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Iterative Source-Channel Decoding With Markov
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Abstract—We propose a joint source-channel decoding ap-
proach for multidimensional correlated source signals. A Markov
random field (MRF) source model is used which exemplarily
considers the residual spatial correlations in an image signal after
source encoding. Furthermore, the MRF parameters are selected
via an analysis based on extrinsic information transfer charts.
Due to the link between MRFs and the Gibbs distribution, the
resulting soft-input soft-output (SISO) source decoder can be
implemented with very low complexity. We prove that the inclu-
sion of a high-rate block code after the quantization stage allows
the MRF-based decoder to yield the maximum average extrinsic
information. When channel codes are used for additional error
protection the MRF-based SISO source decoder can be used as the
outer constituent decoder in an iterative source-channel decoding
scheme. Considering an example of a simple image transmission
system we show that iterative decoding can be successfully em-
ployed for recovering the image data, especially when the channel
is heavily corrupted.

Index Terms—EXIT charts, iterative source-channel decoding,
joint source-channel coding, Markov random fields.

I. INTRODUCTION

DUE to Shannon’s separation principle, source and channel
coding can be carried out independently without any loss

in performance when the block length tends to infinity. Since
even for finite block lengths, this principle has turned out to
be quite reasonable, it is generally applied to the design of
many practical communication systems. However, recently
joint source-channel coding approaches have become a good
alternative especially for the delay- and complexity-constrained
transmission of multimedia data content. One subclass of those
approaches is given by joint source-channel decoding [1], [2],
where residual source redundancy is exploited for additional
error protection at the decoder. Some approaches even do not
use channel codes at all and design the source encoder such that
the residual index-based redundancy in the resulting bit stream
alone is sufficient to provide reasonable error protection at
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the decoder (e.g., [3]–[5]). These methods have less encoding
delay and complexity and, for decreasing signal-to-noise ra-
tios (SNRs) on the communication channel, they exhibit a
graceful-degradation behavior and thus often yield similar or
better performance for strongly distorted channels than the
combination of strong source and channel encoding (e.g.,
[6]–[8]).

On the other hand, postprocessing error concealment methods
have become part of most decoders for noisy environments
and channels with erasures [9]–[12]. Techniques applicable to
blockwise transmission of single images estimate the content
of missing or damaged blocks from adjacent blocks using
smoothness constraints or Bayesian approaches [10]–[12]. A
special form of Bayesian reconstruction was introduced by
Geman and Geman in [13], who applied Markov random field
theory and the Markov–Gibbs correspondence for describing
the a priori information of images in order to obtain maximum
a posteriori (MAP) image estimates. Their method and many
follow-up schemes are suitable for general image restoration
applications and not only for error concealment in video or
image transmission.

In this paper, we propose a soft-input soft-output (SISO) de-
coder for noisy images based on Markov random fields (MRFs)
that exploits the two-dimensional (2-D) residual spatial redun-
dancy of quantized source images as well as redundancy intro-
duced by channel codes. The benefit of this source decoder is
that by applying the Markov–Gibbs correspondence, it can be
realized with very low complexity. Furthermore, using MRF
models, no source statistics must be transmitted or stored at the
decoder except for a few MRF parameters. This is in contrast to
a BCJR-style [14] decoding approach, which directly exploits
the transition probabilities of the quantized image pixels in the
decoder (e.g., as in [4], [5], and [15]–[17]). As an extension of
previous work on MRF-based decoding [18]–[20], we demon-
strate how the parameters of the underlying MRF can be se-
lected by maximizing the average bitwise mutual information
between the original quantized image data and the soft-output
data of the source decoder. We show that, in combination with
channel codes, the MRF-based SISO decoder can then be used
as constituent decoder in an iterative source-channel decoding
scheme for robust image transmission. As a further new result,
we show that the performance of the MRF-based source de-
coder in an iterative environment can be improved by applying
a high-rate block code after quantization and jointly decoding
the block code and the image while using the MRF modeling in
the source decoder.

The outline of the paper is as follows. In Section II, the un-
derlying transmission system is described. Section III presents
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Fig. 1. Model of the transmission system.

a robust MRF-based SISO source-decoding algorithm where
an iterative procedure is proposed by using the Markov–Gibbs
correspondence. Section IV discusses the resulting iterative
source channel decoder when convolutional channel codes are
used for additional error protection. In particular, the perfor-
mance of the MRF-based SISO source decoder is evaluated for
different parameter settings via extrinsic information transfer
(EXIT) charts [21], [22], which are also employed for assessing
the convergence behavior of the iterative decoding scheme. As
one of the results of this analysis, we show how the average
extrinsic information available at the MRF-based decoder can
be increased through the use of slightly redundant alphabets.
Section V demonstrates the potential of the proposed MRF
approach by presenting some performance results for the trans-
mission of images over noisy channels. Finally, the conclusions
are offered in Section VI.

II. NOTATION AND TRANSMISSION SYSTEM

Random variables (RVs) are denoted with capital letters and
their corresponding realizations with lowercase letters. Se-
quences of random variables and realizations are indicated by
boldface italics letters (as “ ” or “ ”). Furthermore, boldface
roman letters denote matrices and vectors. A vector or sequence
index is denoted with the index “ ” and a bit-index with “ .” A
lowercase denotes a probability density function (pdf), and
the uppercase a probability mass function.

