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Abstract—In this paper we present a method for estimating
the bin-wise separation performance in convolutive blind source
separation. A common way to separate convolutive mixtures is the
transformation to the time-frequency domain and the separation
of the single bins using an instantaneous ICA algorithm. This
approach reduces the complexity but leads to the so-called
permutation problem which has been widely studied. Another
problem arises when the single bins are only poorly separable
or even not separable at all. These bins can significantly reduce
the overall performance. In this paper we propose a method for
detecting such bins based on properties of the unmixing matrices.

I. INTRODUCTION
A typical way for separating convolutive mixtures is to

transform the signals to the time-frequency domain and to use
a bin-wise instantaneous separation in each frequency. For the
instantaneous unmixing problem, many different approaches
have been proposed [1], [2], [3].
The two arising difficulties of this approach are the so-called

permutation and scaling problems, for which solutions have
been proposed in [4], [5], [6], [7], [8]. A rather unaddressed
problem, however, is the detection of bins where the separation
is low or has even failed. A reason for separation failure can
be a singular mixing matrix or the presence of only one source
at a given frequency.
In this paper we propose a method for detecting these

bins and derive an algorithm for maximizing the separation
performance without adding new distortions.

II. MIXING AND UNMIXING MODEL
In the instantaneous case the mixing process of N sources

into N observations can be modeled by an N × N matrix
A. Assuming negligible measurement noise the observation
signals x(n) = [x1(n), . . . , xN (n)]T are given by

x(n) = A · s(n). (1)

with s(n) = [s1(n), . . . , sN (n)]T being the vector of
source signals. To obtain the separated signals y(n) =
[y1(n), . . . , yN (n)]T a multiplication with the unmixing ma-
trix B has to be performed:

y(n) = B · x(n). (2)

The unmixing matrix B is estimated only on the basis of
the observed process x(n). The separation is considered

successful when BA = DΠ with Π being a permutation
matrix and D being an arbitrary diagonal matrix. The two
matrices Π and D represent the two ambiguities of BSS. The
order of the sources cannot be determined and any scaling of
the signals yields a valid solution. For the separation we use
the well-known gradient-based update rule according to [1]:

Bk+1 = Bk + ΔBk (3)

with
ΔBk = μk(I − E

{
g(y)yT

}
)Bk. (4)

The term g(y) = (g1(y1), . . . gn(yn)) is a component-wise
vector function of nonlinear score functions

gi(si) = −
p′i(si)

pi(si)
(5)

where pi(si) are the assumed source probability densities.
These should be known or at least well approximated in order
to achieve good separation performance [9].
In a realistic acoustic scenario the model has to be extended

as the reverberation has to be taken into account. The mixing
system can be modeled by FIR filters of length L. Depending
on the reverberation time and sampling rate, L can reach
several thousands. The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =

L−1∑
l=0

H(l)s(n− l) (6)

where H(n) is a sequence of N ×N matrices containing the
impulse responses of the mixing channels. For the separation
we use FIR filters of length M ≥ L− 1 and obtain

y(n) = W(n) ∗ x(n) =
M−1∑
l=0

W(l)x(n− l) (7)

with W(n) containing the unmixing coefficients.
A common way to solve the convolutive BSS problem is the

transformation to the time-frequency domain using the short-
time Fourier transform (STFT) where the convolution becomes
a multiplication [10]:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . , K − 1, (8)

with K being the FFT length. This approach simplifies the
problem as in the time-frequency domain the separation task
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is reduced to an instantaneous unmixing in each frequency bin.
The downside of this approach is the possible permutation and
scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ) (9)

whereΠ(ω) is a frequency-dependent permutation matrix and
D(ω) a diagonal scaling matrix.
When the permutation is not corrected before reconstructing

the time signals, the entire separation fails. Without this correc-
tion different signals will appear in every output at different
frequencies. Several approaches for solving the permutation
problem have been proposed [4], [5], [6], [7], [11], [12].
For restoring the original sources as closely as possible,

the correction of the scaling ambiguity is needed. Otherwise
a filtered version is recovered. A method using the inverse
postfilter has been proposed in [13]. The idea is to recover
the signals as they have been recorded at the microphones.
This approach accepts the filtering done by the mixing system
without adding new distortions. In [14] a similar technique,
known as the minimal distortion principle, has been proposed.
This method uses the following unmixing matrix

W ′(ω) = dg(W−1(ω)) ·W (ω) (10)

with dg(·) returning the argument with all off-diagonal ele-
ments set to zero.
This approach, however, does not take into account the

problem of poorly separated bins. If there is strong crosstalk
at some frequencies, properly chosen small scaling factors for
the affected frequencies could lead to an enhanced separation
ratio. A method for estimating such scaling factors will be
proposed in the next section.

