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Abstract: This work introduces a strategy for the extension of the standard weighted Kaczmarz algorithm, which is commonly used with 

Tikhonov regularization in system-matrix based magnetic particle imaging, to other priors. The proposed reformulation of the algorithm 

allows us to include more sophisticated priors while inheriting the fast convergence of the Kaczmarz iteration. The new method is 

developed with help of the alternating direction method of multipliers. The results show that also with a suboptimal alternating direction 

method of multiplier steps, the proposed algorithm solves the problem with very high convergence rate. 

 

I. Introduction 
Magnetic Particle Imaging (MPI) is based on the nonlinear 

magnetization characteristic of superparamagnetic iron-

oxide nanoparticles (SPIOs). The superposition of different 

acceleration fields and a gradient field results in a field free 

point (FFP) that travels along a pre-defined trajectory. 

Commonly, for MPI scanners with a Lissajous FFP-

trajectory, a system-matrix based approach is used for image 

reconstruction [1]. Therefore, often the Kaczmarz algorithm 

(KA) with an extended system is chosen [2] that solves a 

Tikhonov-regularized least squares problem. However, other 

approaches for the particle-distribution reconstruction with 

more sophisticated priors have also been proposed [3]. 

Typically, this results in extended reconstruction times. 

Thus, if a fast reconstruction is desired, still the KA is 

preferred in the community. Speculatively, the reason is that 

MPI is still in the preclinical field, and for a first fast 

reconstruction, fancy priors are not necessary. Another 

reason may be that the system matrix can be represented in 

frequency space with nearly orthogonal rows. This fact 

results in fast convergence for the KA. Additionally, a non-

negativity constraint is easy to enforce. This leads to the 

question of whether it is possible to extend the KA to other 

priors. In [4], such an attempt has been made, but the 

method is inefficient, because row- and column-wise 

operations are needed. In the present work, a direct 

extension to the KA is derived that allows one to include 

sophisticated priors and that operates only row-wise. The 

developed formulation of the reconstruction problem is 

based on splitting methods, like the alternated direction 

method of multiplier (ADMM) [5].  

II. Material and Methods 
In MPI, the optimization problem is usually formulated as 

 arg min
𝑐∈ℝ+

𝑛
 ‖𝑆𝑐 − 𝑓‖2

2 + 𝜆2‖𝑐‖2
2, (1) 

where 𝑆 ∈ ℂ𝑚×𝑛 denotes the system matrix in frequency 

space, 𝑓 ∈ ℂ𝑚  are the measured frequency components, and 

𝑐 ∈ ℝ+
𝑛  is the unknown SPIO distribution. The problem (1) 

can be solved in a row-wise manner with help of the KA [6], 

where the trick lies in reformulating (1) into the equivalent 

problem 

 arg min
𝑐∈ℝ+

𝑛  ,𝑣 ∈ℂ𝑚
 ‖𝑐‖2

2 + ‖𝑣‖2
2  s.t.  𝑆𝑐 + 𝜆𝑣 = 𝑓,  (2) 

which is consistent and can be solved by KA. 

Now let us consider the use of a more general convex 

regularization function ℛ(𝑧):   

 arg min
𝑐∈ℝ+

𝑛
 ‖𝑆𝑐 − 𝑓‖2

2 + 𝛽 ℛ(𝐿𝑐), (3) 

where 𝐿 ∈ ℝ𝑘×𝑛 is an arbitrary matrix. An example is the 

anisotropic total variation (A-TV), where ℛ(𝑧) =  ‖𝑧‖1 

and 𝐿 = ∇∈ ℝ𝑑𝑛×𝑛 is a discretized gradient operator with 

respect to 𝑑 directions. The problem (3) can be rewritten as 

 arg min
𝑐∈ℝ+

𝑛
 ‖𝑆𝑐 − 𝑓‖2

2 + 𝛽 ℛ(𝑧) s.t.  𝐿𝑐 − 𝑧 = 0. (4) 

With help of the ADMM, Eq. (4) is split into  

 𝑐𝑘+1 = arg min
𝑐∈ℝ+

𝑛
 ‖𝑆𝑐 − 𝑓‖2

2 +
𝜌

2
‖𝑧𝑘 − 𝐿𝑐 + 𝑢𝑘‖2

2, (5) 