The block diagram of the overall transmission system is
depicted in Fig. 1. The 2-D subband image is scanned in
order to obtain the one-dimensional (1-D) subband vector

consisting of source symbols
, . After subsequent (vector-)quantization,

the resulting realizations of the RVs are represented
with bits and thus are elements of the finite alphabet

, where a natural mapping is used for
the quantizer indexes . We can generally assume that there
are dependencies between the elements of the index vector

due to delay and complexity constraints
in the quantization stage. Then, a rate systematic
binary block encoder 1 with generator matrix is
applied to each source index . Herein, denotes the
identity matrix, and generates the parity
bit vector , where
describes the realization as an -bit binary vector. This
leads to the -bit codewords which, for convenience,
may also be written in index notation as , where

is the -bit index corresponding to the vector .
The realizations are elements of the set of all number
of possible codewords , and the corresponding processes are

1Note that a nonsystematic encoder may be used here as well.

denoted by . The concatenation of the indexes
for all leads to the index sequence , which is bit-interleaved
prior to convolutional channel encoding using the systematic
encoder with rate .

The reason for introducing the code in Fig. 1 is that after
additional (high-rate) block encoding, the minimum distance
for the resulting codewords is increased. This can be ex-
ploited in an iterative source-channel decoder setup if MRF
source model and block code are jointly SISO decoded in an
outer joint source-channel decoder, as we will show in Sec-
tion IV. Note that if the codes and were interpreted as a
serially concatenated code in Fig. 1, iterations would need to be
performed between the iterative decoder for the concatenation
of and and the source decoder. However, such a setup
reduces the performance of the overall decoder since the serial
concatenation represents a very strong component code, and, in
contrast, the source decoder (without considering ) suffers
from a poor minimum distance of one between the source in-
dexes .

After applying , we obtain the code bit sequence
with and ,

, denoting the RV for a single bit. This bit sequence
is then transmitted over a binary phase-shift keying (BPSK)
modulated additive white Gaussian noise (AWGN) channel. The
conditional pdf for the received soft bit with at the
channel output given the transmitted bit can be written as

(1)

with denoting the channel noise variance. is
the energy used to transmit each bit, and corresponds to the
one-sided power spectral density of the noise. Using conditional
log-likelihood ratios (L-values), we may express (1) also as

(2)

with the constant . The source-channel de-
coding step in Fig. 1 then provides an estimate of the input
vector .

III. MRF-BASED SISO SOURCE DECODING

In this section, the implicit residual redundancy after source
encoding and the explicit redundancy from the block code in
Fig. 1 are jointly exploited for error protection in the source de-
coder. Thus, the encoder shown in the transmission system
in Fig. 1 is assumed not to be present, and we therefore have

. Of course, the encoder is used later on in the itera-
tive decoder described in Section IV.
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Fig. 2. (a) Eight-pixel neighborhood system; (b) all ten corresponding cliques where i can be in any of the boxes.

The SISO source decoder derived in the following is based
on a MRF source model which generates a posteriori probabil-
ities (APPs) for the source hypotheses . To this end,
let us consider the eight nearest neighbors for a given subband
source index within a quantized subband image prior to trans-
mission. Such a neighborhood system is displayed in Fig. 2(a),
where all neighboring source indexes are referenced relatively to
the index under consideration. For the sake of brevity, the
quantity will also simply be written as in the following.
Furthermore, we denote the set of all source indexes belonging
to the neighborhood of as

. Since, in principle, all indexes in the neighborhood
system of Fig. 2(a) show spatial dependencies due to imperfect
source encoding the index probabilities , may be
modeled via a MRF using the well-known Markov–Gibbs cor-
respondence [13]. Using this relationship, the probability for an
element of the MRF given all other source indexes in a local
neighborhood can then be stated as [13]

(3)

where the function is called the energy function, the
quantity is called the temperature, and denotes a normal-
ization constant. We can decompose into a sum over
so-called potential functions according to

(4)

The potential functions are defined for given cliques , and the
summation in (4) is carried out over all possible cliques in the
local neighborhood or over a subset of all possible cliques.
Within a clique, every site must be in the neighborhood of all
other sites, or it is a singleton with just one site. For the eight-
pixel neighborhood system in Fig. 2(a), all associated cliques
are shown in Fig. 2(b). The first type of clique just consists of
single source indexes, the second type of cliques describes the
index and its horizontal neighbors, the third type addresses
all vertical neighbors of , and so on.

In the image restoration literature, it is common to restrict the
potential functions to certain types and to choose only a subset
of all possible cliques in order to model images (e.g., [13] and
[23]). Although such restricted models do not allow for an exact
representation of all MRFs via the selected Gibbs distribution,
they still yield very good, yet simple models of natural images.

In the following, the generalized Gaussian image model intro-
duced by Bouman and Sauer in [23] is used. This model choice
is supported by the fact that the wavelet coefficients of natural
images (except for the lowpass subband) have been found to
follow a generalized Gaussian distribution [24]. Experimental
results [18], [23] indicate that the model yields better perfor-
mance in Bayesian image restoration and soft-bit-based image
reconstruction of natural images than other known models. With
this model choice, the potential functions used for two-element
cliques are given by the absolute value of the difference of two
symbols and , raised to the power , where is a free
parameter

(5)

For , the model is Gaussian, and for , it is Lapla-
cian. When using the generalized Gaussian model during MRF-
based image restoration, the smaller the value of , the better
the preservation of sharp edges will be [23]. On the other hand,
reducing comes at the cost of less noise reduction in smooth
image areas, so that a compromise between edge preservation
and noise reduction capability must be found. A value of
around one (or slightly smaller) often yields a good match for
natural images. In [18], the value of was experimentally
found to be a good choice for soft-bit-based image restoration.

