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Abstract— For text-independent speaker identification a promi-
nent combination is to use Gaussian Mixture Models (GMM)
for classification while relying on Mel-Frequency Cepstral Co-
efficients (MFCC) as features. To take temporal information
into account the time difference of features of adjacent speech
frames are appended to the initial features. In this paper we
investigate the applicability of spectro-temporal features obtained
from Gabor-Filters and present an algorithm for optimizing the
possible parameters. Simulation results on a database show that
spectro-temporal features achieve higher recognition rates than
purely temporal features for clean speech as well as for disturbed
speech.

I. INTRODUCTION

To realize text-independent speaker identification a general

approach is to classify speech sequences via Gaussian Mixture

Models (GMM) as introduced by Reynolds [1], [2]. Based

on features extracted from training sequences of a single

speaker the model parameters of the GMM are estimated via

the EM algorithm [3]. For closed-set classification features

extracted from a test-sequence are compared to the GMMs

of all speakers and the model yielding the highest likelihood

is assumed to indicate the speaker of the test sequence.

Common features in speech processing are the well known

Mel Frequency Cepstral Coefficients (MFCC). As shown

previously in [1], [2] they are an appropriate feature for

the purpose of speaker identification. To include temporal

information the difference of the MFCCs of adjacent frames

are computed (’Delta-features’) and appended to the initial

features.

In this contribution we investigate to which extent not only

temporal but spectro-temporal information is of relevance for

speaker identification. We do so by filtering a log-compressed

Mel-Spectrum with Gabor-Filters [4]. The obtained Gabor-

Features are appended to MFCCs and compared to the per-

formance when appending Delta-MFCCs. We evaluate the

different features by simulation on a database and show

that spectro-temporal features are able to outperform purely

temporal features. The remainder of this paper is organized

as follows: In Section II we review the concept of text-

independent speaker identification via GMMs with MFCCs as

features. Gabor-Filters and parameter adaptation are explained

in Section III. The combination of MFCCs with Gabor-features

is also outlined. The performance of the proposed features

is evaluated by simulation results in Section IV followed by

conclusions in Section V.

II. TEXT-INDEPENDENT SPEAKER IDENTIFICATION

A. Feature Extraction

The signal of a speech sequence s(k) is sampled at

fs=8kHz. It is segmented into frames of length K=256 with

an overlap between adjacent frames of 80 samples, with a

frame index τ =1..T . A feature vector fτ = (fτ,1...fτ,D)T of

D dimensions is extracted from each frame, leading to a set

of T feature vectors F = (f1, .., fT )T.

B. Gaussian Mixture Models

For feature-vector fτ the probability density function given

by a single gaussian mixture with index i is

bi(fτ ) =
1

(2π)D/2 · |Cff |1/2
·

exp

[

−
1

2
(fτ − µi)

T
C

−1
ff,i (fτ − µi)

]

(1)

The D-dimensional mean-vector is denoted by µi and the

D × D covariance matrix by Cff,i. To reduce computational

complexity Cff,i is restricted to contain diagonal elements

only. Each mixture is weighted by a factor pi satisfying
∑O pi = 1, with i = 1..O and O as the total number of mix-

tures also called model order. The parameters of all O mixtures

are summarized as the parameter set λq = {pi, µi,Cff,i} of

speaker q. The probability of an observed feature vector given

by the model λ is

p (fτ |λ) =

O
∑

i=1

pi · bi(fτ ) . (2)

Under the assumption of independence of the observations

the overall probability of a set F given a model λq is

p (F|λq) =

T
∏

τ=1

p (fτ |λq) . (3)

After extraction of the feature vectors from a training sequence

FTrain it is the aim of model estimation to find those parame-

ters λq which maximize the probability p (FTrain|λq). This is
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accomplished by application of the Expectation-Maximization

Algorithm (EM) [3], [2]. From an initial set of parameters λ a

new set λ̄ is estimated for which log p
(

F|λ̄
)

≥ log p (F|λ) is

guaranteed. We terminate the algorithm if from iteration step

w to step w + 1 the criterion

Θ = |log p
(

F|λ̄w+1
)

/log p
(

F|λ̄w
)

− 1| (4)

falls below the threshold Θ < 1e − 6.

