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Abstract—In this paper, we propose a modification to the downside. The order of the separated signals may differ in

correlation approach in convolutive blind source separatn every bin. Furthermore every bin has an arbitrary scaling.
to achieve an improved robustness. An often used approach

for separation of convolutive mixtures is the transformation Without correcting the scaling, a filtered version of the

to the time-frequency domain. This allows for the use of an Signals is recovered. The methods proposed in [7], [8] use

instantaneous ICA algorithm independently in each frequesy a postfilter in order to restore the signals as the have been

bin, which greatly reduces complexity. The drawback of this recorded by the microphones. This approach accepts the filte

prroach are the so-called permutation and scaling problem ;e by the mixing system without adding new distortion.
ere, we modify the well known correlation approach for making . . . .

it more robust. We propose to incorporate a confidence funcin  Altérnative methods solve the scaling problem with the aim

based on estimated SIR which allows for detection of frequesy  Of filter shortening [9] or shaping [10].

bins with high probability of wrong permutations. The results of The correction for the permutation problem is even more
the new algorithm will be shown on an real-world example.

Index Terms—Blind source separation, convolutive mixture, V“?" as otherwise the whole §efpara.ti0n process will fafie
frequency-domain ICA, permutation problem. existing approaches can be divided into two groups. The-algo
rithms for the first group use the properties of the unmixing
matrices. The central idea is to see the vectors of the unigixi
matrix as beamformers [11] and use them to calculate the

Blind Source Separation is a technique for restoring signaliréction of arrival. This allows then a depermutation for a
from observed mixtures. It is called blind as usually neith@!€Nt Of bins, while the remaining bins have to be deperahute
the mixing system nor the original signals are known. Whétr'ng somg other methpd. In_ [12] and [13], the aEJt,hOfS prepos
dealing with instantaneous cases, a variety of existing-alg®" alternative formulation with the use of directivity patts.
rithms [1], [2], [3] can be used. The other group of algorithms use the time structure of the

This simple approach does not work when dealing witpeparated bins. Here, the most frequent idea is the asaampti
real-world acoustic scenarios. Because of the low speed @fhigh correlation between neighboring bins. This has been
sound waves in air, the signals arrive at different times Hfed for example in [7] and [14]. In [15] the authors used
the microphones. Furthermore, sound waves are reflectedt®® amplitude modulation correlation for getting a sepanat
different objects, so the signals arrive at multiple timis ~criterion which avoids the permutation problem. Other ap-
convolutive mixing process can be described using FIR $ilteProaches include a statistical modeling of the single bsisgs
For realistic cases these filters can reach lengths of devdhRg generalized Gaussian distribution. Small differeredebe
thousand coefficients. In such a scenario the task of BSSPRrameters lead to a depermutation criterion in [16] andl [17
then to estimate a set of unmixing filters with at least theesam The depermutation based on the assumption of highly
lengths. correlated bins is not always very robust. Any improvement

These filters can be calculated directly in the time domaof this method would be very beneficial. Here, we present
[4], [5]. The downside of this approach is the high computauch an improvement based on a confidence function, that
tional cost and difficulties with convergence, as the athans is based on the blind estimation of the signal-to-interieee
often get trapped in local minima. Therefore an alternativatio (SIR) as proposed in [18]. This approach is based on the
approach can be used: After transformation to the timebservation, that the performance of the correlation aggro
frequency domain the convolution becomes a multiplicatide considerably degraded at frequency bins which are poorly
[6]. This greatly reduces the complexity of the problem as &eparated. By leaving out these frequency bins during the
allows for independent separation in each frequency bingusiprimary calculation of the correlation coefficients, thesall
an instantaneous method. But this simplification has a mapepermutation performance can be greatly enhanced.

|. INTRODUCTION



Il. MODEL AND METHODS

s1(n)