In the present paper, we carry out the parameter selection
based on an EXIT-chart analysis, where the details will be dis-
cussed in Section IV-C. In this context, we also investigate the
inclusion of three-element cliques using the potential function

(6)

which can be seen as an extension of (5). Furthermore, single-
element cliques are not used in this paper.

In order to apply the MRF model to the source decoder, we
consider the neighborhood

where denotes an already decoded estimate of
, for example from a previous maximum-likelihood (ML)

decoding of the received soft-bits at the channel output. The
APPs for the index realization based on the local neighbor-
hood at the decoder can then be written as , where

the soft-bit sequence realization con-
sists of the individual soft-bits received at the output
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of the AWGN channel. By applying Bayes’ theorem, and by ad-
ditionally considering the memoryless property of the channel
and the systematic property of , we obtain

(7)

with the normalization constant

(8)

and . The quantities and , with
, are soft-bit sequences received at the channel

output that correspond to the transmitted sequences of index and
parity bits, respectively. For brevity of notation and for use in
(5), we employ the equivalent index notations and for the
hypotheses of both the transmitted index and parity bits. Note
that deterministically depends on the index due to the
channel code . In (7), the pdf’s and rep-
resent the soft information at the output of the AWGN channel
according to

and

(9)

The conditional pdf for the th bit of the index
is given in (1) when is replaced with , where the same

holds for the th parity bit . The term in (7) cor-
responds to the conditional probability from (3) where the orig-
inal source indexes for the neighborhood are replaced by
the estimates .

Like in classical Bayesian MRF-based image restoration [13],
we use an iterative decoding approach where (7) is applied mul-
tiple times until convergence is achieved. In each iteration, the
sites within a subband are visited sequentially, following the
scanning path in Fig. 1, and updates are applied immediately.
The procedure is as follows.

1) Obtain initial estimates for the received 1-D scanned
subband image indexes by performing an ML decoding
from the received soft-bit sequence at the channel
output. Set .

2) Apply (7) with (3), (4), and (5) in order to determine the
APPs .

3) Obtain a new estimate via a MAP estimation ac-
cording to

4) Set and go to Step 2) unless the difference
between estimates and lies below a certain
threshold or a maximum number of iterations is exceeded.

The overall number of MRF decoder iterations will be de-
noted as , where a single decoder pass corresponds
to .

In our experiments, we always have observed that the above
algorithm converges to a fix point, however, convergence to a
global optimum cannot be guaranteed.

The resulting APPs at the output of

the last iteration may be interpreted as APPs

depending on all received soft-bit vectors in the local
neighborhood of . The reconstructed source values are
then estimated via a mean-squares (MS) estimation such that

(10)

where for the distortion measure , the squared Euclidean
distance is used. For this distance, the value maximizing the
reconstruction SNR is given by the conditional expectation of
the RV as

(11)

which uses the APPs computed by the source decoder. Herein,
denotes the quantizer reconstruction levels corresponding

to the source hypotheses .
The proposed MRF source decoder with APPs calculated in

the logarithmic domain has a complexity of approximately

(12)

arithmetic operations2 per source index, where denotes the
number of cliques, the maximum number of considered el-
ements in a single clique,3 and a fixed number of operations
for computing the raise to the power of . Note that from the
total number of arithmetic operations in (12), roughly a number
of operations is due to the decoding of the block
code . In contrast, the SISO source decoding approach from
[25], where horizontal and vertical correlations in the subband
image are considered as separate Markov sources, has a signifi-
cantly higher complexity of approximately

operations per source index. A similar approach has
been stated in [16], where the computed APPs depend on all
horizontal and vertical neighbors, and not only on the nearest
ones, of the actual index under consideration. In addition, in the
latter approach, in contrast to the proposed MRF-based source
decoder, transition probabilities for the source hypotheses must
be trained and stored in the decoder, which leads to an additional
demand of resources. As an example, for a typical setting using
the parameters 5 bits, 6 bits, 2 elements
per clique, 8 cliques, 1 iteration, and
10 operations, the MRF source decoder can be realized in ap-
proximately 6200 operations per source index according to (12),

2These could be either additions or multiplications.
3All potential functions with a smaller amount of elements except singletons

are considered in the evaluation of (4) as well.
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Fig. 3. Structure of the iterative source-channel decoder.

whereas the method from [25] requires over 65 000 operations
per source index.

The selection of the MRF parameters is carried out via EXIT
characteristics and will be discussed in the following section.

IV. ITERATIVE SOURCE-CHANNEL DECODING

A. Decoder Structure

An error protection carried out by using only the residual spa-
tial source redundancy and a high-rate block code may not be
enough in many transmission situations. Therefore, we assume
that the output of the source encoder is protected by a systematic
convolutional code , as it is depicted in Fig. 1. Note that this
scheme is highly similar to a serially concatenated channel code.
Therefore, we can apply an iterative decoding scheme [17], [26],
where the outer constituent channel decoder is replaced by the
MRF-based source decoder presented in Section III.

