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Abstract—A new technique for the blind separation of convolu-
tive mixtures is proposed in this paper. Inspired by the works of
Amari, Sabala , and Rahbar, we firstly start from the application
of Kullback–Leibler divergence in frequency domain, and then we
integrate Kullback–Leibler divergence over the whole frequency
range of interest to yield a new objective function which turns out
to be time-domain variable dependent. In other words, the objec-
tive function is derived in frequency domain which can be opti-
mized with respect to time domain variables. The proposed tech-
nique has the advantages of frequency domain approaches and is
suitable for very long mixing channels, but does not suffer from the
local permutation problem as the separation is achieved in time-do-
main.

Index Terms—Blind source separation (BSS), convolutive
mixtures, frequency domain, integrated objective function, Kull-
back–Leibler divergence.

I. INTRODUCTION

BLIND SOURCE separation (BSS) has been an active re-
search topic during the past decade due to its potential ap-

plications in many areas. As a special case, the separation of
instantaneous mixtures has been intensively studied and many
approaches have been proposed with very good performance
[1]–[5]. However, a more challenging situation is the so-called
convolutive mixing problem, where observation signals are the
mixtures of signal sources via a multiple-input–multiple-output
(MIMO) system. Although extensive work has been conducted,
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convolutive BSS is still an open issue as there is still not a good
solution for some practical situations with long mixing chan-
nels, such as audio or speech signals in a reverberant conference
room [6]–[17].

A general way for solving the convolutive BSS problem is to
extend the approaches for instantaneous mixtures to the case of
convolutive mixtures, which can be done in either time or fre-
quency domain. The corresponding methods are referred to as
time-domain and frequency-domain approaches, respectively.
With time-domain approaches, an objective function that mea-
sures the independence of the outputs of the separation system
is usually defined as a function of the impulse responses of the
unmixing system. Examples of time-domain approaches are [6],
[7], [11], [18]–[20], and [33]. An advantage associated with the
time-domain approaches is that they usually do not suffer from
the so-called unknown local permutation problem at frequency
level. However, the time-domain approaches are usually not able
to achieve good separation for long mixing channels.

Frequency-domain approaches are considered as promising
techniques for BSS in the cases of very long mixing channels.
The scenario behind is that convolutive mixtures in the time do-
main are equivalent to instantaneous mixtures in frequency do-
main. Hence, by transferring mixtures into frequency domain,
the approaches for instantaneous mixture separation can be ap-
plied to every individual frequency bin, and good separation can
be achieved. However, the frequency-domain approach suffers
from the local permutation problem in that the separated subsig-
nals can be misaligned which makes the restoration of signals
very difficult [8], [9], [24].

People have carried out extensive work to remedy the local
permutation problem. The general way is to identify the local
permutation based on source signal and/or BSS system proper-
ties. Examples are those making use of the fact that two suc-
cessive frequency-domain separating matrices should be more
similar to each other when they are in the same local permu-
tation [8], [26]–[28]. Applying smoothness constraints to the
separating system in the frequency domain is another way to
overcome the local permutation problem [9]. Some researchers
investigated this problem in other ways [21], [23], [29].

Despite extensive efforts so far, the local permutation ambi-
guity problem is still a challenging issue. A better way would
be to avoid local permutation rather than to identify it. The idea
in this paper is, therefore, to build objective functions in the fre-
quency domain that keep the advantages of the frequency-do-
main approaches, but capture the optimizing parameters in the
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time domain. In other words, the separation network is still de-
fined in the time domain, but the parameters of the separation
system are optimized based on a frequency-domain objective
function. Note that such approaches have also been exploited
in [12] and [15]. However, in [12], the method is based on the
identification of the mixing system, followed by a step where
the identified mixing system is inverted to achieve BSS. In [15],
the approach is based on second-order statistics and considers
the deconvolution of MIMO finite-impulse response (FIR) sys-
tems in a setting where colored stationary source processes are
assumed.

In this paper, we propose an approach for convolutive BSS
which does not suffer from the frequency-domain local permu-
tation problem. The new method is based on the existing work of
using Kullback–Leibler divergence (KL-divergence) for instan-
taneous BSS [2]. An objective function, based on the integration
of KL-divergence applied to each frequency bin, is defined in the
frequency domain. As a function of the time-domain parameters
of the separation system, the objective function is optimized in
the time domain, so that the local permutation problem at each
frequency bin is avoided.