A. BSSfor instantaneous mixtures
In this section, we describe the instantaneous unmixing pro

cess that we use in frequency bins of the convolutive one. The
instantaneous mixing process 0f sources intolV observa-  s,(n)
tions is modeled by aiV x N matrix A.. With the source vector
s(n) = [s1(n),....sn(n)]" and negligible measurement Mixing systemH Unmixing Systemw
noise, the observation signais(n) = [z1(n),...,znx(n)]"
are given by

Fig. 1. BSS model with two sources and sensors.

z(n) = A - s(n). 1)
The separation is again a multiplication with a mafx ] ] ) ) ) )
It is possible to estimatéW(n) in the time domain.
y(n) =B -x(n) (2) However, because of the large number of unknowwsy?2,
the existing approaches [4], [5] often suffer problems with
convergence.
Using the short-time Fourier transform (STFT), the signals
can be transformed to the time-frequency domain, where the
convolution approximately becomes a multiplication [6]:

with y(n) = [y1(n),...,yn(n)]T. The only source of infor-
mation for the estimation oB is the observed proceagn).
The separation is successful whBncan be estimated so that
BA = DII with IT being a permutation matrix arid being
an arbitrary diagonal matrix. These two matrices standHer t
two ambiguities of BSS. The signals may appear in any ordely (wg, 7) = W(wy) X (wg,7), k=0,1,...,K —1, (8)
and can be arbitrarily scaled.

For the separation we use the well known gradient-bas@§€"eX is the FFT length. The major benefit of this approach
update rule [1] is the possibility to estimate the unmixing matrices forkeac

- frequency independently, however, at the price of possible
Bi1 =By + ABy ) permutation and scaling in each frequency bin:
with
ABy = (I — E {g(y)yT})Bk. @) Y (wi,7) = W(wk) X (wg, 7) = D(wi)II(wk) S (wk, 7) (9)

The termg(y) = (91(y1),---9n(yn)) IS @ component-wise
vector function of nonlinear score functions

wherell(w) is a frequency-dependent permutation matrix and

D(w) an arbitrary diagonal scaling matrix.

) Without correction of scaling, a filtered version of the

A(si) = _Pi(si) (5) sources is recovered. In [7] the authors recovered the ssurc
pi(si) as they had been recorded by the microphones by using inverse

where p,(s;) are the assumed source probability densitieRostfilters. This approach does not add any new distortion

These should be known or at least well approximated in ord&ilé accepting the filtering done by the mixing system. A
to achieve good separation performance [19]. similar technique has been proposed in [8] under the pamadig
of the minimal distortion principle, which uses the unmgin

B. Convolutive mixtures matrix

When dealing with real-world acoustic scenarios it is W'(w) = dgW ! (w)) - W(w) (10)
necessary to consider reverberation. The mixing system Gaj, dg(-)
be modeled by FIR filters of lengtit. Depending on the gments set to zero. Alternative techniques based on filter-

reverberation time and sampling ratg, can reach several shortening and shaping methods have been proposed in
thousand. The convolutive mixing model reads [9][10].

returning the argument with all off-diagonal el-

L—1 The correction for permutation is essential, as otherwise
x(n) = H(n) xs(n) = Z H(l)s(n—1) (6) different signals will be restored at different frequescand
1=0 the whole process will fail. In the next section we will rewie
whereH(n) is a sequence aV x N matrices containing the the correlation appr.oach for solying the permutation probl
impulse responses of the mixing channels. For the separatﬂ:pd propose a confidence function in order to make the whole
we use FIR filters of lengtl/ and obtain process more robust.

M—1 IIl. DEPERMUTATIONALGORITHM

y(n) = W(n) xz(n) = Z W()z(n—1) (") " There are a lot of different depermutation algorithms. Here
=0 we use the so-called correlation approach [7], [14]. The key
with W (n) containing the unmixing coefficients. In order tcassumption is the high correlation of neighboring bins.Hwit
achieve satisfying performance we chodge> L — 1 [20]. V(w,7)=|Y (w,7)|, the correlation between two birksand
Fig. 1 shows the scenario for two sources and sensors. [ is defined as
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Fig. 2. The hin-wise separation performance using the sineptrelation Fig. 3. The calculated angles between the unmixing vecfbne block
approach. There are three positions where the depernmfails, which leads permutation from Fig. 2 occur where the angles are very small
to block permutations.