The structure of the resulting decoder is depicted in Fig. 3.
At the beginning of the first iteration, the SISO channel decoder
issues APPs for the source-encoded bits taken
from a realization of the bit-interleaved sequence .
These APPs are used to calculate the corresponding conditional
L-values . It is
shown in [27] that the L-values can be written as

for ,
. The term is defined analog to (2) for the in-

terleaved source codebits at the source decoder output. The

quantity denotes the a priori information for the bit

, and refers to the extrinsic information. After
subtraction of the a priori term and after deinterleaving, we ob-
tain the L-values , which are
used as a priori information for the SISO source de-
coder. In the following, we assume that all bits are mutually
independent. Then, the corresponding index-based probabilities
for the a priori L-values can be obtained by bitwise
multiplication of the probabilities for the bits . By inserting
this a priori knowledge into (7), we obtain the following APPs,
which are now also conditioned on the sequence , as

(13)

Herein, is a normalization constant (as in (8)) and is the
th column vector of the generator matrix .

The initial estimates for the iterative MRF-based source
decoding procedure described in Section III can be derived from
the deinterleaved L-values by first converting these
L-values into APPs for the bits . Then, by multiplying these
probabilities for all , we obtain index-based APPs from
which can be computed via an MS estimation according to
(11). Requantizing with bits yields the index .

After the iterations within the MRF-based source decoder
have been performed, the output of the SISO source decoder
corresponds to index-based APPs , where the
related bit-based L-values can be derived for as

(14)

By subtracting the source a priori information from
in (14), we finally obtain the extrinsic information
, which is used as a priori information for subsequent

channel decoding. As in all iterative decoding schemes, the con-
stituent decoders (SISO source decoder and SISO channel de-
coder in our case) are alternately run several times, until con-
vergence or nonconvergence is detected by a suitable stopping
criterion (see, e.g., [27]). We here employ a very simple crite-
rion: decoding is stopped if the average extrinsic information at
each constituent decoder, which will be defined in (15) and (16)
in the next subsection, is not increasing anymore between sub-
sequent iterations or if a given maximum number of iterations is
reached. Note that in our setup, we have two types of iterations:
the turbo-like decoding iterations and the iterations within the
MRF-based source decoder.

B. EXIT Characteristics

In order to analyze the iterative decoding process and also to
determine the appropriate parameters for the MRF-based source
decoder, an EXIT chart analysis [21], [22] is applied to the
above iterative decoder. EXIT charts visualize the input/output
characteristics of the constituent SISO decoders in terms of an
average mutual information transfer between the bits of
the transmitted index sequence and the a priori information
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(a) (b)

Fig. 4. Transfer functions T for the MRF-based source decoder (“Goldhill” test image, M = 6 bits): (a) dependency of the number of iterations N in
the source decoder (T = 1, � = 0:5, LLLLLL subband, N = 2 with four-pixel neighborhood (horiz./vert.)); (b) dependency on the size of the neighborhood
region for N = 0 (LLLLLL subband: T = 1, � = 0:5 for N = 2; T = 1:5, � = 0:2 for N = 3. LLLLHH subband: T = 3, � = 0:5 for N = 2;
T = 1, � = 0:1 for N = 3).

, and between and at the output, re-
spectively. Denoting the mutual information between two RVs

and as , we define [21], [22], [28]

(15)

(16)

Herein, the quantities and denote the average a priori in-
formationavailableat the innerdecoder (subscript )andouterde-
coder (subscript ), respectively. Likewise, and represent
theaverageextrinsic informationat theoutputsofboth decoders.4

These quantities are defined as bitwise mutual information aver-
aged over a block of bits for the inner decoder associated
with the code and bits for the source code, respectively.
However, since the source statistic obtained by the Gibbs distri-
bution is nonstationary, the bitwise mutual information in (16)
must be averaged over the whole sequence as well. The transfer
characteristics of the constituent decoders are now given as

and (17)

Note that the transfer characteristic of the inner decoder is
parameterized with the channel parameter since a priori

4Note that I contains information from both extrinsic L-values and channel
observations. However, in accordance with the literature and for the sake of sim-
plicity, I will be simply denoted as average extrinsic information.

information and channel observation are employed in the de-
coding process. For the outer constituent decoder, the a priori
information represents the only soft-input such that the transfer
characteristic here only depends on . Since the a priori
L-values are assumed to be Gaussian-distributed and
uncorrelated [21], [22], we can obtain the functions and by
applying a Gaussian-distributed random sequence with variance

and average mutual information as a priori information to
both constituent SISO decoders. The average extrinsic informa-
tion is then measured between the extrinsic L-values
or and or at the output of the constituent de-
coder. In order to obtain the EXIT chart, both functions and

can be plotted into one single diagram, where for the axes
are swapped.

C. EXIT Properties for the MRF-Based Source Decoder

In order to assess the EXIT performance of the MRF-based
source decoder, examples for the transfer function are given
for different parameter settings, where all following setups use
an 6 bits uniform quantization and no extra block code
(i.e., ). We assume a three-level wavelet decomposition
and exemplarily only consider the four subbands in the lowest
decomposition level, which are obtained after both a horizontal
and vertical lowpass filtering in the two uppermost levels. These
subbands will be denoted with the abbreviations LLLLLL, LL-
LLHL, LLLLLH, and LLLLHH, where each letter denotes ei-
ther a vertical or horizontal lowpass (L) or highpass filtering (H)
per decomposition level. Furthermore, both the potential func-
tions in (5) for and in (6) for are considered.
For the computation of the transfer characteristics, we assume
in this work that 1 bit holds. This assumption is
fairly well satisfied for the subband indexes of natural source
images due to the used natural mapping and an observed sym-
metric index distribution [24].

