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Abstract— Object tracking is one of the key challenges for
perception systems of autonomous vehicles. Recursive Bayesian
state estimation can be used to obtain object tracks. Both the
measurement association and the object update within such
Bayesian filters rely on sensor measurement models. These
models offer an approximation of the expected sensor values
that can be error-prone due to a mismatch between model and
reality. The discrepancy is caused by the limited descriptive
capacity of measurement models since sensor measurements
are highly object and situation dependent.

We address this problem in a data-driven approach by using
Deep Neural Networks (DNNs) to learn situation dependent
sensor measurement models. In detail, the DNN acts as a
virtual sensor that uses current sensor measurements to regress
necessary corrections of predicted object states. It can be
directly plugged into existing tracking frameworks, substituting
the previously hand-modeled association and update steps
during Bayesian Filtering. We apply the proposed DNN-based
measurement models to the problem of vehicle tracking using
radar data in an Extended Kalman Filter setup and compare it
to a classical closest reflex and an L-shape measurement update
model. Extensive evaluation on a real-world dataset shows that
our model improves performances significantly compared to
state of the art methods.

I. INTRODUCTION

Driverless vehicles require an accurate understanding of
their surroundings. Therefore, they need to perceive all rel-
evant properties of the stationary and dynamic environment.
Due to their measurement principles, radar sensors provide
accurate distance and relative velocity information of every
single reflection perceived in the environment. Moreover,
radar sensors are robust to different weather conditions.
Consequently, many current driver assistance systems rely
on radar sensors to describe dynamic traffic participants.

In order to model traffic participants, object tracks consist-
ing of a time-series of object states are widely used. They can
be obtained via recursive Bayesian state estimation, e.g. us-
ing Kalman Filters (KF) [1]. For each object hypothesis, the
object state is first predicted to the current time frame using
object motion models. Afterwards, new measurements are
associated to the object and used to update the object state.
For that matter, measurement association and object update
rely on sensor measurement models. One key challenge of
the update is to estimate the object state using measured
radar reflexes without knowing their origin on the extended
object body.

IEngineering Cognitive Systems, Automated Driving, Chassis Systems
Control, Robert Bosch GmbH, 71229 Leonberg, Germany

2 Advanced Autonomous Systems, Corporate Research, Robert Bosch
GmbH, 71272 Renningen, Germany

3Institute for Signal Processing, University of Liibeck, Germany
Firstname.Lastname@de.bosch.com

Tracked Objects

&

Measurement
State & Covariance

Fig. 1: Association and measurement update using learned sen-
sor measurement models within a classical Kalman Filter
setup. Yellow stars: measured radar reflexes; pink star: non-
associated radar reflex; blue box: state of the target vehicle.
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We address this problem via a data-driven object tracking
approach by training a Deep Neural Network (DNN) to learn
situation dependent sensor measurement models. The DNN
uses measurements to regress correction values of predicted
object states as illustrated in Figure 1. Hence, it acts as a
virtual sensor transforming distributed measurements into a
single meta-measurement. We propose a data-driven solution
for both the measurement’s mean and covariance. Due to the
modular nature of this approach, the model can be directly
plugged into existing tracking frameworks, thereby substi-
tuting the previously used association and update steps in
Kalman Filtering. We apply the learned sensor measurement
models to the problem of vehicle tracking using radar data.

II. RELATED WORK

Correcting object states using multiple measurements per
timeframe is a twofold process. First, new measurements
need to be associated to a given object. Second, this set of
reflex samples needs to be related to the object’s state. Sensor
models serve both purposes by providing an approximate
mapping between real-world objects and sensor measure-
ments while taking sensor characteristics into account.

A thorough review of existing sensor models is provided in
[2], where the authors differentiate between models defining
a set of points on a rigid body [3], [4], [5] and models ap-
proximating the spatial distribution of measurements [6], [7],
[8]. Sensor models of both categories may rely on physics-
based modeling [9], [10], [11] or more recent machine-
learning based approaches [12], [13].