Note that similar cost functions as the one used in the present
work have been considered in [33] and [17]. While the method
in [33] is a direct time-domain approach, the work in [17]
considers both time- and frequency-domain methods. The
frequency-domain method in [17] determines the gradient of
the cost function with respect to the independent demixing
matrices at different frequency bins and then truncates the re-
sulting (longer) time-domain impulse responses to a predefined
maximum length, similar to the method in [9]. By contrast,
we determine the gradient of the frequency-domain cost func-
tion directly with respect to the time-domain parameters. A
further distinction between our approach and that of [33] and
[17] is that our optimization is done under the assumption
of phase-independent probability density functions in the
frequency domain, which appears to be more robust than the
standard gradient.

This paper is organized as follows. Section II describes the
BSS problem considered in this paper. In Section III, the KL-di-
vergence and the work by Amari et al. [2], [7], [30] are reviewed
with the purpose of deriving the objective function for the new
algorithm. Section IV gives the details of the new approach.
Simulation results for the proposed algorithm are given in Sec-
tion V, and Section VI concludes the paper.

In this paper, the following notations will be used. Matrices
and vectors are printed in boldface letters. The term det(.) de-
notes the determinant operator, and the superscript means ma-
trix transposition. In addition, the superscript will be used as
the inversion and transpose operator, the superscript denotes
Hermitian transposition, and the superscript means Hermi-
tian transposition and inversion of a matrix. The superscript
stands for complex conjugation.

II. PROBLEM STATEMENT

In this paper, we only consider -by- case, where we have
signal sources, observation signals, and separated sig-

nals. The mixing channels are assumed to be FIR of length ,

and the separating channels are also FIR with length
[12]. We assume that the sources are real,

zero mean, and independent of each other. Moreover, the mixing
system is considered to be linear and time invariant. We will
use to denote the signal
sources, to denote the ob-
servations, and to denote
the separated outputs.

The noise-free convolutive mixing model is given as follows:

(1)

where denotes the convolution operation. The matrices
are given by , where is the impulse
response of the channel from source to observation .
We also assume that the transfer function matrix of the mixing
system, , is nonsingular on the unit
circle of the complex plane, which guarantees that the sources
are separable at each frequency bin.

The separation network is also a MIMO system with FIR
channels denoted by , where de-
notes the impulse response of the channel from to output

. is the transfer function matrix
of the separation system.

Given the definitions above, the separation system output is
given as follows:

(2)

From (1) and (2) we have

(3)

where . Equation (3) can
be rewritten in the -domain as follows:

(4)

BSS is considered to be successful if the output is a
permuted and filtered version of the signal sources , which
implies that the global transfer function matrix is of the
following form:

(5)

where is a permutation matrix and is a diagonal transfer
function matrix.

III. BSS BASED ON THE KULLBACK–LEIBLER DIVERGENCE

In this section, we present a brief review of the KL-divergence
and the BSS algorithms developed based on it so far.



MEI et al.: BSS BASED ON TIME-DOMAIN OPTIMIZATION 2077

A. KL-Divergence

The KL-divergence is a fundamental means to measure the in-
dependency of a set of random variables. It is defined as follows:

(6)

where is the joint probability density function
(pdf) of random vector and

is the marginal distribution, where
is the pdf of . Note that the KL-divergence in (6) is a

nonnegative function which exhibits its minimum value of zero
when the components of the random vector are independent [2].

B. KL-Divergence-Based BSS Algorithms in the Time Domain

For the instantaneous mixing cases ( in (1)), Amari et
al. [2], [31] proposed an algorithm based on the KL-divergence,
in which the objective function is given as

(7)

or

(8)

where is the separation matrix.
Based on the above objective function, a natural-gradient

based approach for instantaneous mixtures was derived as
follows [2]:

(9)

where is a time index and iteration indicator, and is the iden-
tity matrix. The term

with

which depends on the pdf of the sources, is referred to as the
activation function.

The KL-divergence-based objective function (8) was gener-
alized to the separation of convolutive mixtures in the time do-
main as follows [7]

(10)

The corresponding natural gradient algorithm becomes:

(11)

where . An improved version of
this method, which takes special care of a bias that occurs as a
result of windowing effects, has been proposed in [33].

Alternatively, Sabala et al. generalized Amari’s algorithm (9)
to the separation of convolutive mixtures on the basis of abstract
algebra theory [30]. The corresponding algorithm is as follows:

(12)

where . If the Fourier transform is applied
to the two sides of (12), we will find that (12) is nothing but the
approach proposed in [14].

The advantage of (11) and (12) is that they do not suffer from
the frequency-domain local permutation ambiguity. However,
they usually do not work very well for the separation of signals
with long mixing channels.