Fig. 4(a) depicts the resulting transfer functions for different
numbers of iterations in the MRF source decoder for
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(a) (b)

Fig. 5. Area under the EXIT function I = T (I ) for the MRF-based source decoder (LLLLLL subband quantized withM = 6 bits,N = 2,N =
0, three-level wavelet filter bank, 4-pixel neighborhood) (a) “Goldhill” test image, (b) “Barbara” test image.

the LLLLLL subband of the “Goldhill” test image, ,
and , where is plotted versus . The axes for
are swapped in order to facilitate an incorporation of the inner
code characteristic into the diagram. We can observe that the
extrinsic information at the decoder output increases for each
additional iteration, however, a saturation occurs for more than
three iterations. For different subbands, parameter settings, and
source images our experiments show a similar behavior, where
the strongest increase in extrinsic information is generally ob-
served in the first and second iterations.

Fig. 4(b) shows the dependency on different neighborhood re-
gions for the quantized “Goldhill” lowpass subband of a three-
level wavelet filter bank. It can be seen that for the LLLLLL
subband a four-pixel neighborhood with two-element cliques,
where just the horizontal and vertical neighbors in Fig. 2 are
used, leads to the largest average extrinsic information for the
point where 1 bit (i.e., perfect a priori knowledge). How-
ever, for 0.75 bits the extrinsic information is larger when
using the full eight-pixel neighborhood of Fig. 2 with all two-el-
ement cliques. Furthermore, as experiments have shown, for im-
ages containing more diagonal structures than the “Goldhill”
image, the use of diagonal two-element cliques can be bene-
ficial for all values of . For the LLLLHH subband of the
“Goldhill” image and, as experiments have shown, also for the
LLLLHL and LLLLLH subbands an eight-pixel neighborhood
and two-element cliques seem to be preferable in terms of the
EXIT behavior. In addition, it turns out that due to the different
lowpass filtering directions, horizontal dependencies in the LL-
LLHL subband and vertical dependencies in the LLLLLH sub-
band are stronger than the remaining ones such that a certain
weighting between the potential functions for different direc-
tions could be introduced. For simplicity, this approach was not
considered in the paper.

In order to find the most suitable parameters and , in the
following, we consider the area under the transfer charac-
teristic with . It has been shown in [28]
that for a binary erasure channel and a SISO APP decoder, this

area depends on the amount of inserted redundancy described
by the code rate according to for
1 bit. For AWGN channels, experiments have shown that the
approximation seems to hold [29], even when
residual index-based source redundancy is included in the com-
putation of the code rate [30]. Then, for the source encoder,
we have . The rate considers the explicit re-
dundancy due to the code , and the source code rate

states the error correction capability of the
implicit residual source redundancy, with denoting the
entropy rate of the sequence . If we now assume that these
two redundancy contributions are jointly inserted by a hypo-
thetical channel encoder with block length and code rate ,
the average word error probability can be upper bounded as

[31]. represents the random coding or
error exponent [31], which is monotonically decreasing for in-
creasing , where is the capacity of the channel. If
furthermore denotes the distortion at the decoder output due
to an -bit quantization of the image subband data and
the maximal distortion contribution due to flipping one or more
bits in the length- binary vector an upper bound for the
overall output distortion can be given as

(18)

Thus, the maximization of the area by properly choosing the
MRF parameters is directly associated with a larger lower bound
for the reconstruction SNR. This is due to the fact that a larger
amount of residual source redundancy can be exploited for error
protection.

Fig. 5 shows the area versus both parameters and ,
where Fig. 5(a) displays the results for the quantized LLLLLL
subband of the “Goldhill” test image and Fig. 5(b) for the quan-
tized LLLLLL subband of the “Barbara” test image, respec-
tively. It can be observed that a large can be obtained for a
large range of possible pairs, where the individual param-
eter ranges are quite similar for both images. Table I shows for
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TABLE I
MRF PARAMETERS T AND � CORRESPONDING TO THE MAXIMAL AREA A FOR DIFFERENT QUANTIZED SUBBANDS AND

TEST IMAGES (M = 6 bits, N = 0, THREE-LEVEL WAVELET FILTER BANK)

(a) (b)

Fig. 6. Area under the EXIT function I = T (I ) for the MRF-based source decoder for the best cases in Table I (N = 2, M = 6 bits, N = 0,
three-level wavelet filter bank, four-pixel neighborhood for the LLLLLL subband, eight-pixel neighborhood for the LLLLHH subband): (a) area versus temperature
parameter T (� = 0:5); (b) area versus parameter � (T = 1 for the LLLLLL subband, T = 2:5 for the LLLLHH subband).

different quantized subbands and test images the corresponding
parameters and leading to the largest area . We can ob-
serve that including three-element cliques gives inferior results
in all cases such that we only consider two-element cliques for
the simulations in Section V. Furthermore, for the LLLLLL
subband and results are included in Table I for both
four-pixel and eight-pixel neighborhoods, where the latter case
gives a larger value of . However, since according to Fig. 4 a
four-pixel neighborhood leads to a larger average extrinsic in-
formation for 1 bit, it may be advantageous to only
use horizontal and vertical cliques due to a potentially larger
achievable extrinsic information in the convergence point. On
the other hand, if is present, then 1 bit 1 bit
holds according to Theorem 1 below, such that it is rather prefer-
able to obtain a larger by means of an eight-pixel neighbor-

hood in order to possibly reduce the number of decoding itera-
tions until convergence and to find a good matching inner code
more easily.

