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Abstract—In this paper, we propose a modification to the
correlation approach in convolutive blind source separation
to achieve an improved robustness. An often used approach
for separation of convolutive mixtures is the transformation
to the time-frequency domain. This allows for the use of an
instantaneous ICA algorithm independently in each frequency
bin, which greatly reduces complexity. The drawback of this
approach are the so-called permutation and scaling problems.
Here, we modify the well known correlation approach for making
it more robust. We propose to incorporate a confidence function
based on estimated SIR which allows for detection of frequency
bins with high probability of wrong permutations. The results of
the new algorithm will be shown on an real-world example.

Index Terms—Blind source separation, convolutive mixture,
frequency-domain ICA, permutation problem.

I. I NTRODUCTION

Blind Source Separation is a technique for restoring signals
from observed mixtures. It is called blind as usually neither
the mixing system nor the original signals are known. When
dealing with instantaneous cases, a variety of existing algo-
rithms [1], [2], [3] can be used.

This simple approach does not work when dealing with
real-world acoustic scenarios. Because of the low speed of
sound waves in air, the signals arrive at different times at
the microphones. Furthermore, sound waves are reflected on
different objects, so the signals arrive at multiple times.This
convolutive mixing process can be described using FIR filters.
For realistic cases these filters can reach lengths of several
thousand coefficients. In such a scenario the task of BSS is
then to estimate a set of unmixing filters with at least the same
lengths.

These filters can be calculated directly in the time domain
[4], [5]. The downside of this approach is the high computa-
tional cost and difficulties with convergence, as the algorithms
often get trapped in local minima. Therefore an alternative
approach can be used: After transformation to the time-
frequency domain the convolution becomes a multiplication
[6]. This greatly reduces the complexity of the problem as is
allows for independent separation in each frequency bin using
an instantaneous method. But this simplification has a major

downside. The order of the separated signals may differ in
every bin. Furthermore every bin has an arbitrary scaling.

Without correcting the scaling, a filtered version of the
signals is recovered. The methods proposed in [7], [8] use
a postfilter in order to restore the signals as the have been
recorded by the microphones. This approach accepts the filter-
ing done by the mixing system without adding new distortion.
Alternative methods solve the scaling problem with the aim
of filter shortening [9] or shaping [10].

The correction for the permutation problem is even more
vital as otherwise the whole separation process will fail. The
existing approaches can be divided into two groups. The algo-
rithms for the first group use the properties of the unmixing
matrices. The central idea is to see the vectors of the unmixing
matrix as beamformers [11] and use them to calculate the
direction of arrival. This allows then a depermutation for a
plenty of bins, while the remaining bins have to be depermuted
using some other method. In [12] and [13], the authors propose
an alternative formulation with the use of directivity patterns.

The other group of algorithms use the time structure of the
separated bins. Here, the most frequent idea is the assumption
of high correlation between neighboring bins. This has been
used for example in [7] and [14]. In [15] the authors used
the amplitude modulation correlation for getting a separation
criterion which avoids the permutation problem. Other ap-
proaches include a statistical modeling of the single bins using
the generalized Gaussian distribution. Small differencesof the
parameters lead to a depermutation criterion in [16] and [17].

The depermutation based on the assumption of highly
correlated bins is not always very robust. Any improvement
of this method would be very beneficial. Here, we present
such an improvement based on a confidence function, that
is based on the blind estimation of the signal-to-interference
ratio (SIR) as proposed in [18]. This approach is based on the
observation, that the performance of the correlation approach
is considerably degraded at frequency bins which are poorly
separated. By leaving out these frequency bins during the
primary calculation of the correlation coefficients, the overall
depermutation performance can be greatly enhanced.



II. M ODEL AND METHODS

A. BSS for instantaneous mixtures

In this section, we describe the instantaneous unmixing pro-
cess that we use in frequency bins of the convolutive one. The
instantaneous mixing process ofN sources intoN observa-
tions is modeled by anN×N matrixA. With the source vector
s(n) = [s1(n), . . . , sN (n)]T and negligible measurement
noise, the observation signalsx(n) = [x1(n), . . . , xN (n)]T

are given by
x(n) = A · s(n). (1)

The separation is again a multiplication with a matrixB:

y(n) = B · x(n) (2)

with y(n) = [y1(n), . . . , yN(n)]T . The only source of infor-
mation for the estimation ofB is the observed processx(n).
The separation is successful whenB can be estimated so that
BA = DΠ with Π being a permutation matrix andD being
an arbitrary diagonal matrix. These two matrices stand for the
two ambiguities of BSS. The signals may appear in any order
and can be arbitrarily scaled.