C. KL-Divergence-Based BSS Algorithms in the Frequency
Domain

With the frequency-domain approaches, observation signals
are decomposed into a set of narrowband components via the
short time Fourier transform (STFT), and the separation is per-
formed for each frequency bin. The separation process can be
described by the following equation:

(13)

where is a time index and

where and are the STFTs of and
, respectively.

Note that (13) results from applying the STFT to (2). Strictly
speaking, (13) only holds approximately because an error will
be introduced when linear convolution is replaced by circular
convolution. This error can be reduced by a suitable window
and far larger block size of the discrete Fourier transform than
the length of system impulse response. As is an instan-
taneous mixing matrix for any specified , (13) implies that in-
stantaneous BSS approaches can be used for all the individual
frequency bins.

As the mixing is instantaneous in nature for each frequency,
the objective function in (7) can be directly applied to every fre-
quency bin. Sources will be recovered from the subsignals ob-
tained at the frequency bins. This work was done by Smaragdis
[8], and the resulting objective function is as follows:

(14)
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The corresponding natural-gradient based algorithm is as fol-
lows:

(15)
where

is the complex-valued activation function and has discrete
values.

The frequency-domain algorithm (15) suffers from the local
permutation ambiguity. Although measures are taken to elimi-
nate this problem, separation results are not always guaranteed
[8], [9], [24].

IV. NEW APPROACH

In this section, we will construct an objective function based
on the KL-divergence in the frequency domain, but the variables
are the time-domain parameters of the separation system. These
parameters will be obtained directly through the optimization of
this objective function, so that the local permutation ambiguity
for each frequency bin can be avoided. This is because the fre-
quency-domain parametersofdifferent frequencybinsof thesep-
aration system are coupled to each other, and when the time-do-
main parameters are changed, they will be automatically aligned
in an identical manner. In addition, we will use the phase-inde-
pendent pdf definition and the polar-coordinate activation func-
tion for complex-valued variables, which was proposed in [34]
and [35] and further analyzed in [25]. It was proved by [25] that
polar type nonlinear activation functions behave better than the
Cartesian type for complex-valued sources.

We integrate the frequency-domain objective function (14)
with respect to the frequency and replace in (14)
with the phase-independent pdf , which yields
an objective function whose variables are just the time-domain
parameters of the separation channels. That is

(16)

The integration in the objective function (16) makes it dif-
ferent from that in (14). It converts the objective function with
respect to in (14) into a new objective function with
time-domain parameters as its variables. In addition, it is
showed that it is reasonable to assume that the pdf of a com-
plex-valued signal is independent of its phase when the nat-
ural gradient based algorithm (9) is applied. The replacement
of with will make the new algo-
rithm more robust than (15) [25].

When comparing the objective functions (10) and (16), it is
evident that there are two important differences. Firstly, the first
terms in these two functions are in fact the same, but the second
terms are different. In (16), the second term results from the

application of KL-divergence to the sub-signals rather than the
whole signals as that in (10). Second, the nonstationarity prop-
erty of the sources is taken into account through the time index
.

Now, we evaluate the gradient of the objective function in (16)
with respect to the channel coefficient matrix

(17)

Let us evaluate the first term of (17). As the partial differen-
tiation in (17) is with respect to the FIR filter matrix , we
consider the th coefficient of its element in the th row and th
column. First

(18)

In order to evaluate the above gradient, taking the Laplacian
expansion of with respect to its th row entries
gives

(19)

where is the adjoint matrix of the entry
of matrix .

The derivative of with respect to is

(20)

Deducing in the same way for , we
get

(21)

Thus, (18) becomes

(22)

Writing (22) in matrix form, we obtain

(23)
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Now, we consider the second term of (17). Also taking its
element in the th row and th column, we get

(24)

where

(25)

Substituting (25) into (24), we obtain

(26)

where

(27)

is the activation function with

being the phase of . Note that (27) is also referred to
as a polar-coordinate activation function [25].

Now, the second term of (17) can be obtained by rewriting
(26) in matrix form

(28)

with

Substituting (23) and (28) into (17), the gradient of the objec-
tive function can be obtained as

(29)

Based on the definition in [30] and [31], the corresponding nat-
ural gradient is as follows:

(30)

Therefore, the natural-gradient based adaptive learning rule can
be obtained as follows:

(31)
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To find out the activation function, we assume that the STFT
of the source signals has the generalized Gaussian distribution
of the form [32]:

(32)

where is the gamma function and
is the generalized measure of variance, known

as the dispersion of the distribution.
Based on (32), the activation function in (27)

can be obtained as follows:

(33)

Substituting (33) into (31), we obtain

(34)

where

is a diagonal matrix with being its
diagonal entries, and

with

If the sources are nonstationary, such as speech signals, the
diagonal matrix will change with time , so algorithm
(34) can also be seen as the joint optimization of many different
objective functions .
Therefore, the nonstationarity of sources is not a problem, and
it can even make the KL-divergence-based algorithm (34) more
robust than that of stationary sources.