The O mean vectors µi are initialized by the O centers

found via vector-quantization [5]. The covariance matrices

are initialized as identity matrices scaled by the maximum

of all variance values σ2
1..D of the training data while the

mixture weights are set to pi = 1/O.

The closed set-classification of feature vectors extracted

from a test sequence FTest = (f1, .., fT )Tis carried out by

choosing that model q̂ as the speaker model which yields the

highest probability

q̂ = arg max
1≤q≤Q

T
∑

τ=1

log p
(

f
Test
τ |λq

)

. (5)

C. Mel-Frequency Cepstral Coefficients

Let us shortly review the extraction of MFCCs from a

discrete-time signal [2]. After framewise segmentation and

multiplication by a Hann-window

ŝτ (k) = sτ (k) · whann(k) (6)

the signal is transformed into the frequency domain by the

Discrete Fourier Transform (DFT)

Sτ (r) = DFT{ŝτ (k)} =

K−1
∑

k=0

ŝτ (k) · e−j2πr k
K . (7)

Triangular Mel-Filters as depicted in Fig. 1 are applied to

the spectral values Sτ (r) leading to the log-compressed Mel-

Spectrum

SMel
τ (m) = 10 log





rhigh(m)
∑

rlow(m)

|Sτ (r)| · DMel(m, r)



 (8)

with m = 1..M as the filter index and M =19 filters at

fs=8kHz. Denoted by rlow(m) is the lower discrete frequency

bin of the m-th Mel-Filter and by rhigh(m) the higher discrete

frequency bin respectively. The weighting value of the m-

th filter at frequency bin r is denoted by DMel(m, r). The

cepstral coefficients Cτ (n) called MFCCs are yielded by the

discrete cosine transform (DCT) of the log-compressed Mel-

Spectrum

Cτ (n) = 2 ·

M
∑

m=1

SMel
τ (m) · cos

(

π

M
n

(

M −
1

2

))

(9)

where n = 1..N is the index of the cepstral coefficients. Here,

we restrict the number of coefficients to N = 12. A feature

vector for frame τ is thus formed by the concatenation of

Frequency / Hz

0.5

1

0
0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 1. Triangular Filters of the Mel-Filterbank

the MFCCs as Cτ = (Cτ (1)..Cτ (N))
T

. The Delta-Vectors

∆Cτ = Cτ − Cτ−1 as the difference between vectors of

adjacent frames can be concatenated to the initial vectors in

order to take temporal information into account.

III. GABOR FEATURES

Gabor-Filters as spectro-temporal filters have been applied

by Kleinschmidt for feature generation in the field of speech

recognition [4]. The time- and frequency- continuous two-

dimensional Gabor function g(f, t) , with f as the frequency

and t as the time, is the product of a complex Euler Function

e(f, t) and a Gaussian Function n(f, t)

g(f, t) = e(f, t) · n(f, t) (10)

e(f, t) = exp (iωf(f − f0) + iωt(t − t0))

n(f, t) =
1

2πσfσt
· exp

[

−(f − f0)
2

2σ2
f

+
−(t − t0)

2

2σ2
t

]

with the parameters

t0, f0 = central time, central frequency

σt, σf = standard deviations of time and frequency

ωt, ωf = circular frequencies of the Euler Function

For a discrete-time and discrete-frequency implementation the

Gabor-Filter can be expressed by the frame index τ and the

Mel-Filter index m as g(m, τ). As an example the real part of

a Gabor-filter is depicted in Fig. 2. The log-compressed Mel-

Spectrum SMel
τ (m) in Fig. 3a) is convolved in time direction

with the real part of the Gabor-Filter ℜ{g(m, τ)} leading to

the result in Fig. 3b). The feature values

G(τ) =

M
∑

m=1

τ́=τmax
∑

τ́=−τmax

ℜ{g(m, τ)} · SMel
τ (m, τ + τ́ ) (11)

are obtained by summation over frequency and can be seen

in Fig. 3c). The value of τmax is here set to 50 frames, the

time width of the Gabor-Filter. The final feature vector Gτ

is obtained by applying L different Gabor-Filters to the Mel-

Spectrogram and concatenating the feature values from each

filter as Gτ =
(

G1(τ)...GL(τ)
)T

.
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Fig. 2. Amplitude of the real part of a Gabor-Filter;
dark values indicate high amplitude values
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Fig. 3. a) Mel-Spectrogram b) Result from Gabor-Filter
c) Feature values after summation over frequency

A. Optimization of Parameters

Finding Gabor-Filters with optimal parameters for the task

of speaker identification is achieved by examining the F-

ratio [6] as the measure for the separability of the different

speaker classes. A set of L filters is initialized and for each

speaker the features are extracted from a training sequence.