III. THE PROPOSED ALGORITHM
The proposed algorithm consists of two parts. In the first

part, we describe a model for blind estimation of the bin-
wise separation performance. The second part consists of the
transformation of this information to a set of scaling factors.
The algorithm will be described for two sources, but can be
extended to more than two.

A. Blind estimation of the bin-wise separation performance

The main idea of the proposed algorithm can be described
as follows. If the mixing matrix at a given frequency ωk is
close to being singular, its vectors are usually almost parallel.
This means the unmixing vectors are also almost parallel. In
this case, small errors in the estimated unmixing vectors may
lead to strong crosstalk in this frequency bin.
The ideal case where the unmixing vectors w1(ωk) and

w2(ωk) are biorthogonal to the mixing vectors h1(ωk) and
h2(ωk) (i.e., the columns of the mixing matrix H(ωk)) is
shown in Fig. 1 for the case where no overall permutation
occurs. Because of w1(ωk)⊥h2(ωk) and w2(ωk)⊥h1(ωk) we
have for the overall gains gij(ωk) from source j to output i

g11(ωk) = wH
1 (ωk)h1(ωk) (11)

g22(ωk) = wH
2 (ωk)h2(ωk) (12)

αk

h1(ωk)

w1(ωk)

w2(ωk)
h2(ωk)

Fig. 1. The projection of the components h1(ωk) and h2(ωk) on w1(ωk)
in the ideal case.

αk

h1(ωk)

w1(ωk)

w̃2(ωk)w2(ωk)

w̃1(ωk)

Δw1(ωk)

h2(ωk)

Fig. 2. The projection of the components h1(ωk) and h2(ωk) on w̃1(ωk)
in a realistic case where the projection vector is not orthogonal to one of the
components.

and g12(ωk) = g21(ωk) = 0 regardless of the actual angle
αk. When using the minimal distortion principle, the gain
differences are properly corrected between the frequency bins.
In Fig. 2 a more realistic case is shown, in which the

biorthogonality condition between the estimated unmixing
vectors and the true mixing vectors does not hold perfectly.
As the unmixing vectors are estimated via an ICA-Algorithm
using a finite data set there are estimation errors Δwi(ωk)
such that unmixing vectors w̃i(ωk) = wi(ωk)+Δwi(ωk) are
used instead of the ideal ones. The overall gains gij(ωk) =

w̃
H
i (ωk)hj(ωk) now become

g11(ωk) = wH
1 (ωk)h1(ωk) + ΔwH

1 (ωk)h1(ωk)

g12(ωk) = ΔwH
1 (ωk)h2(ωk)

g21(ωk) = ΔwH
2 (ωk)h1(ωk)

g22(ωk) = wH
2 (ωk)h2(ωk) + ΔwH

2 (ωk)h2(ωk)

(13)

It is clear that because of g12(ωk) �= 0 and g21(ωk) �= 0 there
is crosstalk. The signal-to-interference ratio (SIR) at frequency
ωk for output one can be written as SIR1(ωk) = |S1(ωk)|2

with

S1(ωk) =
wH

1 (ωk)h1(ωk) + ΔwH
1 (ωk)h1(ωk)

ΔwH
1 (ωk)h2(ωk)

(14)

Assuming ‖h1(ωk)‖ = ‖h2(ωk)‖ and Δw1(ωk)⊥w1(ωk)
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with ‖Δw1(ωk)‖ = ‖w1(ωk)‖ sinγk as well as
|ΔwH

1 (ωk)h1(ωk)| ≈ ‖Δw1(ωk)‖ · ‖h1(ωk)‖ we obtain

|S1(ωk)| ≈
cos(π

2
− αk)

sinγk

+ cos(αk) (15)

with αk being the angle between the mixing vectors, which
is assumed to be the same as the one between the unmixing
vectors. Given two complex vectors h1 and h2, we compute
the angle between them as

α = arccos

(
|hH

1 h2|

‖h1‖ ‖h2‖

)
(16)

This formulation maps negative angles to positive ones, and it
maps angles α larger than π/2 to π−α. However, this is not
a problem in our context, as these changes are similar to the
ones caused by the ambiguities of the ICA method. Note that,
under the assumptions made, the same SIR would be obtained
for the second output. γk, which is the angle between w1(ωk)
and w̃1(ωk), is not known, but experiments showed that an
assumption of 0.001π for all frequencies is quite realistic.
In Fig. 3 a result of estimating the SIR for every frequency

bin is given. For comparison, in Fig. 4 the real SIR is shown.
One can observe that there is a high similarity between the
estimated and true SIR.