In the implementation, is computed as follows:

(35)

where is the moving average parameter.

TABLE I
PSEUDO CODES FOR THE IMPLEMENTATION OF ALGORITHM (34)

The algorithm can be implemented with the FFT and inverse
FFT (IFFT), so it has very good computational efficiency.
Pseudocodes for the implementation of (34) are given in
Table I.

V. SIMULATIONS

In this section, we present simulation results on the proposed
algorithm with simulated and real-world recorded mixture data.
We also study the influence of the FFT block size on the separa-
tion performance of the proposed algorithm. Comparisons with
other approaches are presented as well.

For the purpose of evaluating the performance of our new al-
gorithm, we define the signal-to-interference-ratio (SIR) as fol-
lows (refer to (3), and suppose that no global permutation hap-
pens):

SIR (36)

where is the convolution operator; E[.] gives the expectation
which is replaced with time average in practice.

A. Separation of Simulated Mixtures

In this first experiment, we simulated the mixing process of
two speech signals in a relatively large space whose size is
10 10 10 m. We would like to thank the authors who provided
the simulation MATLAB code (simroommix.m) at the website.1

With the said MATLAB code, we first generated the impulse re-
sponses of the mixing channels according to the positions of the
sources (source 1 at [0, 5, 5]; source 2 at [10, 5, 5]) and micro-
phones (mic. 1 at [4, 6, 5]; mic. 2 at [6, 5, 5]) in the hall. The
impulse responses were generated for a sampling frequency of
44.1 kHz, but the speech signals were recorded with a sampling
frequency of 22.05 kHz. Therefore, we first decimated the im-
pulse responses to 22.05 kHz. The actual length of the impulse
responses of the hall at sampling frequency 22.05 kHz was set

1[Online]. Available: http://sound.media.mit.edu/ica-bench.
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to be . The impulse responses of the mixing channels
are shown in Fig. 1.

In this experiment, the remaining parameters were set as fol-
lows: length of the separation filters: 2048; FFT block
size: 8192; iteration times: 5; 0.3; 0.01, and

2 1 2 in (35).
As the sources and mixing filters are known, then SIRs can be

evaluated precisely before and after separation. We found that,
before separation, the SIRs are 11.56 and 0.69 dB, respectively,
and after separation, they are 23.98 and 18.46 dB, respectively.
Obviously, remarkable improvements have been achieved by the
proposed approach.

The impulse responses of global channels (including the
mixing and separating systems) are shown in Fig. 2.

B. Separation of Real-World Recordings

In this section, two sets of real-world recordings were used
to demonstrate the performance of the proposed approach. One
set of the data is very clean and contains little noise; the other
contains some background noise which usually makes separa-
tion much harder. The separation results are as follows.

1) Separation of Clean Speech Mixtures: This experiment
was based on two sequences of speech mixtures recorded in a
room with dimensions 3.4 3.8 5.2 meters Height Width
Depth , asprovided to thedelegatesof the ICA’99conference.2 In
these sequences, two male speakers are speaking simultaneously
and there is no background noise. These mixtures were recorded
with omnidirectional microphones, and the sampling frequency
was 16 kHz. We used the first 131 072 samples for our simula-
tion. In our experiment, the parameters of our algorithm were as
follows: length of the separation filters: 512; FFT block
size: 4096; iteration times: 20; 0.3; 0.01; and

2 1 2 in (35). The mixtures and the separated
sources are shown in Fig. 3, where the mixtures and the separated
sources have been normalized to the range [ 0.5, 0.5]. Listening
tests showed that very good separation has been achieved. Hence
we consider that output 1 contains one source (denoted as source
1) andoutput 2 contains the other source (denoted as source2). As
the original sources are unknown, we use the following approach
to estimate the SIRs for each of the two outputs.

• Find a time interval [refer to Fig. 3(b)] during which the
waveform of output 1 has a peak and output 2 exhibits low
(silent) samples. Denote the segment of samples in outputs
1 and 2 as and , respectively. It is reasonable
to believe that is the contribution of source 1 only,
and that is the leakage of source 1 to output 2. Sim-
ilarly, we could find a time interval during which output
2 exhibits a peak but output 1 is low (silent) .
Similarly, can be considered as the contribution of
source 2 only, and the leakage of source 2 to output 1.