The general thought of physics-based modeling is to cal-
culate the propagation of electromagnetic waves in complex
environments. Set of points and spatial sensor models relying



on these ray-tracing models incorporate prior knowledge in
form of chosen reference points or the choice of analytic
functions to describe likelihood values across space.

Due to the object- and situation-dependent nature of sensor
measurements, their models can only offer approximations.
It is likely to assume that hand-designed models are not able
to fully exploit the information offered by the set of raw
measurements. One way to overcome manual engineering
is to use data-driven solutions, namely machine learning
models. Berthold et al. [14] conducted first experiments
on the modeling capacity of radar data for contour esti-
mation. They accumulated radar measurements to model
the spatial distribution of locations given a certain target
vehicle with different orientations and visually proved its
capabilities. A first machine learning approach of automotive
radar simulation was conducted by Wheeler et al. [12]. They
constructed stochastic radar models trained on measurements
for simulation purposes. These models could be used for
association within a standard tracker. However, it is non-
trivial to exploit the information of distributed measurement
samples to update extended objects. Scheel et al. [13] aimed
to relate measurements to the vehicle state using conditional
density functions by learning a variational Gaussian mixture
model. The model outperformed a hand-designed approach
within a finite set statistics based multi-object tracker.

For the subsequent measurement update step, a distributed
set of associated reflex samples needs to be related to
the object’s state. Classical approaches dealing with spread
measurements either cluster the measurements out of the
distributed samples to update the object or correct for each
measurement separately [2], [15]. Alternatively, L-shapes or
boxes can be fitted to the distribution [16], [17]. The latter
is related to object detection for which a vast amount of
machine learning approaches exist [18], [19]. Moreover, such
detectors can provide uncertainty estimates, which can be
beneficial in tracking applications [20], [21], [22].

To the best of our knowledge, there is currently no learned
sensor measurement model that fulfills both measurement
association and update for spread reflexes. The proposed ap-
proach can be directly incorporated into existing KF trackers,
substituting the available hand-designed models. The size of
the models is comparatively small since it only needs to learn
a subtask within the KF procedures.

In the following paragraph we discuss how to integrate our
DNN approach into a Kalman Filter framework. Please note
that object lifecycle management is not within the focus of
this paper. It rather remains within the scope of the employed
overall tracking framework.

ITII. TRACKING WITH LEARNED SENSOR
MEASUREMENT MODELS

A. Kalman Filter based Tracking

Kalman filtering can be divided into two steps [23]: First,
the object state xp_; at time step k& — 1 is propagated in
time using process functions, also called motion models f,
control input uz_1 and the Gaussian process noise wy_1 with

normal probability distribution p(wg_1) ~ N(0,Qx_1) and
process noise covariance (1

Xy, = f(@r—1, Uk—1, Wg—1)- (D
For nonlinear motion models f, the extended KF linearizes
around the current mean and covariance [1]. The covariance
matrix P_ of the predicted state x, is estimated using the
Jacobian Ay, of f with respect to x and the Jacobian W}, of
f with respect to w

P = APy 1 A + Wi Qi W 2

Secondly, the predicted state z, and its covariance P,
are corrected using sensor measurements zx and their noise
vk, which is normally distributed according to p(vg) ~
N (0, Ry;) with measurement noise covariance Ry. Measure-
ments first need to be associated to the predicted objects
and then used to correct their states. The association step
is traditionally handled outside the KF. Next, the actual
measurement update of the KF update step uses sensor mea-
surement models h, since object states need to be mapped
to the measurement in order to determine the offset. The
complete update step with the Jacobian Hy, of h with respect
to « and the Jacobian Vj, of i with respect to v is given by

Ky =Py HI(H.Py HY + ViRV, ()
Tk =, + Kp(z — h(z ,vr)), 4)
P =(I - KyHy)Py. 5)

The calculated matrix K}, (3) is the so-called Kalman gain,
that minimizes the a posteriori error covariance Py (5) and
gives a measure to what extent the predicted state x, is
corrected using the measurements zj (4).