Finally, for the LLLLLL band with and a four-
pixel neighborhood and the LLLLHH band with and
an eight-pixel neighborhood, respectively, Fig. 6(a) exemplarily
shows the area as a function of for a fixed . We ob-
serve that especially in the highpass subband, the exploitable
source redundancy is quite invariant to changes of . Experi-
ments have shown that this also holds for the LLLLHL and LL-
LLLH subbands. Fig. 6(b) displays the area versus where
according to Table I, a value of was chosen for the LL-
LLLL subband and of for the LLLLHH subband, re-
spectively. Here, a mismatch of by 0.2 only leads to a small
decrease of the area under the EXIT chart.
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(a) (b)
Fig. 7. PSNR versus MRF parameters T and � for E =N = 1 dB with E = E =(R R R ) (LLLLLL subband quantized with M = 6 bits, N = 2,
N = 0, three-level wavelet filter bank, four-pixel neighborhood, no outer block code, rate-2/3 RSC code as inner channel code): (a) “Goldhill” test image;
(b) “Barbara” test image.

(a) (b)
Fig. 8. EXIT chart for the outer MRF-based SISO source decoder (LLLLLL subband image, “Goldhill,” M = 6 bit quantization) and the inner BCJR channel
decoder (RSC code with R = 4=5, block length 24 579 bits including termination bits for the RSC code): (a) no block code (G = I ),N = 3; (b) with
a single parity check (G = [I 1 ], R = 6=7), N = 0.

We now verify that a large area under the MRF-de-
coder’s EXIT characteristic is directly connected with a large
peak-SNR (PSNR) after reconstruction. Fig. 7 shows the PSNR
dependency on the MRF parameters and for the LLLLLL
subband of “Lena” and “Barbara,” respectively, and the same
MRF parameters as in Fig. 5. The simulations are carried
out for 1 dB, where ; the
parameter allows for a fair comparison of systems with
different code rates. Additionally, no outer block code, but a
rate-2/3 inner recursive systematic convolutional (RSC) code
is employed, where six source-channel decoder iterations are
performed. We can see that both the plots in Figs. 5 and 7
have similar shape with a “ridge” approximately for the same
combinations of and , and thus, a large also leads to a
large PSNR. This also holds for different channel SNRs where

for larger the “ridge” of the mesh plots in Fig. 7 is wider
and narrower for smaller on the channel, respectively.

We can now combine the EXIT function for the MRF
source decoder with the EXIT function for the channel
decoder. An example is depicted in Fig. 8(a) for

dB. As channel code, a memory-4 rate-1/4 RSC mother
code taken from [32] with code polynomials

is used, where denotes the feedback polyno-
mial and the feedforward polynomials, respectively.
By puncturing this mother code a whole RCPC code family
with different rates can be constructed [32], which will be
used for the image transmission example in Section V. In this
example, this mother code is punctured to the rate
by using the puncturing pattern [1, 1, 1, 1; 1, 0, 0, 0; 0, 0, 0, 0;
0, 0, 0, 0]. In order to illustrate the decoding process, Fig. 8 also
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contains measured decoding trajectories. We can see that also
for the MRF-based outer SISO decoder EXIT charts predict
the convergence behavior quite accurately, where after three
iterations convergence is already achieved. Besides, from the
EXIT characteristics in Figs. 4 and (8a), it can be observed
that for the MRF-based decoder the achieved average extrinsic
information is always smaller than one, even when perfect a
priori information (corresponding to 1 bit) is available.
The reason is given in the following theorem.

Theorem 1: Let
denote the average extrinsic information at the output of an
(outer) SISO APP source decoder for some fixed . Let further-
more 1 bit, and let denote the minimum Ham-
ming distance between the number of -bit source code-
words of the code . Then, is a necessary and
sufficient condition for achieving 1 bit 1 bit.

The proof is given in the Appendix.
Since the source codewords , in their binary rep-

resentations, have a minimum mutual Hamming distance of
, we cannot reach 1 bit 1 bit due

to Theorem 1. Furthermore, the overall average information
available at the convergence point in Fig. 8(a) for the source
decoder, which can be obtained by information combining of

and [33], is also smaller than one. Ideally, we would
like to reach the point 1 bit 1 bit in the EXIT
chart which leads to an overall average information of one bit
at the constituent decoders and thus corresponds to an infinites-
imally small bit error rate (BER). According to Theorem 1, we
should increase , which can be achieved by appending the
parity bits of the code to the source index . Espe-
cially, if just a single parity check is used with ,
where denotes a column vector of ones, the indexes
are just extended by one parity bit, which leads to a minimum
Hamming distance between the binary represen-
tation of the codeword indexes . The result, which comes
at the expense of a slightly higher overall rate, can be ob-
served from the EXIT chart in Fig. 8(b). The EXIT function

for the MRF-based source decoder now exhibits the prop-
erty , and at the convergence point, an infinitesimally
small BER for 1.9 dB can be obtained.

V. SIMULATION RESULTS

In order to show the performance of the MRF-based source
decoder for the reconstruction of channel-encoded images,
the iterative source-channel decoder from Section IV will be
applied to a simple image transmission system in the following.
In this system the transmission model from Fig. 1 is used indi-
vidually for every subband of a three-level wavelet filter bank.
The allocation of the quantizer resolutions and the channel code
rates is carried out by means of the rate allocation procedure
proposed in [19]. This approach is based on the rate-distortion
optimal bit allocation algorithm from [34], which is modified
such that also the error correction capabilities of the channel
codes and the additional channel noise are incorporated in
the overall distortion measure. As convolutional codes

terminated RSC codes derived from a memory-4 nonrecur-
sive RCPC code family given in [32] are used, where the
corresponding rate-1/4 mother code with code polynomials

has already been utilized in
the examples of Fig. 8. By applying different puncturing pat-
terns, code rates of
can be achieved. For those subbands where is as-
signed, a memory-3 rate-1/2 RSC mother code with generator
polynomials and the puncturing pattern
[1,0,0;0,1,1] is used, which has been found experimentally. We
compare the following strategies to obtain the most important
MRF parameters and at the source decoder.