B. Calculation of scaling factors

Using equation (15) an estimated SIR for every frequency
bin can be calculated. This information is then used to calcu-
late a set of scaling coefficients c(ω) that maximize the overall
SIR.
The overall SIR is maximal when the crosstalk in ev-

ery frequency bin is the same. With the estimated energy
E(ωk) =

∑
τ |Y (ωk, τ)|2 in every bin the scaling coefficients

are calculated as

c(ωk) =
E(ωk) · S̃(ωk)
1

K
·
∑

k E(ωk)
(17)

with
S̃(ωk) =

|S1(ωk)|
1

K

∑K−1

k=0
|S1(ωk)|

(18)

Coefficients calculated for a real-world example using (17) are
shown in Fig. 5(a). Here the lower frequencies are attenuated
while the higher ones are emphasized. The reason for this
is that at lower frequencies there is poor separation and
high energy at the same time. This behavior leads to a high
coloration of the signals.
A less invasive method would be to assume an equal energy

in all bins and to use c(ωk) = S̃(ωk). Compared to the
original solution based on the minimal distortion principle, this
approach still enhances the overall SIR but the coloration is not
as strong as with the coefficients from (17). The coefficients
c(ωk) = S̃(ωk) are shown in Fig. 5(b).
An even less invasive method is to keep coefficients that are

above a certain level untouched, which means that for such
bins, the scaling is the same as that calculated by the minimal
distortion principle. With c(ωk) = min{S̃(ωk), 1} the poorly

TABLE I
COMPARISON OF SEPARATION PERFORMANCE FOR THE DIFFERENT

ALGORITHMS

Left Right Overall SFM

Default 16.8 17.5 17.2 0.61
c(ωk) from (17) 29.9 27.2 28.5 0.07
c(ωk) = S̃(ωk) 20.3 23.8 22.3 0.51
c(ωk) = min{S̃(ωk), 1} 20.2 23.8 22.2 0.53

separated bins are attenuated while no special emphasis is put
on the good ones.

IV. SIMULATIONS
The validity of the proposed approach has been tested on

real-world data available at [15]. The permutation problem was
not addressed as the perfect depermutation is known. For the
comparison of the algorithms, the values of the overall SIR
and the spectral flatness measure (SFM)

SFM =

P

√∏P−1

p=0
|G(k)|2

1

P

∑P−1

p=0
|G(k)|2

(19)

for the overall system G(n) = H(n) ∗W (n) consisting of
the mixing and unmixing system will be used [16], [17]. A
higher SIR means better separation and a higher SFM means
less linear distortion of the separated signals.
The results of the minimal distortion principle are shown in

the first line in Table I. As one can see, the signals have been
separated quite well. The distortions of the signals are only
the result of the mixing system and are quite small.
The next line shows the results for scaling coefficients

calculated using (17). With this method, the overall SIR has
been be boosted by over 11dB. This improvement is achieved
at the cost of strong coloration, witch is reflected in the poor
SFM.
The choice c(ωk) = SIR(ωk) still leads to an overall

enhancement of the SIR by 5dB. The distortions are much less
invasive, and informal listening tests showed that the perceived
quality is almost as good as with the minimal distortion
principle, but with reduced crosstalk.
The last modification with a limit of one for c(ωk) is a

small one. It leads to negligible decline in SIR and a small
improvement in the SFM. The differences are barely audible.

V. SUMMARY
In this paper we presented a way for estimating the bin-wise

separation performance in convolutive blind source separation.
Based on the estimate, we derived an algorithm for increasing
the overall separation ratio. The validity of the approach has
been shown on a real-world example.
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Fig. 3. The estimated separation ratio for single bins.
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Fig. 4. The separation ratio for single bins.
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