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ABSTRACT

In this paper, we propose to use the scaling ambiguity of con-
volutive blind source separation for shortening the unmixing
filters. An often used approach for separating convolutive
mixtures is the transformation to the time-frequency domain
where an instantaneous ICA algorithm can be applied for each
frequency separately. This approach leads to the so called per-
mutation and scaling ambiguity. While different methods for
the permutation problem have been widely studied, the solu-
tion for the scaling problem is usually based on the minimal
distortion principle. We propose an alternative approach that
allows the unmixing filters to be as short as possible. Shorter
unmixing filters will suffer less from circular-convolution ef-
fects that are inherent to unmixing approaches based on bin-
wise ICA followed by permutation and scaling correction.
The results for the new algorithm will be shown on a real-
world example.

Index Terms— Blind source separation, convolutivemix-
ture, frequency-domain ICA, scaling problem.

1. INTRODUCTION

Blind source separation (BSS) is a method for recovering sig-
nals from observedmixtures. Usually, neither the mixing sys-
tem nor the original signals are known. The instantaneous
case has been widely studied and there exist several efficient
algorithms [1, 2, 3].
In a real-world scenario in an echoic environment, the sit-

uation becomes more difficult. As the signals arrive several
times with different time lags, the mixing process becomes
convolutive. This can be modelled using FIR filters, where
a realistic scenario requires lengths of several thousand taps.
For doing BSS in such a scenario, an estimation of an inverse
system of similar length is required. One way is to estimate
the unmixing filters directly in the time domain [4, 5]. The
drawbacks of this approach are a high computational cost and
difficulties of convergence, as the algorithm often gets trapped
in a local minimum. Therefore, another approach is widely
used: After transformation to the time-frequency domain, the
convolution becomes a multiplication [6], and each frequency
bin can be separated using an instantaneous method. This

simplification has a major disadvantage though. As every sep-
arated bin can be arbitrarily permuted and scaled, a correction
is needed. When the permutation is not correctly solved the
separation of the entire signals fails. A variety of different
approaches has been proposed to solve this problem utilizing
either the time structure of the signals [7, 8, 9] or the proper-
ties of the unmixing matrices [10, 11, 12].
When the scaling is not corrected, a filtered version of the

signals is recovered. In [13, 14] the authors proposed a post-
filter method that is able to recover the signals as they have
been recorded at the microphones, accepting the distortions
of the mixing system while not adding new ones.
The circular-convolution problem of convolutive BSS has

been explicitly addressed in [15]. As the unmixing matrices
are calculated independently for each frequency, the desired
linear convolution may turn into a circular one. To reduce
these effects the authors applied a smoothing to the filters in
the time domain.
In this paper, we propose a new method for solving the

scaling ambiguity with the aim of making the unmixing filters
as short as possible. In order to achieve this, we calculate
the dependency between the scaling factors and the impulse
responses of the unmixing filterbank and select the scaling
factors that minimize a certain optimality criterion. The new
filters are then short enough to avoid the circularity problem.

2. MODEL AND METHODS

2.1. BSS for instantaneous mixtures

In this section, we describe the instantaneous unmixing
process that we used in frequency bins of the convolutive
one. The instantaneous mixing process of N sources into
N observations is modeled by an N × N matrix A. With
the source vector s(n) = [s1(n), . . . , sN(n)]T and negli-
gible measurement noise, the observation signals x(n) =
[x1(n), . . . , xN (n)]T are given by

x(n) = A · s(n). (1)

The separation is again a multiplication with a matrixB:

y(n) = B · x(n) (2)
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with y(n) = [y1(n), . . . , yN (n)]T . The only source of infor-
mation for the estimation of B is the observed process x(n).
The separation is successful whenB can be estimated so that
BA = DΠ withΠ being a permutation matrix andD being
an arbitrary diagonal matrix. These two matrices stand for the
two ambiguities of BSS. The signals may appear in any order
and can be arbitrarily scaled.
For the separation we use the well known gradient-based

update rule [1]
Bk+1 = Bk + ΔBk (3)

with
ΔBk = μk(I − E

{
g(y)yT

}
)Bk. (4)

The term g(y) = (g1(y1), . . . gn(yn)) is a component-wise
vector function of nonlinear score functions

gi(si) = −
p′i(si)

pi(si)
(5)

where pi(si) are the assumed source probability densities.
These should be known or at least well approximated in order
to achieve good separation performance [16].

