is the scal-
ing parameter, and the asterisk ∗ denotes complex conjuga-
tion. By varying a, the center frequency, bandwidth, and ef-
fective time-width of ψ(t/a) are changed according to the
scaling theorem of the Fourier transform. This is known
as a constant-Q analysis, where the relative bandwidth is
constant. The wavelet transform Wxα

(t, a) of a normal-
ized, linearly frequency warped signal xα(t) = 1√

α
x( t

α ),
α > 0, with Fourier spectrum Xα(ω) =

√
αX(αω) is re-

lated to Wx(t, a) as Wxα
(t, a) = Wx

(
t
α , a

α

)
.Thus, a linear

frequency warping of the signal by a factor α results in a
translation of the wavelet transform by log α in the (log a)-
domain. This is important, because the wavelet transform is
naturally computed for equally spaced values of log a.

In order to compute the wavelet transform for a discrete-
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time signal x(n), we discretize (1) and use the definition

wx(n, k) = 2−k/(2M)
∑
m

x(m)ψ∗
(m − nN

2k/M

)
, (2)

where M is the number of voices (subbands) per octave,
and N is the subsampling factor used to reduce the sam-
pling rates in the wavelet subbands. Assuming K oc-
taves, the scaling parameter a takes on values ak = 2k/M,
k = 0, 1, . . . ,MK−1.

An important property of the wavelet transform (2) is
that it is computed on a regular time grid with the same sub-
sampling factor N applied to all frequency bands, regardless
of the bandwidth. This is in contrast to the discrete wavelet
transform (DWT), which operates on a dyadic grid and uses
different sampling rates in different octaves. Due to the con-
stant sampling rate in all frequency bands, the wavelet trans-
form (2) does not suffer from the shift-invariance problem
known from the DWT, provided that the factor N is suffi-
ciently small and chosen in accordance with the number of
voices (e.g., such that N ≤ M ). Rather than implementing
(2) directly, which means a significant computational load,
one may use the à trous algorithm [6], implemented sepa-
rately for each of the M voices.

The wavelet analysis will have better time resolution at
higher frequencies than needed for producing feature vec-
tors every 5 to 15 ms. Direct downsampling of features will
therefore introduce aliasing artifacts. Since we are mainly
interested in the signal-energy distribution over time and
frequency, we may take the magnitude of wx(n, k) and filter
it with a lowpass filter in time direction before final down-
sampling. The final primary features will then be of the
form

yx(n, k) =
∑

�

h(�) |wx(nL − �, k)| (3)

where h(�) is the impulse response of the lowpass filter, L
is the downsampling factor introduced to achieve the final
frame rate fs/(N · L), and fs is the sampling frequency.
To avoid that the filtered values yx(n, k) can become neg-
ative, we assume a strictly positive sequence h(n) like, for
example, the Hanning window.

Fig. 1 gives an example of a wavelet analysis. In
Fig. 1(b), which shows |wx(n, k)| as a grayscale image (i.e.,
a scalogram), the pitch is visible in most frequency bands.
This pitch pattern is no longer visible in Fig. 1(c), which
depicts yx(n, k).

3. WARPING-INVARIANT FEATURES

Due to the nature of yx(n, k), warping-invariant features
can be easily generated by taking the Fourier transform of
yx(n, k) with respect to parameter k and retaining only the
magnitudes of the transform coefficients. However, this is
only one of several possibilities to obtain warping-invariant
features. Any feature extraction strategy that is independent
of a translation with respect to k will allow us to achieve
this goal.

Fig. 1. Example of a wavelet analysis. (a) Time signal. (b)
Wavelet transform magnitude |wx(n, k)| with k ∝ − log ω.
(c) Smoothed wavelet analysis yx(n, k).

Other possibilities include, but are not limited to cor-
relation sequences between transform values or nonlinear
functions thereof at two time instances n and n − d (corre-
lation with respect to the log-frequency index k). In partic-
ular, we here consider

rx(n, d, m) =
∑

k

yx(n, k)yx(n − d, k + m) (4)

and

cx(n, d, m) =
∑

k

log(yx(n, k)) · log(yx(n − d, k + m)). (5)

The parameter d is a time lag, and m is the lag for the log-
frequency index k. The features rx(n, 0,m) will give infor-
mation on the signal spectrum in time frame n. For d �= 0
the features rx(n, d,m) will give information on the devel-
opment of short-time spectra over time. A feature vector for
time index n can contain any collection of the above men-
tioned features computed for the same time index n. More-
over, any linear or nonlinear combination and/or transform
or filtering of rx(n, d,m) and cx(n, d,m), including tak-
ing derivatives (i.e., delta and delta-delta features) will also
yield warping invariant features.

