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ABSTRACT

This paper addresses the usability of channel shortening
equalizers known from data transmission systems for the
equalization of acoustic systems. In multicarrier systems,
equalization filters are used to shorten the channel’s effec-
tive length to the size of a cyclic prefix or the guard inter-
val. In most data-transmission applications, the equalizer
succeeds the channel. In acoustic systems, an equalizer is
placed in front of a playback loudspeaker to generate a de-
sired impulse response for the concatenation of the equal-
izer, a loudspeaker, a room impulse response, and a ref-
erence microphone. In this paper, we modify the channel
shortening paradigm and show that shaping the desired im-
pulse response to a shorter reverberation time is more ap-
propriate for acoustical systems than exactly truncating it.

1. INTRODUCTION

Equalization of an acoustic system is usually carried out on
the basis of the following setup: a filter for listening room
compensation (LRC) is placed in the signal path in front of
a loudspeaker. The goal is to reduce the influence of the
succeeding room impulse response (RIR) in order to obtain
a signal y[n] at the position of a reference microphone that
is hardly distinguishable by a human listener from the sig-
nal s[n] in front of the equalizer [1]. The basic setup is
depicted in Fig. 1. c[n] is the finite-length RIR and h[n]
denotes the finite-length equalizer. Their z-transforms are
given by C(z) and H(z), respectively. In general, C(z) is

s[n] x[n] y[n]
h[n] c[n]

Fig. 1. Single-channel setup for listening room compensa-
tion. c[n] is the room impulse response and h[n] denotes the
equalizer preceding the loudspeaker.

a mixed-phase system, having zeros inside and outside the
unit circle. Therefore, only its minimum-phase component
can be inverted by a standard causal IIR filter [2]. More

recent proposals [3] stress the importance of equalizing the
remaining allpass component, too.

Finite-length equalizers are designed with the aim of
minimizing the squared error between the concatenation
of c[n], h[n], and a given target system [4, 5]. Usually,
a bandpass-filtered version of a delayed impulse serves as
such a system. In order to compare the least-squares equal-
izer with the novel impulse shaping approach, we briefly
review its derivation in Section 2.

A more relaxed requirement than choosing a bandpass
weighted impulse as the target system can be found in psy-
choacoustics: here one uses, for example, the D50-measure
for intelligibility of speech, which is defined as the ratio
of the energy within 50 ms after the first peak of a RIR
versus the complete impulse response’s energy [6]. Thus,
by choosing a target system with an optimized impulse re-
sponse of 50 ms duration, we can directly maximize the
D50-measure. The appropriate procedure to maximize the
energy in a certain region of a desired impulse response has
been proposed by Melsa et al. [7] for the application with
a discrete multitone transceiver (DMT) and further inves-
tigated in [8]. In Section 3, we summarize this method.
Section 4 introduces two major modifications that make the
technique more appropriate for the shortening of acoustic
impulse responses.

Notation. Vectors and matrices are printed in boldface.
The superscripts T , ∗, and H denote transposition, complex
conjugation, and Hermitian transposition, respectively. The
asterisk ∗ denotes convolution. The discrete time index is
denoted by n. The operator diag{·} turns a vector into a
diagonal matrix. δ[n] denotes a discrete impulse.

2. LEAST-SQUARES EQUALIZATION

In traditional least-squares equalization for LRC, a finite-
length filter h[n] precedes the RIR c[n]. The equalizer is
designed to minimize the squared error between the con-
catenation h[n]∗c[n] and a target system g[n] that is delayed
by n0 taps. The filter g[n] is typically chosen as a bandpass
filter. Fig. 2 shows the according setup.
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s[n] y[n]

e[n]

h[n] c[n]

z−n0 g[n]

Fig. 2. Setup for listening room compensation using a least-
squares equalizer. c[n] is the room impulse response and
h[n] denotes the equalizer preceding the loudspeaker.