1) The MRF parameters are derived from a training set of
20 natural images, where the test images “Goldhill” and
“Lena” are not part of this set. The best parameters and

maximizing the area under the EXIT characteristic are
determined for each subband image from the training set.
The average and per subband are stored as universal
parameters in the decoder.

2) The optimal parameters and are determined for each
source image in the encoder and are transmitted as addi-
tional side information for each subband, which is allo-
cated a nonzero amount of bits. Note that due to the large
correlation between and (see Figs. 5 and 7), the amount
of bits required for transmitting these parameters may be
strongly reduced.

Furthermore, in the simulations we use an overall target bit
rate of bits per pixel (bpp) including channel
coding. It is assumed that besides the MRF parameters, the
remaining side information, such as mean of the LLLLLL sub-
band coefficients, and for each subband the quantizer scaling
factors, the quantizer bit allocations, and the channel coding
rates, are received without errors at the decoder. This may be
carried out by protecting the side information by a low-rate
(block) code. In this case, the additional overhead due to the
transmission of side information amounts up to 0.5%–1% of
the overall encoded data, where the larger figure corresponds
to the case 2 from above. In the first setup, denoted with “MRF
JSCD” in the following, a block code is not employed.
We also consider the case where a single parity check with

is used after quantization, where this method
will be referred to as “MRF JSCD SPC.” MRF parameters
derived via a training set are indicated with the suffix “Tr.”
(case 1), whereas transmitting them as side information is
denoted with the suffix “best” (case 2).

The performance of the MRF approach is compared with the
method from [15] (“2-D JSCD”) utilizing soft-input source de-
coding (SISD) [25], where a 2-D Markov model is used. The
decoding is then carried out by a modified BCJR algorithm on
the combined trellis for the Markov models. Average horizontal
and vertical index transition probabilities are estimated from a
large training set, stored in the decoder as a priori information,
and used for every subband image pixel. In the “2-D JSCD” ap-
proach, the same rate allocation strategy, the same RCPC code
family with the rate 1/4 mother code from above, and a similar
iterative source-channel decoding setup are used. Furthermore,
the same parameters as in the “MRF JSCD” case must be trans-
mitted as side information except the MRF parameters and .
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(a) (b)

Fig. 9. PSNR versus E =N (R = 0.37 bpp, three-level wavelet decomposition: (a) “Goldhill” image; (b) “Lena” image. A maximum of six source-channel
decoder iterations was used for “MRF JSCD” and of 15 iterations for the “MRF JSCD SPC” approach, respectively.

Besides, both plain MRF-based source decoding (“MRF SD”)
[18] and the “2-D SISD” approach [25] without additional pro-
tection by any channel code are also considered for comparison.
For all approaches, an MS estimation of the subband image sam-
ples is employed.

Fig. 9(a) shows the simulation results5 for the “Goldhill”
image and the approaches described above. The PSNR values
of the reconstructed images are averaged over 100 simulated
transmissions for each value, where rep-
resents the transmit energy per information bit. The (overall)
code rate for the given system is obtained as

with

(19)

Herein, denotes the overall number of subbands, the total
number of data bits in the th subband after quantization, and

, , and the corresponding source and channel
coding rates in the th subband. The source coding rate
considers the implicit redundancy due to the residual index cor-
relations in the th subband image, with describing an index
of the serialized subband image data quantized with bits. As
an example, for the “MRF JSCD” case with 1 dB,

0.37 bit per pixel, and the 512 512 “Goldhill” test
image the rate allocation yields the following subband channel
code rates and quantizer bit allocations: LLLLLL: ,

, LLLLHL: , , LLLLLH: ,
, LLLLHH: , ; the remaining sub-

bands for are not transmitted. This leads to an
overall code rate of for the whole image.

5The rate allocation algorithm being employed in these experiments only
searches for operation points on the convex hull in the rate-distortion plane [19],
[34]. Therefore, for some values of E =N , we obtain an overall bit rate being
slightly smaller than the target rateR , and the curves for the JSCD techniques
in Fig. 9 lack the smooth behavior of those for the pure MRF and 2-D SISO
source decoding approaches.

For both the “MRF JSCD” and “MRF JSCD SPC” ap-
proaches 3 MRF decoder iterations were used,
which leads to comparable source decoder complexity. The
maximum number of allowed source-channel decoder iterations
was set to be six for “MRF JSCD” and 15 for “MRF JSCD
SPC,” respectively, which is typically sufficient to achieve
convergence for low channel SNR. However, for larger channel
SNR, convergence is often achieved for a smaller number
of iterations in both the MRF-based source decoder and the
source-channel decoder.

We can observe from Fig. 9 for both the “Goldhill” [Fig. 9(a)]
and “Lena” [Fig. 9(b)], test images using universal MRF pa-
rameters and derived from a training set in the decoder
almost yields the same PSNR values as transmitting the best
parameters separately for each image as side information. In
Fig. 9(a), the “MRF JSCD SPC” techniques achieves a PSNR
gain between 0.2 and 2 dB over the “MRF JSCD” approach for

2 dB 0 dB. Especially for low-channel SNR,
the latter scheme also yields up to 1–2 dB larger PSNR com-
pared with the “2-D JSCD” technique which, besides the larger
memory demand, also exhibits a larger source decoding com-
plexity of compared with for the MRF-based
schemes as stated in Section III.