To give an illustration of the properties of the
correlation-based features, we consider the set rx(n, d,m)
for d = 0 (i.e., autocorrelation features). Fig. 2 shows the
features for the signal of Fig. 1. It is interesting to see that
the autocorrelation, although it is in some sense phase-blind,
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Fig. 2. Autocorrelation features rx(n, 0,m) for m ≥ 0.

still retains the formant structure. This is due to the fact that
noticeable correlation values are achieved when the high-
energy pitch component is shifted and multiplied with the
formant components during the correlation operation. Un-
der the assumption that the linear warping model is true
for vocal tract length variations, these formant-related struc-
tures will indeed be independent of the warping factor. For
real speech, of course, this is only an approximation [7], but
it leads to formant-like structures that are robust to vocal
tract length variations.

4. EXPERIMENTAL RESULTS

In our experiments, a linear-phase wavelet transform based
on the Morlet wavelet [8] given by ψ(n) = exp(jω0n) ×
exp(− n2

2σ2
n
) was used with the parameters ω0 = 0.9π and

σ2
n = 100. The transform wx(n, k) was carried out with

M = 12 voices per octave and K = 7 octaves, resulting in
primary feature vectors of length 84. The initial downsam-
pling factor N was chosen as N = 1. The lowpass filter
h(n) was simply a rectangular window of 200 coefficients.

The original speech signals were sampled at 16 kHz
sampling rate, and the final frame rate was set to 10 ms. The
following 45 vocal-tract length invariant features (VTLI-F)
were used:

• the first 20 coefficients of the discrete cosine trans-
form (DCT) of log(r(n, 0,m)) with respect to param-
eter m for m = 0, 1, . . . , 83.

• the first 20 coefficients of the DCT of c(n, 4,m) with
respect to parameter m with m = −83, . . . , 83.

• log(r(n, 4,m)) for m = −2,−1, . . . , 2
The warping-invariant features were also amended with

classical MFCC features. For this, the 12 MFCCs and the
single energy feature of the standard HTK setup were used
(denoted by 13 MFCC in the following). Moreover, the first
15 DCT coefficients (DCT with respect to frequency param-
eter k) of the logarithmized wavelet features log(yx(n, k))
were used for feature set amendment as well. In addition,
for all features, also the delta and delta-delta coefficients
were included. Altogether, this makes a total number of 219
features. In a subsequent step, the number of features was
reduced, using either feature selection, a linear discriminant
analysis (LDA) [9], or combinations of the above.

The following feature sets were considered, where the
factor 3 stands for the inclusion of delta and delta-delta fea-
tures:

Table 1. Accuracies in % for phoneme classification.

Features No. Feat. Train. Test Acc.
3×13 MFCC 39 M+F M+F 60.74

VTLI-F 39 M+F M+F 61.33
VTLI-F+MFCC+WT 39 M+F M+F 64.15

VTLI-F 47 M+F M+F 62.97
3×13 MFCC + 8 VTLI-F 47 M+F M+F 63.08

VTLI-F+MFCC+WT 47 M+F M+F 64.80
3×13 MFCC + 3×5 VTLI-F 54 M+F M+F 61.47

3×13 MFCC 39 M F 50.01
VTLI-F 39 M F 53.91

VTLI-F+MFCC+WT 39 M F 57.00
VTLI-F 47 M F 53.39

3×13 MFCC + 8 VTLI-F 47 M F 53.92
VTLI-F+MFCC+WT 47 M F 57.50

3×13 MFCC + 3×5 VTLI-F 54 M F 52.54
3×13 MFCC 39 F M 48.47

VTLI-F 39 F M 53.75
VTLI-F+MFCC+WT 39 F M 57.10

VTLI-F 47 F M 52.96
3×13 MFCC + 8 VTLI-F 47 F M 52.12

VTLI-F+MFCC+WT 47 F M 57.25
3×13 MFCC + 3×5 VTLI-F 54 F M 50.89

• 3×13 MFCC.
• VTLI-F: 3×45 VTLI features, reduced via an LDA to

39 and 47 features, respectively.
• VTLI-F+MFCC+WT: all 219 features, reduced via an

LDA to 39 and 47 features, respectively.
• 3×13 MFCC + 8 VTLI-F: 3×13 MFCCs, amended

with the 8 most important features from the plain
VTLI-F setting above.