 𝑧𝑘+1 = arg min
𝑧∈ℝ𝑑

𝛽 ℛ(𝑧) +
𝜌

2
‖𝑧 − 𝐿𝑐𝑘+1 + 𝑢𝑘‖2

2 

                   = prox
 
𝛽

𝜌
ℛ 

(𝐿𝑐𝑘+1 − 𝑢𝑘), (6) 

 𝑢𝑘+1 = 𝑢𝑘 + 𝑧𝑘+1 − 𝐿𝑐𝑘+1.  (7) 

The parameter 𝜌 > 0 is chosen adaptively by the strategy 

proposed in [5] (§3.4.1). To use the KA for solving (5), an 

additional damping parameter 𝛿 > 0 is introduced and the 

same trick as in (2) is used: 
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 𝑐𝑘+1 = arg min
𝑐∈ℝ+

𝑛
 ‖(

𝑆

√
𝜌

2
 𝐿 ) 𝑐 − (

𝑓

√
𝜌

2
(𝑢𝑘 + 𝑧𝑘)

)‖
2

2

+ ‖𝛿 𝑐‖2.
2   (8) 

The entire matrix can either be split in a row-wise manner 

(KA I), or for the upper part with the system matrix 𝑆, a 

row-wise KA splitting is used, whereas for the lower part of 

the matrix (√
𝜌

2
 𝐿) a block KA splitting is applied (KA II). 

With an adaptation strategy for δ, the objective function of 

the problem in (3) can be minimized. The 𝛿 is increased by 

a factor of 2.1 if the objective function of (3) becomes 

higher after one ADMM iteration, otherwise it is decreased 

by factor 0.9.  Using this, the convergence rate is better than 

for the standard ADMM strategy, where the subproblem (5) 

is solved by a gradient descent (grad. descent) method based 

on FISTA [7]. For comparison purposes, also an exact 

solver of (5) (Matlab/lsqnonneg), has been used. For the 

three inexact solvers (KA/grad. descent) for (5) an inner 

iteration is used, which was set in the tests to two iterations. 

For evaluation, the test data have been simulated by the 

parameters in [8], but the FOV has been discretized to 50 ×
50 pixels. The voltage signal has a signal-to-noise ratio of 

20 dB.  For the experiments, 𝐿 and ℛ(𝑧) were chosen in 

such a way that the A-TV was optimized. 

III. Results 
In Fig. 1, the top row shows the phantom and 

reconstructions results. In the bottom left, the objective 

function is plotted vs. the number of ADMM iterations, 

where one iteration is defined by a full evaluation of the 

steps (5), (6), and (7). Of course, one iteration has different 

time consumptions for the different solvers. For comparison 

purposes, also a method in which (5) was solved in an exact 

manner is shown, which needs significantly more time than 

all other methods. Quite obviously, the KA solving 

strategies that use only two inner iterations for the 

approximation of problem (5) are (in terms of the objective 

function) nearly as good as the optimal ADMM strategy. 

The gradient-based method has significant problems to 

follow the KAs. It should be noted that the situation 

becomes better if the number of inner iterations is chosen 

higher. However, this comes with an increase of the 

calculation times for one full iteration. 

Interestingly, when we look at the mean squared error 

(MSE) in Fig. 1, bottom right, the optimal ADMM strategy 

starts to become a little bit worse, whereas the KA strategies 

always find an optimum. 

IV. Discussion 
The KAs clearly outperform the gradient descent method, 

because the system matrix rows are nearly orthogonal to 

each other. It should be mentioned that grad. descent can be 

accelerated if the system matrix rows are energy normalized. 

The energy normalization comes with the drawback that the 

noise floor is increased within the frequency components 

and a selection of frequency components becomes 

     

 

Figure 1: Top: Reconstruction results after 100 iterations and 

two inner iterations for the approximation of (5). Bottom Left: The 

value of the objective function vs. the number of iterations for an 

anisotropic total variation problem solved by different solvers. 

Bottom Right: Mean squared error vs iterations. 

unavoidable. In contrast, KA is scale-invariant with respect 

to the rows of the matrix and the frequency selection is 

generally unnecessary, but can also help. 

V. Conclusions 
In this work, a strategy for the use of the Kaczmarz 

reconstruction in a row-wise manner with more 

sophisticated priors has been introduced and tested in the 2D 

total variation regularized setting. The method has been 

formulated in a generalized form and can be applied to 

different convex priors as well. If a closed-form solution for 

(6) is known or the result can be calculated, the algorithm 

can be efficiently implemented. The extension of the 

algorithm to non-convex priors is one of the next targets. 
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