B. Learned Sensor Measurement Models

In case of spread measurements along an extended target
object each measurement has to be related to the object state,
usually by determining associated reference points on the
object. Alternatively, associated measurements can be trans-
formed into a single meta-measurement that represents the
object state. This single meta-measurement is subsequently
fed into the update step. In order to avoid hand-crafted
solutions we suggest to learn sensor measurement models
that have the capacity to fulfill both the association and the
measurement update step and implicitly learn all object and
situation dependencies directly from data as illustrated in
Figure 1. The models receive current sensor measurements
normalized according to the state prediction as an input and
yield state corrections of the predicted objects as an output.

These learned sensor models hence can be described as
virtual sensors, that map measurements into another ab-
stract dimension. Thereby, both the association of distributed
measurements as well as the transformation into a meta-
measurement is implicitly solved by the trained neural net-
work model m

2 = m(z). (©6)
The model can be simply plugged into any existing KF
tracker’s measurement update step

T =T, + Kk(z,?NN — hmem(m;,vk)). @)
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Fig. 2: Grid Net: Convolutional neural network based on an input
grid. Reflexes are accumulated into a spatial grid that
includes reflex attributes in its depth. A total number of
three refined reflex attributes are used. The grid input is
subsequently processed by convolutional (conv) and fully
connected (fcn) layers.

Consequently, the sensor measurement function A¢@, that
maps the object state to the meta-measurement space, can be
a constant or even an identity mapping due to the outputs of
the virtual sensor m.

To derive measurement covariance matrices [ of the
virtual neural network sensor we divide the sensor field of
view (FoV) into a polar grid and estimate I? for each grid cell
individually. Hence, we apply measurement noise matrices,
which are azimuth and distance dependent. In detail, noise
matrices are estimated for each grid cell by calculating the
deviations of the network model’s prediction 22V to the
ground truth gty

RPNN — Cov[zPNN — gt,]. (8)

Similar to the measurement model the trained covariance

matrices can be directly included into the existing tracker
resulting in the modified measurement update equations

Ky =P, HN(H.P; HY + ViREVYVE ™ (9)
Tp _ ‘rk +Kk( DNN hmefa(x];7vk)) (10)
Py = (I — KyHy)P, (11

The general setup is usable for all association and update
tasks and is directly applicable to linear, extended and
unscented KFs.

C. Network Architectures

Different network architectures are used to learn the sensor
measurement models, namely a convolutional neural network
based on a grid input (Grid Net) as depicted in Figure 2 and
a point processing network architecture based on adaptive
lists (Point T-Net) shown in Figure 3.

The Grid Net’s input is a square spatial grid of 10 m width
and length with a cell size of 0.25 m by 0.25 m centered at the
predicted object position. The depth of the matrix contains a
processed subset of reflex attributes, namely radial velocity
and radar cross section of the measured reflex. As soon as
multiple measurements fall into the same grid cell, only the
attributes of the strongest reflex are used. The number of
reflexes measured in each cell of the spatial grid is encoded
as their sum. The network consists of three convolutional and
one fully connected layer, which have been optimized using
Bayesian hyperparameter optimization with Hyperband [24].
In total, the network holds 45,316 trainable parameters. The
count of neurons in the output layer determines the number
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Fig. 3: Point T-Net: Point processing network based on adaptive
list input. The input list varies in length and depends on
the number of reflexes n per timeframe. Each element of
the list is a vector that contains all ten measured raw reflex
attributes. The adaptive list input is subsequently processed
by convolutional (conv), maxpooling (maxpool) and fully
connected (fcn) layers.

of state attributes the network regresses. In principle, a bigger
number of attributes could be learned, which would increase
the number of output nodes. In our case, the x and y position
of the target vehicle’s center and the orientation of the target
car is learned.