• 3×13 MFCC + 3×5 VTLI-F: MFCCs, amended with
first five DCT coefficients of log(r(n, 0,m)) with re-
spect to the frequency lag m.

We present results for phoneme classification and recog-
nition on the TIMIT corpus (including the SA files). The
training and test sets were both split into male and female
subsets in order to allow for training and testing under dif-
ferent conditions. In the following, M+F, M, and F de-
note training/test on male+female, male, and female data,
respectively. Following the procedure in [10], 48 phonetic
models were trained, and the classification/recognition re-
sults were folded to yield 39 final phoneme classes that had
to be distinguished. The LDA was based on the 48 phonetic
classes.

Table 1 shows results for maximum likelihood phoneme
classification based on Gaussian mixture models with four
mixtures and full covariance matrices. The models were
built for single feature vectors, without further context. For
each frame, the phonetic transcription that was valid for
the frame center was used. For the M+F setting, where
both male and female data was used during training and
test, we see that the pure VTLI features (VTLI-F) yield
almost the same performance as the MFCCs. However,
when only male or only female data is used for training,
the degradation for the VTLI features is far less than for the
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Table 2. Correctness and accuracy in % for phoneme recognition using a HMM recognizer with five mixtures and diagonal
covariance matrices. The definitions for correctness and accuracy are in accordance with the HTK documentation [11].

Features No. Feat. Training Test Correctness Accuracy
3×13 MFCC 39 M+F M+F 72.49 69.19

3×13 MFCC + 8 VTLI-F 47 M+F M+F 73.68 70.74
VTLI-F+MFCC+WT 47 M+F M+F 71.72 67.84

3×13 MFCC + 3×5 VTLI-F 54 M+F M+F 72.90 69.33
3×13 MFCC 39 M F 62.67 56.84

3×13 MFCC + 8 VTLI-F 47 M F 67.68 62.27
VTLI-F+MFCC+WT 47 M F 68.83 63.56

3×13 MFCC + 3×5 VTLI-F 54 M F 65.76 59.38
3×13 MFCC 39 F M 59.07 55.53

3×13 MFCC + 8 VTLI-F 47 F M 63.33 60.79
VTLI-F+MFCC+WT 47 F M 67.01 62.98

3×13 MFCC + 3×5 VTLI-F 54 F M 63.13 59.13

MFCCs. The best performance is achieved when VTLI fea-
tures, wavelet coefficients, and MFCCs are combined via an
LDA to a final number of 47 features. This combined fea-
ture set is also the most robust one when the training and test
conditions are different. Interestingly, the concatenation of
the original MFCC features with some additional VTLI fea-
tures improves the MFCC performance significantly. How-
ever, it cannot achieve the same robustness as the VTLI-
F+MFCC+WT set. The results show the complementari-
ness of invariant features and classical ones like MFCCs.
Especially the robustness to a mismatch between training
and test conditions is remarkable.

Table 2 presents results for HMM-based phoneme
recognition using monophone models, three states per
phoneme, five Gaussian mixtures per state, and diagonal co-
variance matrices. The recognizer was based on the Hidden-
Markov-Toolkit (HTK). We see that the best performance
is achieved when VTLI and classical spectral features are
combined. The set 3×13+8VTLI-F gives the best perfor-
mance when training and test conditions are the same, and
it is also robust to a mismatch between training and test con-
ditions. The highest robustness is achieved with the VTLI-
F+MFCC+WT set, at the price of a small degradation when
training and test conditions match.

5. CONCLUSIONS

We have proposed a technique for the extraction of vocal
tract length invariant features. The performance of the new
features has been demonstrated in both phoneme classifica-
tion and recognition tasks. The results have shown that the
new features are complementary to the well-known MFCCs
and that they can be used to construct combined feature sets
that are robust to speaker variations, especially when the
training conditions do not match the test conditions. Fu-
ture work will be directed toward finding more invariant
features, investigating the noise robustness of the proposed
features, and optimal feature combination.
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