The error signal e[n] can be expressed as

e[n] = sT [n]Ch − sT [n]gn0 (1)

with

s[n] = [s[n], . . . , s[n − Lh − Lc + 2]]
T

, (2)

gn0 = [ 0, . . . , 0︸ ︷︷ ︸
n0

, g[0], . . . , g[Lg − 1], 0, . . . , 0︸ ︷︷ ︸
Lh+Lc−1−Lg−n0

]T .

(3)

In these expressions, Lh and Lc are the lengths of the equal-
izer and the RIR, respectively. Lg represents the length of
the target system, which is usually a bandpass filter. The
(Lh + Lc − 1 × Lh)-dimensional convolution matrix C is
made up by the RIR c[n]. The equalizer that minimizes the
error signal’s power E

{
e2[n]

}
for a white-noise input s[n]

is given by

h =
(
CHC

)−1

CHgn0 . (4)

3. IMPULSE RESPONSE SHORTENING

We choose a formulation used by Arslan et al. [9]: a desired
concatenated impulse response of equalizer and RIR can be
expressed by

dd = diag{wd}Ch (5)

in vector form. wd is a vector that contains ones in the
desired region and zeros outside. The convolution matrix
C and the equalizer’s coefficient vector h are defined in the
same way as in Section 2. Accordingly,

du = diag{wu}Ch (6)

with

wu = 1[Lc+Lh−1] − wd (7)

represents the undesired part of the concatenated impulse
response. As a side condition, this part’s energy is kept con-
stant while the energy of dd is maximized. 1[Lc+Lh−1] is
a vector containing the indicated number of entries, which

are all ones. In the following, the matrices A and B are
assembled in the same way as in [7]:

dH
u du = hHCHdiag{wu}2 Ch = hHAh, (8)

dH
d dd = hHCHdiag{wd}2 Ch = hHBh. (9)

One first modification for acoustic systems becomes neces-
sary when we take into account the loudspeaker’s limited
playback capabilities at very low and very high frequencies.
Therefore, we constrain the maximization procedure to a
broad bandpass area. First, we apply the bandpass g[n] of
Section 2 to the RIR:

cBP[n] = c[n] ∗ g[n]. (10)

Consequently, we assemble a (Lh + Lc + Lg − 2 × Lh)-
dimensional convolution matrix CBP on the basis of cBP[n].
We obtain

BBP = CH
BP

diag{wBP,d}H
diag{wBP,d}CBP. (11)

Compared to wd, wBP,d is Lg −1 elements longer; �Lg/2�
zeros are prefixed to compensate the bandpass’ group delay.
A is not modified. Finally, the optimum equalizer, hopt, for
maximizing the energy in a certain region is the solution of
the generalized eigenvalue problem

BBPhopt = Ahoptλmax (12)

with λmax being the largest eigenvalue and hopt being the
corresponding eigenvector.

The impact of channel shortening applied to a typical
RIR can be observed in Fig. 3. The parameters are as fol-
lows: The RIR has been simulated with a reverberation
time of τ60 = 400 ms using Allen and Berkley’s image
method [10] at a sampling frequency of 8 kHz. Its length has
been truncated to Lc = 4000 taps. The equalizer contains
Lc = 2000 coefficients; the maximization has been carried
out for taps 149 to 548. The filter g[n] has been designed
as a linear-phase bandpass with Lg = 41 and -6 dB fre-
quencies at 200 Hz and 3600 Hz, respectively (Matlab call
fir1(40, [0.05 0.9])).

The first peak of the RIR occurred at tap 146 – there-
fore, we tried to maximize the succeeding 50 ms. Fig. 3
shows the squared impulse responses of the original and the
shortened systems. As we can see from Fig. 3, the impulse
response shortening is quite effective for acoustic channels.
However, informal listening tests showed that the energy
concentration around tap 3000 results in an audible echo.

Fig. 4 shows the magnitude frequency responses of the
original RIR and its shortened version. We have to note that
the frequency response of the shortened filter exposes a very
distinct peak near ω = π/2. This leads to an unacceptable
amount of audible distortion.