The proposed Point T-Net architecture is inspired by the
T-Net which was published as a transformation network
within the PointNet introduced by Qi et al. [25]. Its early
layers learn independent features per radar reflex, which are
subsequently fused to a global feature vector describing the
entire scene. This global feature vector is used in subsequent
fully connected layers to regress transformation parameters.
Instead of learning transformation parameters, our network is
trained to directly predict state corrections. Like in the Grid
Net architecture, the target vehicle’s center point in x and y
direction and its orientation is learned. In total, the network
holds 330,755 trainable parameters.

IV. EXPERIMENTAL SETUP

The introduced measurement updates with data-driven
models need to be trained using real-world radar data. This
section describes the dataset, training setup, baseline methods
and metrics, which were used to train and evaluate learned
sensor measurement models.

A. Dataset

We recorded a dataset utilizing one recording vehicle and
one target vehicle equipped with Differential Global Posi-
tioning System (DGPS) sensors that give precise information
of the position, orientation and velocity of the cars. The
measured position is accurate within a 2cm error interval
and the orientation is accurate within 0.005 degrees. The
DGPS system provides the target object state at all times and
is used as ground truth for training the network. Moreover,
the recording vehicle was equipped with a front-facing mid-
range radar to perceive its environment. In total, we recorded
more than 4,000 sequences of 5 seconds of highly dynamic
scenes on a test track. An additional test sequence of 50
minutes covering driving on rural and urban roads is used to
further evaluate our approach in a real-world setting.

B. Training Data Generation and Setup

The objective of the learned sensor measurement model
is to correct predicted object states given incoming mea-
surements. It thereby implicitly also solves the association
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Fig. 4: Artificial training data generation process. Ground truth:
blue box; radar measurements: blue stars; artificial offset:
dashed line box; offset shift/correction: purple arrows.

of reflexes to the tracked vehicle. Labels for the individual
radar reflexes are not available. To generate training data,
we add artificial offsets to the object state ground truth in
order to simulate possible erroneous KF state predictions. For
each training step, the offsets are sampled from a uniform
distribution in the range of [-2, 2] meters for both the x and
y dimensions and from a uniform distribution in the range of
[-22.5, 22.5] degrees for the orientation attribute. The offset
generation process is illustrated in Figure 4. Due to the
sampling nature, we create an infinite dataset of possible
KF predictions given a fixed size of measurements.

Measurement noise covariance matrices are likewise cal-
culated detached of the tracker. This is achieved by afflicting
object states with artificial random offsets, just like in the
data generation case. A total number of 2500 offsets are
introduced for each measurement frame. The ground truth of
the validation set is sorted into a polar grid with a cell size
of 10 meters and 10 degrees. If a polar grid cell within the
sensor’s FoV contains less than 10 reflexes, the covariance
is not calculated for this cell and is set to a default value.

The neural network weights are learned using a mean
squared error loss function. Since the regressed attributes
of the virtual measurement are in different value ranges,
we weight the individual loss terms in order to achieve
equal optimization of each attribute. We train our network
parameters using Adam optimization [26].

C. Data Imbalance Handling

There are different kinds of scenes within our measure-
ments. These scenes are by nature not equally distributed.
In real-world driving most of the data recorded by the
sensor consists of rear views of target vehicles. Due to this
imbalance, learned systems are biased to give preference to
improve these scenes, if no countermeasures are taken. Since
we do not want biased predictions in our dataset but intend
to generalize to all kind of situations, we define a scene
signature in order to compensate dataset imbalances and to
split our measurements into a train, validation and test set.
In detail, this is done by calculating a signature consisting
of the mean and variance of some abstract descriptors for
each sequence. In general, all kinds of abstract descriptions
are conceivable. In our case, the object state attributes
orientation and azimuth angle are used. Next, a rareness
score is calculated based on the signature for the entire
dataset, as shown in Figure 5. The rareness score is defined
as the reciprocal number of occurrences of a signature. Our
objective is to sample a balanced test and validation set.
Sequential importance resampling [27] is used to sample
a validation and test set without duplicating data points.
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Fig. 5: Signature mean and standard deviation of the entire and
test dataset with respect to the scene labels target vehicle’s
orientation and azimuth angle. Rareness of the sequences
is highlighted by the given colormap. Underrepresented
signatures of the entire dataset are overrepresented in the
test dataset in order to prove generalization to all scenes.