• Define the average powers as
, the SIRs for outputs 1 and 2 are then cal-

culated as and , re-
spectively.

2[Online]. Available: http://www2.ele.tue.nl/ica99//realworld2.html. Case
1B.

Fig. 1. Simulated impulse responses of the mixing channels in a big hall with
size of 10� 10� 10 m. The positions of the sources and the microphones are
as follows: source 1 at [0, 5, 5]; source 2 at [10, 5, 5]; mic 1 at [4, 6, 5]; mic 2
at [6, 5, 5], respectively. The SIRs of the mixtures are SIR = 11.56 dB and
SIR = 0.69 dB, respectively.

Based on the above approach, SIRs for channels 1 and 2 were
measured as 23.51 and 20.58 dB, respectively. Note that the two
mixtures have almost the same amplitudes during and ,
respectively, which means that the SIRs before separation were
about 0 dB. Therefore, the two output SIRs show a significant
improvement as a result of the proposed algorithm.
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Fig. 2. Global impulse responses of the mixing and separating channels. The
SIRs of the separation results are SIR = 23.98 dB and SIR = 18.46 dB,
respectively.

2) Separation of Noisy Speech Mixtures: In this second ex-
periment, the data was taken from the website.3 The four contri-
butions of two sources to two microphones have been recorded
separately in a room with dimensions 3.1 4.2 5.5 m Height
Width Depth . In these recordings, there is some background
noise (random noise, 50-Hz interference, and harmonics). The

3http://www2.ele.tue.nl/ica99//realworld.html. Case 1.

Fig. 3. Real-world recorded speech sequences and the corresponding separa-
tion results (clean data). (a) Convolutely mixed speech sequences. (b) The sep-
arated speech sequences with our new approach. The two segments of the sep-
arated speech sequences T and T (T = T ), which contain 5000 samples,
respectively, were used to evaluate the separation performance.

four contributions were combined into two convolutive mix-
tures. These mixtures are very difficult to be separated com-
pletely because of the existence of background noise.

Because the contributions from different sources to different
microphones are known in this case, the SIRs can be precisely
evaluated before and after separation.

In our experiment, the following parameters were used. The
length of the separation filters: 2048; FFT block size:

4096; iteration times: 30; 0.6; 0.01; and 1.1
1 2 in (35).

Before separation, the SIRs were 0.71 and 0.17 dB, respec-
tively, and after separation, they became 10.38 and 18.33 dB.
The mixtures and the separated sources are shown in Fig. 4.

C. Block Size of FFT and Separation Performance

When the lengths of the separating filter impulse responses
are given, the block size of the FFT is a key factor, which will
affect the performance of the separation algorithm. Some re-
searchers have argued this issue, thus leading to different con-
clusions [9], [22]. In this experiment, the real-world recordings
used in Section V-B1 were employed for studying the relation-
ship between the separation filter length and the FFT size. For
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Fig. 4. Real-world recorded speech sequences and the corresponding sepa-
ration results (noisy data). (a) Convolutely mixed speeches with background
noises: SIR = 0.71 dB, SIR = 0.17 dB. (b) The separation results with our
new approach: SIR = 10.38 dB, SIR = 18.33 dB.

our algorithm, simulations showed that the longer the block size
of the FFT is, the better the performance will be. However, the
improvement becomes small when the block size becomes too
large. A reasonable explanation is as follows: First, when the
block size of the FFT is small, errors will be introduced into
the results because circular instead of linear convolution is per-
formed with the FFT. These kind of errors will be reduced when
the block size of the FFT gets large enough. Second, the basis on
which the algorithm is established is that source signals are in-
stantaneously mixed in each frequency bin, thus, the block size
of the FFT should be large enough so that mixture signals in
each frequency bin become much nearer to instantaneous mix-
tures of source signals at the corresponding frequency bin. So
it is more reasonable to exploit much larger FFT block sizes
(compared to the length of the impulse responses of the sepa-
rating filters) when the separating algorithm is implemented in
the frequency domain. On the other hand, when the block size
is large enough, the above-mentioned two errors cannot be re-
duced infinitely, and other errors will be introduced, such as lim-
ited digits error, so the performance cannot be further improved
and may even decrease when the block size is increased further.

Fig. 5. Average SIR over the FFT block size. The length of separating filter’s
impulse responses: (a)M = 512. (b)M = 1024.