TABLE |
COMPARISON OF THE RESULTS FOR DIFFERENT DEPERMUTATION
ALGORITHMS.
( ) ZTT:Ol Vy(wr, )V (wi, 7) Algorithm | SIR || Algorithm | SIR
pqp wkawl = — _
\/23:01 qu(wk’ 7)\/23:01 Vp2(w1, 9 Prop(?sed 17.0 || DOA App.roach [11]] 17.3
(11) Correlation [7] 3.1 af-Algorithm [16] | 18.4
wherep, ¢ are the indices of the separated sign&lgwy, 7) is Dyadic sorting [8]| 2.7 Non blind 18.4
the gth element ofV' (wy, 7), and 7T is the number of frames.
The decision on aligning the bins is made on the basis of the
ratio measured by the angle between the complex unmixing vectors:

= pPP(wkvwl) +pqq(wk7wl) (12)

Tkl .
Ppa(Wk, wi) + pgp (W, wi)

wl (@)ws () ) w

[wi (W)} [Jwa (W)l

By aligni_ng consecutive bins, a corret_:t depermutation fbr EUsing the calculated angle(w), an SIR estimate is then
frequencies sh(_)uld_ be achieved. In_Flg.. 2,a resuIF for a r%mputed as in [18]. For the purpose of the algorithm propose
world example is given. Here, the bin-wise separation perfq, this paper, this is not needed. The more important fact is
mance (SIR) [21] for all frequencies is given. A change in thge opservation that the block permutations happen in close
sign of the SIR indicates a permutation. It this example,tmog,djacency to the minima af(w), as shown in Fig. 3. This
bins have been correctly depermuted, but on three positiof)gys for a formulation of a simple binary confidence fuoati
the procedure failed. As only neighboring bins are compareﬂ(w) which is zero for frequency bins, that are in close

the wrong permutations _Iead to block permutations_. In th!fd'acency to the local minima of(w) and one otherwise.
case, the overall separation performance has been mryensetsing the confidence function leads to the following deper-

reduced. mutation algorithm:

This method can be improved by comparing more than onel) Calculate f.(w) for all frequencies using:(w) and a
bin. Following this approach in [14] a dyadic sorting scheme "%\ o\ |4t the estimation of the uncertain frequencies
has been proposed. Here, in a first step, pairs of neighboring The threshold is a trade off, as large values are moré
bins are compared. In the next step, these pairs get aligned. robust, but the ranges may bécometo small for the block
By repeating this procedure, the assigned groups get Imger deperr,nutation in step 3.
every step and eventually all bins get sorted. The assumptio 2) Calculate a depermutation using (12) for all frequencies

here is, that single false alignments do not outbalance the . . L .
o . which are confident as indicated fy(w) = 1, see Fig.
overall structure. Unfortunately, this is not true if too mya 4 (a)

errors oceur in the early stages. 3) Calculate a block depermutation as in [14] for the
depermuted blocks, see Fig. 4 (b).

IV. NEW ALGORITHM 4) Align the remaining bins by comparing them to the
depermuted blocks, see Fig. 4 (c).

o) = arccos (

The approach proposed in this paper is based on the
observation, that false alignments usually happen atipaosit
where the separation performance is poor. So, by leaving out
these positions during depermutation, a more robust digori  The simulations were performed using data available at
can be derived. The separation performance in every bin[&2]. This data set consists of speech recordings that are
not known but a blind estimation can be made, as proposeceight seconds long and sampled at 8 kHz with individual
[18]. The blind estimation of the binwise SIR is based on theontributions from the sources to the microphones. Thearos
observation that the SIR is poor when the vectargw) of parameters were a Hann window of length 2048, a window
the unmixing matrixW (w) are similar. This similarity can be shift of 256, and an FFT-length of 8192. After 400 iterations

V. SIMULATIONS
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