The Gabor-Features Gτ are concatenated with the MFCC

features Cτ . For each class (or speaker) q, we compute the

mean vector of the features µq and the sample covariance

matrix Wq. The overall mean vector of all classes shall be

µ0 = (1/Q)
∑Q

µq. The F-ratio [6] can be determined by

the within-class scatter matrix

Sw =
1

Q

Q
∑

q=1

Wq (12)

and the between-class scatter matrix

Sb =
1

Q

Q
∑

q=1

(µq − µ0)(µq − µ0)
T (13)

yielding the separability criterion

J = tr
(

Sw
−1

Sb

)

. (14)

In order to find a set of filters with a higher separability the

following algorithm is carried out:

1) Initialize a set of Gabor-Filters at random.

2) Measure the relevance of each Gabor-Filter by comput-

ing the separability Jl of the classes when the features

of the filter l are not taken into account.

3) The measure Jl with the highest value indicates the

Gabor-Filter l which contributes least to the separability

of the classes, thus filter l is discarded.

4) Draw a new filter at random to replace filter l.
5) Return to step 2.

The resulting values of J for three sets of different sizes

L =12, 20 and 30 are plotted in Fig. 4. The algorithm was

termintated after 1000 iterations. Although the separability

obviously increases as we increase the number of filters we

have to keep in mind that this only means that we achieve a

higher separability of the features from the training sequences.

It still remains as an issue whether this will result in a

higher recognition rate of features from the test sequences.

Having generated a set with L Gabor-Filters we extract the
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Fig. 4. Separability J for 12, 20 and 30 Gabor-Filters

features from the training sequence of each speaker obtaining

the feature set Fqǫ R
T×L. We then perform a singular value

decomposition (SVD) of the set of training features

Fq = U · S ·VT (15)

and use the reduced base V
red
q ǫ R

T×12 for projection of the

features via

F̂q = Fq ·V
red
q (16)

to obtain 12 Gabor-features. The feature set of a test sequence

has to be projected also onto the bases V
red
q before testing

against speaker model λq .
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IV. RESULTS

The features discussed above were tested by simulations on

the KING database [7]. The number of speakers was 26, train-

ing sequences had a length of 90 seconds and test sequence

10 seconds with a total number of 400 test sequences. Prior

to feature extraction speech pauses were removed via voice

activity detection [8]. At first, the performance of 12 MFCCs

alone were compared to the combination of 12 MFCCs + 12

Delta-MFCCs as well as 12 MFCCs + 12 Gabor-Features.

The results for a varying model order O are depicted in Fig.

5. Although the consideration of Delta-MFCCs increased the

recognition rate compared to using MFCCs only, the combina-

tion with Gabor-Features achieved better results for any model

order. The combination of Gabor-Features together with Delta-

MFCCs resulted in slight improvement. The influence of the

size of the Gabor set L =12, 20 and 30 was examined and

the results for different feature combinations are plotted in

Fig. 6. Although the separability J of the classes increased

for greater sets, as it was shown in Section 2, the recognition

rates decrease. A classification of the training sequences gave

a recognition rate of 100%, which indicates overadaption on

the training data. Obviously, an optimal set size remains to

be determined. As a last experiment the speech sequences

were disturbed by ICRA noise type 1 at a noise level with

a segmental SNR [5] of 10dB. The results are depicted in

Fig. 7. While Delta-MFCCs yielded no improvement of the

recognition rate, a combination with Gabor-Features achieves

this even in noisy conditions. Further work should focus on the

optimization of Gabor-Features for different noise-conditions

and investigate the effects of noise reduction techniques.

V. CONCLUSIONS

We investigated spectro-temporal features obtained from

Gabor-Filters for the task of text-independent speaker identifi-

cation. An algorithm for parameter optimization was presented

and the features were tested via simulations on a database. In

comparison to MFCCs and Delta-MFCCs as purely temporal

features the spectro-temporal features yielded the highest

recognition rates for clean speech and also when moderate

noise was added.
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