Fig. 5 shows the relationship between the average SIR and the
FFT block size. We see that the SIR increases almost linearly
with the logarithm of the FFT block size when the block size is
not more than 4096. In addition, when the length of the sepa-
rating filters is increased from 512 taps [Fig. 5(a)] to 1024 taps
[Fig. 5(b)], the resulting signal-to-interference ratios remain al-
most the same. This implies that the length of 512 is sufficient
for the separating filters; on the other hand, it also implies that
our algorithm is very stable for overestimating the separating
filter length. This is very important in practice, because we do
not have any knowledge of the lengths of the mixing filters; the
length of the separating filters has to be long enough for a cor-
rect separation.

We also investigated the effect of the source model param-
eter on the separation performance, as shown in Fig. 5. It
was found that has little influence on the separation perfor-
mance. This means that the algorithm is not sensitive to the
chosen source model.

D. Comparisons With Other Algorithms

In this section, the new algorithm (34) is compared with the
algorithms (12) (Sabala: [30]), (15) (Smaragdis: [8]), and the
approach proposed by Parra [9].
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TABLE II
COMPARISON WITH SABALA’S, SMARAGDIS,’ AND PARRA’S ALGORITHMS:

CLEAN DATA

TABLE III
COMPARISON WITH SABALA’S, SMARAGDIS,’ AND PARRA’S ALGORITHMS:

NOISY DATA

For Sabala’s algorithm, the activation function is
with ; for Smaragdis’ algorithm, the acti-

vation function is .
The recordings used in Section V-B were employed for algo-

rithm comparison.
For the case of clean mixture data in Section V-B-1, the block

size of the FFT was chosen as 4096, and the filter length
was set to be 512 for all the four algorithms. The signal-to-
interference ratios of the separated results are listed in Table II.

For the noisy mixture data in Section V-B2, the block size of
the FFT was chosen as 4096, and the filter length was set
to be 2048 for all the four algorithms. The signal-to-inter-
ference ratios for the separated signals are listed in Table III.

It can be clearly seen in Tables II and III that our new algo-
rithm has a better performance than the others.

VI. CONCLUSION

In this paper, we proposed a frequency-domain integrated
objective function for convolutive BSS on the basis of the
Kullback–Leibler divergence. A polar-coordinate activation
function was exploited for complex-valued signals. The ob-
jective function was minimized with respect to the channel
parameters of the separation system, and the corresponding algo-
rithm was developed. The local frequency-domain permutation
problem was avoided through the frequency-domain integration
and time-domain optimization. Simulation results show that the
algorithm does indeed lead to high performance results for the
separation of real-world recorded convolutive mixtures.

REFERENCES

[1] P. Comon, “Independent component analysis, a new concept?,” Signal
Process., vol. 36, pp. 287–314, 1994.

[2] S. Amari and A. Cichocki, “Adaptive blind signal processing-neural
network approaches,” Proc. IEEE, vol. 86, no. 10, pp. 2026–2048, Oct.
1998.

[3] A. Belouchrani and K. Abed-Meraim et al., “A blind source separation
technique using second-order statistics,” IEEE Trans. Signal Process.,
vol. 45, no. 2, pp. 434–443, Feb. 1997.

[4] J. F. Cardoso and A. Souloumiac, “Blind beamforming for
non-Gaussian signals,” Proc. Ints. Elect. Eng., Radar Signal Process.
F, vol. 140, no. 6, pp. 362–370, Dec. 1993.

[5] K. Matsuoka, M. Ohya, and M. Kawamoto, “A neural net for blind
separation of nonstationary signals,” Neural Netw., vol. 8, no. 3, pp.
411–419, 1995.

[6] H. Bousbia-Salah, A. Belouchrani, and K. Abed-Meraim, “Blind
separation of convolutive mixtures using joint block diagonalization,”
6th Int. Symp. Signal Process. and its Applicat., vol. 1, pp.
13–16, 2001.

[7] S. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, “Multichannel
blind deconvolution and equalization using the natrual gradient,” in
Proc. IEEE Int. Workshop Wireless Commun., Paris, France, Apr. 1997,
pp. 101–104.

[8] P. Smaragdis, “Blind separation of convolved mixtures in the frequency
domain,” Neurocomput., vol. 22, pp. 21–34, 1998.

[9] L. Parra and C. Spence, “Convolutive blind separation of nonsta-
tionary sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp.
320–327, May 2000.

[10] A. J. Bell and T. J. Sejnowski, “An information-maximization ap-
proach to blind separation and blind convolution,” Neural Comput.,
vol. 7, pp. 1129–1159, 1995.

[11] M. Kawamoto and K. Matsuoka et al., “A method of blind separa-
tion for convolved nonstationary signals,” Neurocomputing, vol. 22, pp.
157–171, 1998.

