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INTRODUCTION The tracer based imaging method magnet:f:
particle imaging (MPI) allows reconstructing thestdbution of
superparamagnetic iron oxid nanoparticles [1]. Fie .
calculation of the spatial particle concentrationfrom the ¢
voltage signal, a system-matrix based reconstruction is Widel‘;!—'*
used. The system matri& which maps between the particle
concentration and voltage signal, has to be kn@}nJince the
system matrices can be very large in size and tbasume a
huge amount of memory in workspace, a compressiethad
was introduced [3]. The idea was to transform tfstesn matrix
via well-known transforms into another space whielecomes
sparse.

In this paper, we study the relationship between sampling
pattern and the compressibility of the system matind
introduce a new compression method for MPI systeatrioes
using a field-free point (FFP) on a Lissajous ttgey.

Figure 1: Sampling pattern for a Lissajous trajectory with th
ratiof,/f, = 4/5 andk = 4 (left) andk = 8 (right).
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MATERIAL AND METHODS The signal equation in time-domain is  Figure 2: Normalized squared error as function of the
described byu = Sc, whereu € RV, § € R¥M andc € RY.  percentage of remaining coefficients after hard-thresholding
With the discrete Fourier transform matdk we obtain the in the range of 0% to 15%. The highest possible error(siB.
frequency-domain representatiah= Fu = FSc = Sc, which

is the standard representation in MPI. In thiskvare consider For testing, we use the system matrices from thipBluataset
the two-dimensional case for the field-of-view (FOWn [3], the [2]. The frequency ratio in this datasetfis/f, = 33/32, and
rows ofS were transformed with a transformation maffiwith the above mentioned time-domain sampling conditivas
respect to the dimensions of the FOV. Hence, tlgnasi originally fulfilled when this matrix was acquireth a second
equation was re-written a6= STT 1c = S;cy. The work in step, several frequencies have been deleted sorhathe first
[3] also showed that the discrete Chebychev transfDTT) 1268 frequency components were available.

and discrete cosine transform of type two (DCTaig able to

compress system matrices significantly. RESULTS As can be seen in Fig. 2, our method is performitl
For the compression scheme proposed in this wohk, @ better compression ratio in terms of normalizesmsquared
frequency ratio is chosen to be rational withf,/f, = error than the standard approach by [3] on theifh#ystem

Ny /N, = Ny /(N, — 1) whereN,, N, € N. We can show that, if matrix dataset. One can see that gains of up B can be

we sample the trajectory equidistantly in timeMat= k - N, - achieved.

N, sampling points in one period, whér& N, we obtaink ConcLusioNs We showed that the number of samples per

separable Euclidian-likg grids. The ;ampling points shown Lissajous trajectory has to obey a certain sampiihg and that
for Ny =_5 and two differentk in Fig. 1. some equwal_ent the applied spatial transform should obey certgimmsetries to
observation results were recently also confirmedéin In this  oncure sparsity for the transform coefficients. eipentally,
paper, we show that the orthogonal transform on R/ e \vere able to verify that under these conditiobsiter
should have symmetric and antisymmetric basis fonstto compacting transforms can be found than the DCTTOF.D
result in a maximally sparse representation ofsgrstem matrix.

In fact, for simulated system matrices, the useao$patial AckNOWLEDGEMENTS This work was supported by the German
transform with the above mentioned symmetry properesults Research Foundation under Grant No. ME 1170/7-1841A436/7-1.

in a large number of coefficients 8 being exactly zero. For

measured system matrices, these values are ap@tekynzero. REFERENCES
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