The final statistics of the dataset are 3345 sequences in the
training set and 418 sequences in the validation and test set.

D. Classical Reference Models

As a first baseline algorithm, we apply a standard clos-
est reflex measurement model to our dataset. The closest
reflex measurement model uses one single reflex having the
smallest distance to the predicted state for the measurement
update of the vehicle’s position. As a second reference, an
L-shape sensor model is employed. First, relevant reflexes
are determined using a gating mechanism within a radius of
5 meters. Whenever there are more than 5 reflexes measured
in the gating corridor, the L-shape sensor model is used to
update the object state. If there are less reflexes, the classical
closest reflex model is applied. For the KF prediction step,
a constant speed heading motion model is used for all
approaches.

E. Evaluation Metrics

We use the performance metrics for single-target object
tracking proposed by Cehovin et al. [28] to measure the
tracker’s accuracy and robustness, since labels are given by
the double DGPS system only. For assessing the accuracy of
the tracker, the intersection over union (IoU) on re-initialized
tracks is computed. Re-initialization is the process of setting
the predicted object state to the ground truth as soon as the
IoU falls below a threshold of 10~%. The IoU is calculated
using the DGPS ground truth and the KF state after updating
it with our deep sensor model.

To measure the robustness of the tracker, the failure rate on
re-initialized tracks is determined. The failure rate is defined



Model Model
w/o tracking w/ tracking

Model Accuracy Accuracy Robustness

[ToU] [ToU] [Failure Rate]
Closest Reflex - 0.374 2.63-1072
L-shape 0.241 0.456 9.94.10-3
Grid Net 0.544 0.580 1.15-1073
Point T-Net 0.718 0.728 1.36-1073

TABLE I: Performance of sensor models on test track scenes.

as the average number of track losses within a sequence. A
track loss is encountered as soon as the IoU of the DGPS
ground truth and the updated state vector is less than 1074,
In order to judge the plain performance of the DNN
without any temporal filtering, average overlap is additionally
calculated on randomly shifted object states as depicted in
Figure 4. These artificial offsets mimic potential prediction
errors that may arise from erroneous motion models. We
define this metric as accuracy of the model w/o tracking.
Since the closest reflex model is not able to yield orientation
corrections, it is not evaluated detached from the tracker.

V. RESULTS & DISCUSSION

Evaluation results in Table I show that both the Point
T-Net and the Grid Net outperform the classical closest
reflex model and the L-shape model by a large margin. As
expected, amongst the classical sensor models the L-shape
model reaches a much better performance than the closest
reflex model. Although the L-shape model is only slightly
worse in accuracy than the Grid Net, it is by far not as
robust as any of the data-driven approaches in a tracking
setting. While the robustness of both data-driven approaches
are comparable, the Point T-Net yields significantly better
results than the Grid Net with respect to accuracy. There
are multiple reasons: First, the Point T-Net is not affected
by discretization errors compared to the grid network, which
uses a fixed 2D grid to accumulate the reflexes. Second, the
architecture design of the Point T-Net, which first extracts
features out of each reflex before fusing them into a global
vector, is expected to perform better than the Grid Net’s
design, which first fuses the input and then builds a combined
feature. Finally, the proposed Point T-Net has a higher
number of trainable parameters and, consequently, a higher
modeling capacity.