A possible reason for the improved performance could be that
the proposed method employs a neighborhood which, except
for the LLLLLL subband, completely surrounds the pixel under
consideration. In contrast, the “2-D JSCD” technique considers
a smaller neighborhood that only comprises the horizontally and
vertically adjacent pixels in each subband image. The advan-
tage of the MRF-based approaches may also be observed by
comparing the “MRF SD” with the “2-D SISD” method, where
for low-channel SNR, the MRF-based decoder outperforms the
“2-D SISD” approach.

Compared with the plain source decoding approaches, we
can see from the simulation results that in the best case we
can gain up to 4 dB in PSNR for the same target rate by
adding explicit redundancy from channel codes in combina-
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(a) (b)

Fig. 10. Reconstructed “Goldhill” image example (R = 0.37 bpp, three-level wavelet decomposition, “MRF JSCD SPC, best,” N = 1): (a) E =N =

1 dB (overall code rateR = 0.45, equivalent to a codebit error rate of 14.4% on the channel), PSNR: 26.38 dB, six source-channel decoder iterations; (b)E =N =

�2 dB (overall code rate R = 0.27, equivalent to a codebit error rate of 28% on the channel) PSNR: 25.29 dB, 15 source-channel decoder iterations. E contains
the rate contribution from both the channel codes and the residual source redundancy.

tion with a joint rate allocation at the encoder and an iterative
source-channel decoder. For the “Lena” test image in Fig. 9(b),
similar observations can be made, where we can see that the
largest gain of the “MRF JSCD SPC” approaches can again be
obtained for strongly distorted channels. Examples of the good
reconstruction quality for highly corrupted channels are given
for the “Goldhill” image in Fig. 10.

VI. CONCLUSION AND FINAL NOTES

We have derived a SISO source decoder that is able to ex-
ploit, e.g., the implicit 2-D residual source redundancy inherent
in quantized subband images. The novelty is that the source sig-
nals are modeled using Markov random fields, and due to the
Markov–Gibbs correspondence the computation of a posteriori
probabilities serving as soft outputs can be made very resource-
and complexity-efficient. In conjunction with channel coding,
the proposed source decoder can be used as an outer constituent
decoder in an iterative decoding scheme. However, in this plain
form, such a scheme suffers from the fact that the source decoder
is not able to deliver the maximum possible extrinsic informa-
tion at its output even when perfect a priori information is ap-
plied. As a remedy, we suggest to apply a high-rate block code
to the quantized source indexes and jointly decode the MRF and
the block code in the source decoder. With this method, a min-
imum distance larger than one between the source codewords
is achieved, and it is shown that this leads to an increased per-
formance of the iterative decoder. As an example, we have ap-
plied the proposed source-channel decoding technique to robust
image transmission over very noisy AWGN channels, where
PSNR values of over 25 dB can still be obtained for a channel
SNR of 2 dB in .

Finally, we note that the presented MRF-based source
decoder may also be used for exploiting the 2-D spatial re-
dundancy when additional variable-length source encoding is
present. This setup then represents a triple serial concatenation
of implicit 2-D source redundancy (and possibly the high-rate
block code ), the variable-length code (VLC) source en-
coder, and the channel encoder . A suitable decoder may
then, on the one hand, carry out index-based iterations between
the MRF-based source decoder and an index-based VLC SISO
source decoder (see, e.g., [35]), and on the other hand, iterate
between SISO channel and VLC source decoder. Furthermore,
the proposed MRF source decoding approach can not only be
applied to 2-D (subband) images; it may also be used to exploit
2-D parameter correlations, e.g., from source codec parameters
which exploit both interframe and intraframe redundancy.

APPENDIX

PROOF OF THEOREM 1

The average extrinsic information at the output
of the (outer) source decoder can be expressed as

(20)

with the abbreviations and .
Furthermore, for the sake of clarity, we will omit the time index

in what follows.
In [28], it is shown that, when an outer SISO decoder emitting

true APPs is used in a serially concatenated scheme, the mutual
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information can also be written with the assumption
1 bit as

(21)

where describes
the received soft-bit sequence at the output of the a priori
AWGN channel6 with noise variance and capacity .
The L-values at the a priori channel output can be identified
as in Fig. 3. In the sequel the subscript “ ” will
indicate that the th bit is excluded from a sequence or from all
elements in a set.

The conditional entropy in (21) may now be fur-
ther expanded as

(22)

with

(23)

With , the following properties for can be stated
[22]: 0 bit, 1 bit.
The latter case for yields

(24)

where denotes the Dirac impulse. With
for , we now define the se-

quences and
. Inserting (24) in (22) with (23)

yields

(25)

6For the modeling of the a priori information, please see [21], [22], and [28].

Necessary Condition: In order to achieve 1 bit
for , it follows from (20) and (21) that

0 bit for all . When we
assume that for all , this can only be achieved
by in (25). This is satisfied if the index ,
where the bit is replaced by the bit , does not
correspond to a codeword. Since is a linear code, we only
need to consider the all-zero codeword .
In order to achieve , we demand to hold
for the index with Hamming weight
for all . However, this necessarily leads to

for the code .
Sufficient Condition: If is given, we have

in (25), which results in 0 bit for all
. With (20) and (21), this leads to 1 bit.
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