Additional measures have to be taken to cope with both
the late echo and the peaky spectral response. Both prob-
lems will be addressed in the following section.
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Fig. 3. Squared impulse responses of the original and the
shortened systems (i.e., c2[n] and (h ∗ c)2[n]). The dash-
dotted line describes the original RIR c[n]; the solid one is
the shortened response h[n]∗c[n] with energy maximization
between taps 149 and 548.
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Fig. 4. Magnitude frequency responses. The dash-dotted
line describes the original RIR; the solid one belongs to the
shortened overall system.

4. MODIFICATIONS FOR ACOUSTIC RESPONSES

4.1. Temporal Aspects

One goal in the design of an impulse response shortening
procedure is to avoid audible late echoes. Another aspect is
to preserve the general shape of a natural RIR, which usu-
ally decays exponentially with time. Therefore, it would be
desirable not to achieve a temporal envelope like the equal-
ized one in Fig. 3, but one that decays more quickly than the
original RIR and thus yields a shorter reverberation time.

0 1000 2000 3000 4000 5000
0

0.5

1

Discrete Index n

w
d
[n

]

rectangular max. window
exp. decreasing max. window

Fig. 5. Maximization windows as functions of time.

One stage for modifications is the maximization win-
dow wd. The solid line in Fig. 5 shows the maximization
window that has been used to produce Fig. 3. As an alterna-
tive we have tried an exponentially decaying window with
a reverberation time that was just a little shorter than the
original one. Equation (13) describes the design rule for the

novel window:

wd[n] =

{
0 for 0 ≤ n ≤ n0 − 1

10q(n−n0) for n0 ≤ n
(13)

where the factor q has been chosen heuristically as
q = −3 · 10−5.
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Fig. 6. Squared impulse responses of the original and the
shortened systems. The solid line is produced using an ex-
ponentially decaying window.

Fig. 6 shows the power delay spectra of two equalized
responses. The original RIR has already been shown in
Fig. 3. The solid line results from the application of an ex-
ponentially decaying maximization window. The parame-
ters for its design were chosen according to the paragraph
above. One can see that the equalized response decreases
more steeply than the RIR but not as steeply as using a rect-
angular window. However, we can observe a less exposed
echo around tap 3000. Hence, the technique can appropri-
ately be described as impulse response shaping rather than
impulse response shortening.

4.2. Spectral Aspects

Simulation results have shown that the extent of the spec-
tral peak shown in Fig. 4 is not crucially affected by the
choice of the maximization window as discussed in Section
4.1. Therefore, we have to introduce an additional measure
to overcome this problem: we propose to post-equalize the
shaped response h[n] ∗ c[n] using a prediction error filter
f [n] that is based on a one-step linear predictor p[n] with
a relatively short impulse response. Fig. 7 displays the ac-
cording setup.

The error signal

ep[n] = s[n] ∗ h[n] ∗ c[n] ∗ f [n] (14)

is weighted by a bandpass filter g[n]. This measure is taken
to focus the predictor’s performance to the spectral area of
interest. The bandpass is the same that is used with the least-
squares equalizer and with the weighting in the impulse-
response shortening procedure (see equation (10) for de-
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s[n]
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f [n]
g[n]

ep[n] eBP[n]

Fig. 7. Signal model of a linear predictive post-equalizer.
A bandpass filter g[n] is used to spectrally weight the initial
error signal ep[n].

tails). The final error signal can be expressed as

eBP[n] = g[n] ∗ ep[n]

= sT [n] (GcEQed − GCEQed,−1p) (15)

with

s[n] = [s[n], . . . , s[n − Lg − Lc − Lh − Lp + 3]]
T (16)

g = [g[n], . . . , g[n + Lg − 1]]
T (17)

cEQed[n] = h[n] ∗ c[n] (18)

cEQed = (19)

[cEQed[n], . . . , cEQed[n + Lc + Lh − 2], 0, . . . , 0]︸ ︷︷ ︸
Lh+Lc+Lp−1

T
.