[12] K. Rahbar and J. Reilly, “Blind source separation of convolved
sources by joint approximate diagonalization of cross-spectral density
matrices,” in Proc. ICASSP, 2001, vol. 5, pp. 2745–2748.

[13] J. C. Principe and H.-C. Wu, “Blind separation of convolutive mix-
tures,” in Proc. IJCNN (Int. Joint Conf. Neural Netw.), 1999, vol. 2,
pp. 1054–1058.

[14] T. Lee, A. J. Bell, and R. Orglmeister, “Blind source separation of real
world signals,” Proc. Int. Conf. Neural Netw., vol. 4, pp. 2129–2134,
1997.

[15] M. Kawamoto and Y. Inouye, “Blind deconvolution of MIMO-FIR sys-
tems with colored inputs using second-order statistics,” IEICE Trans.
Fund., vol. E86-A, no. 3, pp. 597–604, 2003.

[16] R. H. Lambert and A. J. Bell, “Blind separation of multiple
speakers in a multipath environment,” in Proc. ICASSP, 1997,
vol. 1, pp. 423–426.

[17] H. Buchner, R. Aichner, and W. Kellermann, “Blind source separation
for convolutive mixtures: A unified treatment,” in Audio Signal Pro-
cessing for Next-Generation Multimedia Communication Systems, Y.
Huang and J. Benesty, Eds. Boston/Dordrecht/London: Kluwer, Feb.
2004, pp. 255–293.

[18] E. Weinstein, M. Feder, and A. V. Oppenheim, “Multichannel signal
separation by decorrelation,” IEEE Trans. Speech Audio Process., vol.
1, no. 4, pp. 405–413, Jul. 1993.

[19] D. Van Compernolle and S. Van Gerven, “Signal separation in a
symmetric adaptive noise canceler by output decorrelation,” in Proc.
ICASSP, 1992, vol. IV, pp. 221–224.

[20] D. Yellin and E. Weinstein, “Criteria for multichannel signal separa-
tion,” IEEE Trans. Signal Process., vol. 42, no. 8, pp. 2156–2168, Aug.
1994.

[21] H. Saruwatari, T. Kawamura, and K. Shikano, “Fast-convergence al-
gorithm for ICA-based blind source separation using array signal pro-
cessing,” in Proc. IEEE WASPAA, New Paltz, NY, Oct. 2001.

[22] S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, “Fundamental
limitation of frequency domain blind source separation for convolutive
mixture of speech,” IEEE Trans. Speech Audio Process., vol. 11, no. 2,
pp. 109–116, Mar. 2003.

[23] N. Mitianoudis and M. E. Davies, “Audio source separation of convo-
lutive mixtures,” IEEE Trans. Speech Audio Process., vol. 11, no. 5, pp.
489–497, Sep. 2003.

[24] A. Ciaramella and R. Tagliaferri, “Amplitude and permutation indeter-
minacies in frequency domain convolved ICA,” in Proc. Int. Joint Conf.
Neural Netw., 2003, vol. 1, pp. 708–713.

[25] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coordinate
based nonlinear function for frequency-domain blind source separa-
tion,” IEICE Trans. Fundam., vol. E86, no. 3, pp. 1–7, 2003.

[26] Y. Zhou and B. Xu, “Blind source separation in frequency domain,”
Signal Process., vol. 83, pp. 2037–2046, 2000.

[27] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, “Com-
bined approach of array processing and independent component anal-
ysis for blind separation of acoustic signals,” IEEE Trans. Speech Audio
Process., vol. 11, no. 3, pp. 204–215, May 2003.

[28] D.-T. Pham, C. Servière, and H. Boumaraf, “Blind separation of convo-
lutive audio mixtures using nonstationarity,” in Proc. ICA, Nara, Japan,
Apr. 2003, pp. 981–986.

[29] J. Anemüller and B. Kollmeier, “Amplitude modulation decorrelation
for convolutive blind source separation,” in Proc. Second Int. Workshop
Ind. Compon. Anal. Blind Signal Separation, 2000, pp. 215–220.

[30] I. Sabala, A. Cichocki, and S. Amari, “Relationships between Instanta-
neous blind source separation and multichannel blind deconvolution,”
in Proc. IEEE Int. Conf. Neural Netw., 1998, vol. 1, pp. 39–44.

[31] S. Amari, “Natural gradient works efficiently in learning,” Neural
Comput., vol. 10, pp. 251–276, 1998.



MEI et al.: BSS BASED ON TIME-DOMAIN OPTIMIZATION 2085

[32] A. Cichocki and J. Karhunen et al., “Neural networks for blind separa-
tion with unknown number of sources,” Neurocomputing, vol. 24, pp.
55–93, 1999.