2.2. Convolutive mixtures

When dealing with real-world acoustic scenarios it is neces-
sary to consider the reverberation. The mixing system can
be modeled by FIR filters of length L. Depending on the re-
verberation time and sampling rate, L can reach several thou-
sand. The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =

L−1∑

l=0

H(l)s(n − l) (6)

whereH(n) is a sequence of N × N matrices containing the
impulse responses of the mixing channels. For the separation
we use FIR filters of lengthM and obtain

y(n) = W(n) ∗ x(n) =

M−1∑

l=0

W(l)x(n − l) (7)

withW(n) containing the unmixing coefficients. In order to
achieve satisfying performance we chooseM ≥ L − 1 [17].
Using the short-time Fourier transform (STFT), the sig-

nals can be transformed to the time-frequency domain, where
the convolution approximately becomes a multiplication [6]:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . , K − 1, (8)

where K is the FFT length. The major benefit of this ap-
proach is the possibility to estimate the unmixing matrices for
each frequency independently, however, at the price of possi-
ble permutation and scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ)
(9)
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Fig. 1. Overview of frequency-domain BSS
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where Π(ω) is a frequency-dependent permutation matrix
andD(ω) an arbitrary diagonal scaling matrix.
The correction of the permutation is essential, because the

entire unmixing process fails if different permutations occur
at different frequencies. A number of approaches has been
proposed to solve this problem. [7, 8, 9, 10, 11, 12].
When the scaling ambiguity is not solved, filtered ver-

sions of the sources are recovered. A widely used approach
has been proposed in [13]. The authors recovered the signals
as they were recorded at the microphones accepting all filter-
ing done by the mixing system. A similar technique has been
proposed in [14] under the paradigm of the minimal distortion
principle, which uses the unmixing matrix

W ′(ω) = dg(W−1(ω)) · W (ω) (10)

with dg(·) returning the argument with all off-diagonal ele-
ments set to zero.

3. FILTER SHORTENING

The proposed method is to estimate a set of scaling factors
c(ω) so that the filter lengths of the unmixing filters are
reduced. The motivation for this comes from the fact that
the conversion of time-domain convolution into frequency-
domain multiplication is only then exactly equivalent when
certain conditions on the filter and FFT lengths, known from
fast-convolution algorithms, are satisfied. With arbitrary scal-
ing factors, however, the frequency-domain multiplication
will results in circular-convolution artifacts.
In Fig. 1 the overall BSS system is shown. It consists of

N ×N single channels as depicted in Fig. 2. In this represen-
tation the permutation has already been corrected. The depen-
dency of time-domain filter coefficients of a filter vector wij

and scaling factors c = [c(ω0), c(ω1), . . . , c(ωK−1)]
T can be

calculated as follows:
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wij =
∑

l

El · F
−1 · C · W ij · F · Dl · δ

=
∑

l

El · F
−1 · diag(F · Dl · δ) · W ij · c

= V ij · c

(11)

where diag(·) converts a vector to a diagonal matrix. The
term δ a unit vector containing a single one and zeros other-
wise. Dl is a diagonal matrix containing the coefficients of
the STFT analysis window shifted to the lth position accord-
ing to the STFT window shift. F is the DFT matrix. W ij is
a diagonal matrix containing the frequency-domain unmixing
coefficients. c is a vector of the sought scaling factors, andC

is a diagonal matrix made up as C = diag(c). El is a shift-
ing matrix corresponding to Dl, defined in such a way that
the overlapping STFT blocks are correctly merged. Note that
for real-valued signals and filters, the above equation can be
modified to exploit the conjugate symmetry in the frequency
domain.
The calculation of an optimal scaling vector c that leads

to filterswij of short length can be done by minimizing

‖w̄ − V̄ c‖�2 (12)

where V̄ and w̃ are vertical concatenations of matrices V ij

and some desired filters w̃ij , respectively. In the proposed
method, each vector w̄ij contains zeros and a single one at
the position where the correspondingwij has its main peak.
The solution is given by c = V̄ +

w̄, with V̄ + beeing the
pseudoinverse of V̄ .

4. SIMULATIONS

Simulations have been done on real-world data available at
[18]. This data set consists of eight-seconds long speech
recordings sampled at 8 kHz. The chosen parameters were
a Hann window of length 2048, a window shift of 256, and
an FFT-length of K = 4096. 200 iterations of (4) for each
frequency bin have been done. As the original sources are
available for the considered data set, the permutation prob-
lem could be ideally solved, so that permutation ambiguities
could not influence the results.
In Figs. 3 and 4 the filters designed with the traditional

method (10) and the proposed method are shown, respec-
tively. The main difference is the clearly visible and signifi-
cantly bigger main peak and the faster decay of the impulse
responses designed with our method. As one can observe by
comparing Figs. 3(b) and 4(b), the energy difference between
the main peak and the tail of the impulse responde could be
increased by about 25 dB.
The new filters are also able to significantly enhance the

separation performance as shown in Table 1.

Table 1. Comparison of the signal-to-interference ratios in
dB between the minimal distortion principle and the new al-
gorithm.

Left Right Overall

MDP 18.05 15.27 16.18
New Alg. 20.62 26.48 23.04

5. SUMMARY

In this paper, we have proposed the use of the scaling am-
biguity of convolutive blind source separation for shortening
the unmixing filters. We calculate a set of scaling factors that
maximize the energy ratio of the main peak and the tail of the
impulse response. On a real-world example, the energy decay
could be improved by 25 dB, which also translated into better
signal-to-interference ratios.
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