For the separation we use the well known gradient-based
update rule [1]

Bk+1 = Bk + ∆Bk (3)

with
∆Bk = µk(I − E

{

g(y)yT
}

)Bk. (4)

The termg(y) = (g1(y1), . . . gn(yn)) is a component-wise
vector function of nonlinear score functions

gi(si) = −
p′i(si)

pi(si)
(5)

where pi(si) are the assumed source probability densities.
These should be known or at least well approximated in order
to achieve good separation performance [19].

B. Convolutive mixtures

When dealing with real-world acoustic scenarios it is
necessary to consider reverberation. The mixing system can
be modeled by FIR filters of lengthL. Depending on the
reverberation time and sampling rate,L can reach several
thousand. The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =

L−1
∑

l=0

H(l)s(n − l) (6)

whereH(n) is a sequence ofN ×N matrices containing the
impulse responses of the mixing channels. For the separation
we use FIR filters of lengthM and obtain

y(n) = W(n) ∗ x(n) =

M−1
∑

l=0

W(l)x(n − l) (7)

with W(n) containing the unmixing coefficients. In order to
achieve satisfying performance we chooseM ≥ L − 1 [20].
Fig. 1 shows the scenario for two sources and sensors.
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Fig. 1. BSS model with two sources and sensors.

It is possible to estimateW(n) in the time domain.
However, because of the large number of unknowns,MN2,
the existing approaches [4], [5] often suffer problems with
convergence.

Using the short-time Fourier transform (STFT), the signals
can be transformed to the time-frequency domain, where the
convolution approximately becomes a multiplication [6]:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . , K − 1, (8)

whereK is the FFT length. The major benefit of this approach
is the possibility to estimate the unmixing matrices for each
frequency independently, however, at the price of possible
permutation and scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ) (9)

whereΠ(ω) is a frequency-dependent permutation matrix and
D(ω) an arbitrary diagonal scaling matrix.

Without correction of scaling, a filtered version of the
sources is recovered. In [7] the authors recovered the sources
as they had been recorded by the microphones by using inverse
postfilters. This approach does not add any new distortion
while accepting the filtering done by the mixing system. A
similar technique has been proposed in [8] under the paradigm
of the minimal distortion principle, which uses the unmixing
matrix

W ′(ω) = dg(W−1(ω)) · W (ω) (10)

with dg(·) returning the argument with all off-diagonal el-
ements set to zero. Alternative techniques based on filter-
shortening and shaping methods have been proposed in
[9][10].

The correction for permutation is essential, as otherwise
different signals will be restored at different frequencies and
the whole process will fail. In the next section we will review
the correlation approach for solving the permutation problem
and propose a confidence function in order to make the whole
process more robust.

III. D EPERMUTATION ALGORITHM

There are a lot of different depermutation algorithms. Here
we use the so-called correlation approach [7], [14]. The key
assumption is the high correlation of neighboring bins. With
V (ω, τ) = |Y (ω, τ)|, the correlation between two binsk and
l is defined as
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Fig. 2. The bin-wise separation performance using the simple correlation
approach. There are three positions where the depermutation fails, which leads
to block permutations.

ρqp(ωk, ωl) =

∑

T −1

τ=0
Vq(ωk, τ)Vp(ωl, τ)

√

∑T −1

τ=0
Vq

2(ωk, τ)

√

∑T −1

τ=0
Vp

2(ωl, τ)
(11)

wherep, q are the indices of the separated signals,Vq(ωk, τ) is
the qth element ofV (ωk, τ), andT is the number of frames.
The decision on aligning the bins is made on the basis of the
ratio

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
. (12)

By aligning consecutive bins, a correct depermutation for all
frequencies should be achieved. In Fig. 2, a result for a real
world example is given. Here, the bin-wise separation perfor-
mance (SIR) [21] for all frequencies is given. A change in the
sign of the SIR indicates a permutation. It this example, most
bins have been correctly depermuted, but on three positions
the procedure failed. As only neighboring bins are compared,
the wrong permutations lead to block permutations. In this
case, the overall separation performance has been immensely
reduced.