[33] S. C. Douglas, H. Sawada, and S. Makino, “Natural gradient multi-
channel blind deconvolution and speech separation using causal FIR
filters,” IEEE Trans. Speech Audio Process., vol. 13, no. 1, pp. 92–104,
Jan. 2005.

[34] J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,”
IEEE Trans. Signal Process., vol. 44, no. 12, pp. 3017–3030, Dec.
1996.

[35] J. Anemüller and T. Grammss, “On-line Blind Separation of Moving
Sound Sources,” in Proc. Int. Conf. Ind. Compon. Anal. Blind Source
Separation (ICA), 1999, pp. 331–334.

Tiemin Mei was born in Liaoning, China, on June
29, 1964. He received the B.S. degree in physics
from Sun Yat-Sen University, Guangzhou, China,
and the M.S. degree in biophysics from the China
Medical University, Shenyang, China, in 1986
and 1991, respectively. He is currently pursuing
the Ph.D. degree at the School of Electronic and
Information Engineering, Dalian University of
Technology, Dalian, China.

He was a Visiting Fellow with the School of
Electrical Computer and Telecommunications Engi-

neering, University of Wollongong, Wollongong, NSW, Australia, from 2004
to 2005. He has also been a Member of Academic Staff at Shenyang Institute
of Technology, Shenyang, since 1996. His current research interests include
stochastic signal processing and speech processing.

Jiangtao Xi (M’95) received the B.S. degree from
Beijing Institute of Technology, Beijing, China, in
1982, the M.S. degree from TsingHua University,
Beijing, in 1985, and the Ph.D. degree from the
University of Wollongong, Wollongong, NSW,
Australia, in 1996, all in electrical engineering.

He was a Postdoctoral Fellow at the Communi-
cations Research Laboratory, McMaster University,
Hamilton, ON, Canada, from 1995 to 1996 and a
Member of Technical Staff at Bell Laboratories,
Lucent Technologies, Murray Hill, NJ, from 1996

to 1998. He has been a Member of Academic Staff at the University of
Wollongong since 1998, where he is currently a Senior Lecturer. His research
interests are digital signal processing and its applications.

Fuliang Yin was born in Fushun City, Liaoning
Province, China, in 1962. He received the B.S.
degree in electronic engineering and the M.S. degree
in communications and electronic systems from
Dalian University of Technology (DUT), Dalian,
China, in 1984 and 1987, respectively.

He joined the Department of Electronic Engi-
neering, DUT, as a Lecturer in 1987 and became an
Associate Professor in 1991. He has been a Professor
at DUT since 1994, and the Dean of the School
of Electronic and Information Engineering, DUT,

since 2000. His research interests include digital signal processing, speech
processing, image processing and pattern recognition, digital communication,
and integrated circuit design.

Alfred Mertins (M’96–SM’03) received the
Diplomingenieur degree from the University of
Paderborn, Paderborn, Germany, in 1984, the
Dr.-Ing. degree (Ph.D.) in electrical engineering and
the Dr.-Ing. habil. degree in telecommunications
from the Hamburg University of Technology, Ham-
burg, Germany, in 1991 and 1994, respectively.

From 1986 to 1991, he was with the Hamburg
University of Technology, from 1991 to 1995 with
the Microelectronics Applications Center Hamburg,
from 1996 to 1997 with the University of Kiel,

Kiel, Germany, from 1997 to 1998 with the University of Western Australia,
Perth, Australia, and from 1998 to 2003 with the University of Wollongong,
Wollongong, Australia. In April 2003, he joined the University of Oldenburg,
Oldenburg, Germany, where he is a Professor in the Faculty of Mathematics
and Science, Institute of Physics. His research interests include speech, audio,
image and video processing, wavelets and filter banks, and digital communi-
cations.

Joe F. Chicharo (M’89–SM’94) received the Bach-
elor’s degree with first class honors and the Ph.D.
degree from the University of Wollongong, Wollon-
gong, Australia, in 1983 and 1990, respectively, both
in electrical engineering.

He has been working at the University of Wol-
longong since 1985 as a Lecturer (1985–1990),
Senior Lecturer (1990–1993), Associate Professor
(1994–1997), and Professor (1997-present). He is
currently the Dean of The Faculty of Informatics,
the University of Wollongong. From 2000 to 2003,

he was the Research Director of Australian Collaborative Research Center on
Smart Internet Technology. His research interests are in the areas of signal
processing, telecommunications, and information technology with over 200
research publications.


