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Abstract

Results of spike-sorting algorithms are usually compared with recorded signals which them-
selves underly interpretations, distortions and errors. Our approach is to provide and compare
physiological extracellular potential data by a realistic cortical network simulation. For this pur-
pose, we utilize the neural simulator GENESIS and simulate a region of rat hippocampus contain-
ing 90 cells. We are able to “record” simulated extracellular potentials from “virtual electrodes”
and produce test data closely resembling multisite neuronal recordings. Our realisitic, arti8cial
data are complex and almost natural in appearance; however, current spike detection schemes
appear unable to reliably detect all spikes produced. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Progress in microtechnology development by the European VSAMUEL consortium
[5] following the track started earlier at the University of Michigan [2], recently
achieved multisite recording probes with 32 electrode sites on multiple purpose sil-
icon probes. This opens the door to acquire neuronal signals which may contain spike
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trains from hundreds of cells [16]. Obviously, the amount of data acquired in a single
experiment requires some type of automation to assign spikes to individual cells. This
spike sorting is currently done by several more or less standard methods. However, a
rigid assessment of their quality is needed.

Until now, results of spike-sorting algorithms have been compared with recorded
signals which themselves underly interpretations, distortions, and errors. An alternative
is, to run tests on arti8cial data generated by adding spike snippets to noisy signals [3].
This method has the advantage of control over data, but is paid for with unphysiological
data. Our approach is to mimic physiological extracellular potential data in a biolog-
ically realistic network simulation. For this purpose, we utilize the freely available
neural simulator GENESIS [1] to simulate a small network of 90 cortical cells and use
their output for assessment within two automated spike detection algorithms [10,17].

2. Methods

A region of cortex is represented by 72 CA3 pyramidal cells (PYR), randomly spaced
at 35 up to 45 �m in each direction, and 18 interspersed inhibitory interneurons. The
interneurons are divided into nine feedforward and nine feedback interneurons. The only
diIerence between the two inhibitory cell types is their pattern of connectivity. Neurons
of one group are 75–85 �m in x-direction and 155–165 �m in y-direction apart from
each other, thus alternating in y-direction. Additionally, there is a random rotation of
each cell about its z-axis (see Fig. 2 inset). In the case of the PYR, we employed
the Traub model [13] as implemented by Pulin Sampat (Brandeis University) and
Patricio Huerta (MIT). This model comprises 66 compartments, thereof one axon initial
segment and one axonal compartment. Six diIerent channel types are simulated, namely
active Na+, active Ca2+, delayed recti8er, transient, slow AHP and rapid Ca2+—and
voltage-dependent K-channels. We implemented Traub’s cortical interneuron model [14]
in GENESIS-code by ourselves and incorporated 48 compartments, again including one
axon initial segment and one axonal compartment. Channel types, their kinetics and
random variation of the resting membrane potential between −65 and −60 mV are the
same as in the case of the PYR. The models for PYR and interneurons mainly diIer
in cell geometry and their channel conductances [14]. Our GENESIS implementation
of the two models allows almost exact replication of some results presented in the
literature [13,14].

The ratio of 1:4 between interneurons and PYR is orientated to the literature [15],
where the ratio is approximately 1:5. We realized the synaptic interactions by spreading
the following receptors already implemented in GENESIS: AMPA [4], NMDA [4],
GABAA [8] and GABAB [12] receptors on the pyramidal cells and AMPA receptors
only on the interneurons. The distribution of these receptors allowed the pattern of
connectivity shown in Fig. 1.

PYR receive random aIerent input at the perisomatic region, feedforward interneu-
rons (FF) at their apical dendrites. FF contact the PYR at the distal, apical and
basal dendrites. Excitatory contacts (open triangles) from other PYR are also made
in these regions. Soma and proximal dendrites are the targets for the inhibitory input
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Fig. 1. Sketch of our cortical circuit: (PYR) receive random aIerent input at the perisomatic region,
feedforward interneurons (FF) at their apical dendrites. FF contact the PYR at the distal apical and
basal dendrites. Excitatory contacts (dashed lines with open triangles) from other pyramidal cells are
also made in these regions. Soma and proximal dendrites are the targets for the inhibitory input (dark
triangles) from FB.

(dark triangles) from feedback interneurons (FB). Cell connections are sparse, but each
neuron in the network can contact all other neurons. PYR axons are myelinated, thus
getting an assigned conduction velocity of 0:5 m=s. We assigned to unmyelinated in-
terneuron axons and mossy 8bers a conduction velocity of 0:2 m=s. Mossy 8ber input
or aIerent input, respectively, is simulated by GENESIS objects randomly generat-
ing spikes at a prede8ned rate. For our simulation, a rate of 40 spikes=s worked out
8ne. Higher rates led to an excessively high excitation of the network, expressed by
continuous oscillations. To prevent this undesired state, we also had to reduce the
number of PYR–PYR connections and to increase number and weight of inhibitory
connections.

Within the framework of this network simulation, extracellular 8eld potential data can
now be generated by simulating multisite electrodes with the help of linearly arranged
GENESIS “e8eld” objects at arbitrary positions in the network. The “e8eld” object is
the implementation of the following Eq. (1) by Nunez [9]

F =
1

4�s

n∑

i=1

Ii
ri
: (1)

The transmembrane currents Ii of n compartments are added with respect to their
distance ri from the “electrode”. The scale factor s denotes conductivity. Homogeneous
resistivity and no capacitance is assumed for the intercellular medium. A virtual reality
(VR)-view of 32 such electrodes, arranged linearly on four needle-like virtual carriers
(so called probes) is shown in Fig. 2.