CEQed,−1 is a (Lh +Lc +Lp−1×Lp)-dimensional convo-
lution matrix made of the preceding nonzero part of cEQed

with an additional first row of zeros to take into account the
delay of one sample (see Fig. 7). The convolution matrix G
possesses the size (Lg + Lc + Lh + Lp − 2)× (Lh + Lc +
Lp − 1). Lp and Lg are the lengths of the prediction filter
and the bandpass, respectively. The calculation of the vector
p that minimizes the target function E

{
e2

BP
[n]

}
leads to

p =
(
CH

EQed,−1
GHE

{
s∗[n]sT [n]

}
GCEQed,−1

)−1

CH
EQed,−1

GHE
{
s∗[n]sT [n]

}
GcEQed, (20)

and finally

f [n] = δ[n] − p[n − 1]. (21)

The actual design is usually carried out under the assump-
tion of a white and stationary excitation signal s[n]. In that
case, the inner correlation matrices can be cancelled out.
The bandpass causes a “don’t care” region outside of its
cut-off frequencies. This results in a “bathtub-like” spec-
tral shape of the signal ep[k]; eBP[k] is spectrally flat. One
further bandpass can be applied to eBP[k] in order to gener-
ate a bandpass-weighted signal at the loudspeaker.

5. SIMULATION RESULTS

For the following simulation results we have used the same
parameters as for the generation of Fig. 6. We have set

the post-equalizer’s length to Lp = 40; the bandpass has
already been specified before. Consequently, the post-
equalizer’s overall-length amounts to 120. Fig. 8 illustrates
the impact of the linear predictive equalizer on the shaped
response. We can conclude that the post-equalizer weakens
the shaping filter’s impact.
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Fig. 8. Squared impulse responses of the original and two
shortened systems. The dashed line describes the equalized
RIR in front of the post-equalizer, the solid one is obtained
at its output.

Fig. 9 contains the magnitude frequency responses for
the filters whose power delay spectra were shown in Fig. 8.
From this figure we see that the post equalizer could com-
pletely remove the spectral peak. However, the resulting
frequency response exposes a similar amount of gaps as the
original RIR.
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Fig. 9. Magnitude frequency responses. The dash-dotted
line describes the temporally shaped spectrum in front of
the post-equalizer, the solid one is obtained at its output.

Finally, we compare the novel impulse response shap-
ing approach to the widely-used least-squares equalizer ac-
cording to Section 2. The equalizer’s length was chosen to
Lh = 2000. Fig. 10 contains previously shown functions
in comparison with the equalized response using a least-
squares approach. As with the impulse response shortening
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procedure, fast initial decay is achieved at the cost of late
echoes.
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Fig. 10. Squared impulse responses of the original and
two shortened systems. The dashed line describes the least-
squares equalized RIR, the solid one is the shaped response.

In the spectral domain, the least-squares equalizer can
compensate more small gaps than the novel shaping ap-
proach. However, the least-squares equalizer’s spectral en-
velope exposes much wider gaps (see Fig. 11).
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Fig. 11. Magnitude frequency responses. The solid curve
was produced using a least-squares equalizer, the dashed
one belongs to the novel shaping approach.

Informal listening test confirm the enhanced equaliza-
tion results of the impulse response shaping technique, es-
pecially in the time domain. The clearness of speech could
be enhanced; late echoes can be neglected compared to im-
pulse response shortening and least-squares equalization.
The perceived impression is that the shaping technique
makes the listening room larger and less reverberant at the
same time – sound samples are available for download at
[11].

6. CONCLUSIONS

The investigations have shown that channel shortening tech-
niques known from data transmission can be successfully
applied to room impulse responses. However, to be suit-
able for audio applications, this involves some extensions
to the known approaches. We proposed to use an adjusted
maximization window during the filter design. The result-
ing equalized response is post-equalized using a low-order
linear predictive filter. Third, we have introduced bandpass
weighting for both equalizer stages to take into account the
loudspeaker’s limited transmission capabilities at very low
and high frequencies. The novel equalizer shows enhanced
results compared to the commonly used least-squares equal-
izer. An open topic remains the design of the adjusted maxi-
mization window. In the present work, the desired lower re-
verberation time has been chosen heuristically and the orig-
inal reverberation time had to be known.
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