The sensor models’ performance within the KF tracker
reflect the trends given by the performance of sensor models
detached from the tracker. As expected, the overall tracking
accuracy is slightly better when benefiting from temporal
filtering compared to the single shot evaluation. Furthermore,
the usage of learned measurement noise matrices allows the
tracker to properly weight regressions in individual frames.

For measurement noise covariance investigation, Figure 6
shows the resulting norm of every measurement covariance
matrix per grid cell. The matrix norm is a measure of the
overall measurement uncertainty. It indicates that uncertainty
values are lower in the close-range center of the radar’s
FoV, although there are some outliers at the borders due
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Fig. 6: Data driven covariance estimation. The norm of each grid
cell is visualized in its polar representation. Results show a
tendency to smaller uncertainties in the center of the FoV.
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Fig. 7: Exemplary comparison of object tracks obtained by appli-
cation of the Point T-Net and L-shape model overlaid with
the ground truth (GT).

to limited data statistics. High uncertainty values are mainly
represented at high distances and azimuth angles.

For a qualitative impression of the tracking performance
of the Point T-Net compared to the L-Shape model, we use
a bird eye view of object tracks as in Figure 7. The learned
sensor measurement model outperforms the L-shape model
in sharp curves and for larger distances. Furthermore, our
data-driven approach is favorable for longitudinal distance
estimation.

Since data-driven approaches are highly dependent on
the training data, there is a risk that the models are not
robust to noisy measurements in dynamic real-world scenes.
In particular, our training data covers recordings of single
objects on a test track, which is significantly different to the
usual multi-object settings on public streets. To investigate
this, we applied our previously trained models from the test
track scenario to a real-world dataset of 50 minutes driving
on rural and urban roads.

The evaluation results of the different sensor models are
summarized in Table II. The closest reflex measurement
model shows similar results in both the real-world and
the highly dynamic test track scenes. The L-shape model
also demonstrates similar performance in accuracy, but its
robustness dropped by a factor of four. This could be caused
by the more challenging association problem. Due to the
increased complexity within the data, the tracking accuracy
of our sensor models dropped. As expected, the robustness
of the learned sensor measurement models decreases sig-
nificantly when compared to the performance on the test



Model Accuracy Robustness
[ToU] [Failure Rate]
Closest Reflex 0.397 2.29-1072
L-shape 0.411 4.05-1072
Grid Net 0.553 1.63- 1072
Point T-Net 0.620 1191072

TABLE II: Real-world performance of sensor models.

track scenes. But still in this real-world setting, our proposed
sensor models outperform the classical closest reflex and
the L-shape model in both accuracy and robustness. This
demonstrates that our test track trained models have the
potential to generalize to real-world scenarios.

Although our implementation is not intended for real-
time usage, a first run time analysis on a Nvidia GTX 1080
showed that the novel measurement step took less than 5 ms
for both architectures. The computational complexity of the
Grid Net is 8.7 - 10 FLOPs. Point T-Net requires 1.7 - 108
FLOPs. Our future work will focus on finding suitable
trade-offs between network performance and computational
complexity.

VI. CONCLUSION

In this paper, we proposed to augment radar based object
tracking with machine learned sensor measurement models.
Deep neural networks were used to implicitly learn measure-
ment associations and measurement corrections of predicted
object states. Moreover, we presented a data-driven technique
for covariance estimation, given the learned measurement
models. Due to the modular nature of our approach, the
trained model can be directly plugged into existing tracking
frameworks, thereby substituting the previously used associ-
ation and update steps in Kalman Filtering.

When evaluating our approach, we showed significant
improvement compared to a conventional tracking system
using a closest reflex and an L-shape model both in terms
of accuracy and robustness.

As a next step, we want to extend the approach to
several object classes, multiple objects and different vehicle
extensions in dynamic real-world scenes. In addition, we
plan to learn situation dependent measurement covariances
utilizing neural network output uncertainties.
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