The simulation is numerically solved with the exponential Euler integration method
and a step size of 2:5 ms.
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Fig. 2. VR-view depicting the arrangement of GENESIS e8eld objects, simulating four probe shafts with
eight recording sites each, surrounded by four PYR as part of the geometrical arrangement of the whole cell
array. The 8gures’ inset illustrates a VR-view of our array of 72 PYR cells. A random rotation of each cell
about its z-axis is not visible in this illustration.

3. Results and discussions

Whereas our small cortical model awaits its physiological validation by real brain
recordings, the simulated extracellular, multiunit signals resemble closely experimen-
tal multisite recordings taken with silicon probes by [16]. Speci8cally, a bell-shaped
distribution in potential amplitude along a linear site array (Fig. 3) can be found corre-
sponding to real recordings as well. The middle electrode (i.e. GENESIS e8eld-object
No. 4 of each array, see Fig. 2) is located close to simulated cells’ soma level and
therefore shows the highest amplitude recorded at one time.
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Fig. 3. Exemplary recording from seven linearly arranged virtual electrodes of one probe (spacing 30 �m).
The horizontal scale bar represents 0:1 s. Note: The maximum amplitude is recorded at roughly the
z-coordinate of the closest cells’ soma and decays up and down the linear probe array.

In general, the soma is primarily assumed to be the origin of spike activity [6],
but is by far the largest compartment as well, both factors may contribute to the high
amplitude on the middle trace. Nevertheless, due to an increasing distance to all big,
spiking compartments further up and down the linear array, amplitudes recorded there
decrease with increasing distance.

However, one discrepancy to the real recordings can be seen in the almost equal
amplitude height for all “visible” cells recorded. This discrepancy is most likely due
to the fact that the GENESIS e8eld object does not provide a direction-sensitive pa-
rameter, but instead sums over all compartments of the whole surroundings. This is
not found with real silicon multisite probes, having their recording sites shielded to the
backside by a silicon substrate and thus providing higher sensitivity to one side with
yet unknown directional characteristics. Consequently, a comparison of recorded and
simulated multisite data may in future shed light on the question of directional charac-
teristics and performance of diIerent recording sites and carriers without the need to
sacri8ce more than one animal.

A more detailed example of one such multiunit recording trace is shown in Fig. 4
in addition to the four closest PYR and the closest feedback interneuron with its spike
train, as indicated by the simulations’ output. The combination of displays demonstrates
one of our models’ drawbacks: a strong tendency for the PYR to 8re in groups, yet
another reason for ongoing research and an additional obstacle for all automated spike
detection schemes. This synchronous 8ring is obviously not clearly detectable in the
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Fig. 4. A recording trace of one site is displayed simultaneously with the spikes of surrounding cells as
indicated by the simulator: On top, one FB interneuron (FB4), followed by four diIerent PYR (PYR 39,
38, 33, 32).

multiunit activity, but very clear on spike raster plots. The only multiunit evidence for
the synchronous activity can be found in a general rise in background activity, lifting
the overall multiunit potential, but seems with all its details not easily back projected
to its originating spike trains.

Fig. 4, therefore, clari8es the diPculties faced by whatever type of spike detection.
Even though the simulations’ output gave precise timing and distribution of spike trains
per neuron, those spikes are by far not easily detected in the multiunit activity recorded.
But this diPculty is even dwarfed by the necessary second stage to be achieved by
each type of automated analysis: the assignment of detected spikes to unique sources,
thus producing cellular spike trains much like the one our simulation gives naturally.

In order to assess the 8rst stage of the mentioned backward problem (going from
potential data to spikes) in a practical way, we had two diIerent spike detection algo-
rithms competing against each other on the same data set (Fig. 3). One is taken from
the freely available software “Spiker” [10] and the other is our own algorithm, based
on morphological 8lters [17].

Fig. 5 displays exemplary spike trains found by Spiker (a) or our detection scheme
(b) in relation to the spike trains given by the simulation (c)–(g). In order to mark
hits by either of the algorithms, we marked the appropriate spike either on top (“Spiker
hit”) or on the bottom (“Morph hit”). This way, the better performance of our detection
scheme is clearly visible.

Overall results are encouraging, since Spiker recognizes approximately 66±5% of all
spikes, whereas our morphological approach even reaches 80 ± 4%. The better result
in the latter case may be explained by the optimization to a dense linear recording
array, while Spiker is optimized to a tetrode arrangement, the cross-like arrangement
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Fig. 5. Spike trains as detected by “Spiker” (a) and our morphological 8lter tool (b). The following trains
represent the “real” simulated spikes and indicate the hits by each detection method: upper black marks
indicate a hit by Spiker, lower black marks indicate a hit by our morphological tool. Data from top: FB4
(c), PYR 39 (d), PYR 38 (e), PYR 33 (f), PYR 32 (g).

of sites. No attempts to quantify higher order errors were undertaken at this stage, but
are planned for the future.

To summarize the above results, we were able to simulate realistically a small net-
work of cortical cells, thus providing simulated multisite potential data and the means
to precisely quantify the performance of spike detection schemes. Future work with this
simulation will show whether or not there is a Gold Standard algorithm for automated
spike detection and sorting. Incorporating this network model in a 8nite element [11]
description of a brain region [7] may even enable us to 8nally understand in detail,
why real multisite signals look the way they do.
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