This method can be improved by comparing more than one
bin. Following this approach in [14] a dyadic sorting scheme
has been proposed. Here, in a first step, pairs of neighboring
bins are compared. In the next step, these pairs get aligned.
By repeating this procedure, the assigned groups get largerin
every step and eventually all bins get sorted. The assumption
here is, that single false alignments do not outbalance the
overall structure. Unfortunately, this is not true if too many
errors occur in the early stages.

IV. N EW ALGORITHM

The approach proposed in this paper is based on the
observation, that false alignments usually happen at positions
where the separation performance is poor. So, by leaving out
these positions during depermutation, a more robust algorithm
can be derived. The separation performance in every bin is
not known but a blind estimation can be made, as proposed in
[18]. The blind estimation of the binwise SIR is based on the
observation that the SIR is poor when the vectorswi(ω) of
the unmixing matrixW (ω) are similar. This similarity can be
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Fig. 3. The calculated angles between the unmixing vectors.The block
permutation from Fig. 2 occur where the angles are very small.

TABLE I
COMPARISON OF THE RESULTS FOR DIFFERENT DEPERMUTATION

ALGORITHMS.

Algorithm SIR Algorithm SIR

Proposed 17.0 DOA-Approach [11] 17.3

Correlation [7] 3.1 αβ-Algorithm [16] 18.4

Dyadic sorting [8] 2.7 Non blind 18.4

measured by the angle between the complex unmixing vectors:

α(ω) = arccos

(

|wH
1 (ω)w2(ω)|

‖w1(ω)‖ ‖w2(ω)‖

)

(13)

Using the calculated angleα(ω), an SIR estimate is then
computed as in [18]. For the purpose of the algorithm proposed
in this paper, this is not needed. The more important fact is
the observation that the block permutations happen in close
adjacency to the minima ofα(ω), as shown in Fig. 3. This
allows for a formulation of a simple binary confidence function
fc(ω) which is zero for frequency bins, that are in close
adjacency to the local minima ofα(ω) and one otherwise.

Using the confidence function leads to the following deper-
mutation algorithm:

1) Calculatefc(ω) for all frequencies usingα(ω) and a
threshold for the estimation of the uncertain frequencies.
The threshold is a trade off, as large values are more
robust, but the ranges may become to small for the block
depermutation in step 3.

2) Calculate a depermutation using (12) for all frequencies
which are confident as indicated byfc(ω) = 1, see Fig.
4 (a).

3) Calculate a block depermutation as in [14] for the
depermuted blocks, see Fig. 4 (b).

4) Align the remaining bins by comparing them to the
depermuted blocks, see Fig. 4 (c).

V. SIMULATIONS

The simulations were performed using data available at
[22]. This data set consists of speech recordings that are
eight seconds long and sampled at 8 kHz with individual
contributions from the sources to the microphones. The chosen
parameters were a Hann window of length 2048, a window
shift of 256, and an FFT-length of 8192. After 400 iterations
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Fig. 4. The new depermutation method shown on the first 1000 bins.
(a) Depermutation result at positions where the blind estimated SIR is high
enough. (b) Depermutation result after calculation of block correlations. (c)
Final result after aligning the remaining bins.

of (4), the depermutation has been performed. The results are
shown in Table I.

The results of the plain correlation-based approach could not
depermute enough bins, so the overall SIR is very low. The
dyadic sorting approach has the same problems, because the
early wrong permutations outbalance the whole schema. The
new method is able to overcome the problems, and the overall
performance is comparable to other state-of-the-art algorithms.

VI. SUMMARY

In this paper we have proposed an extension to the
correlation-based depermutation algorithm based on a simple
confidence function in order to make it more robust. The new
approach is performing better than the simple approach and
the dyadic sorting scheme and is comparable to other state-of-
the-art algorithms. Results have been shown using real-world
data.
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