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Abstract

This work is about dereverberation for automatic speech
recognition. The use of a linear minimum mean-square
error estimator for enhancing a recently proposed derever-
beration method is investigated. The conducted phoneme
recognition experiments show that the resynthesis step,
which was done in the original work of the dereverbera-
tion method, can be omitted. Furthermore, it is shown that
the recognition performance can be increased with the pro-
posed estimator approach under certain reverberant condi-
tions.

1 Introduction

Noise and reverberation have a major impact on the per-
formance of automatic speech recognition (ASR) sys-
tems. While methods for increasing the robustness against
noise have been investigated over several decades, dere-
verberation has only quite recently become the focus of
ASR research. Generally, dereverberation methods can be
grouped into three categories. The first category comprises
techniques that try to enhance the time signal of an utter-
ance prior to feature extraction, for example [1-3]. The
second group of methods tries to adapt the parameters of
the acoustic models to the characteristics of the reverber-
ant speech. Besides the training of acoustic models on re-
verberant speech [4] another commonly used approach is
the maximum-likelihood linear regression (MLLR) [5, 6],
which uses linear transforms to adapt the means and co-
variances of the acoustic models. The third group of
methods tries to increase the robustness to reverberation
during the feature extraction, with the RASTA methodol-
ogy [7] and cepstral mean normalization (CMN) [8] being
two prominent approaches. Another approach from this
group of methods determines minimum mean-square er-
ror (MMSE) estimates of the clean-speech features within
a Bayesian framework [9].

Recently, an iterative deconvolution technique (ITD)
was proposed [10], which was shown to lead to superior
accuracies in comparison to other state-of-the-art derever-
beration approaches. This method relies on a non-negative
matrix factorization (NMF) framework [11], and an advan-
tage of this approach is the low computational cost. In this
work we investigate how the ITD method could be com-
bined with a linear MMSE estimator in order improve the
ASR performance under reverberant conditions. While the
ITD method tries to find the clean-speech components of
a reverberant speech signal blindly, the parameters of an
MMSE estimator are determined with the help of training
data, which adds prior knowledge of the true clean-speech
spectral values to the ITD approach.

The paper is structured in the following way: The next
section gives an overview of the ITD method and describes
the enhancement approach proposed in this work. Sec-

tion 3 describes the experimental setup and the recognition
results. Conclusions and an outlook are given in the final
section.

2 Iterative Least-Squares Deconvolu-
tion and MMSE Refinement

In the first part of this section, we give a brief overview
of the iterative deconvolution method. The proposed en-
hancement method is described in the second part.

2.1 Review of the Iterative Deconvolution
Method

Under time invariant conditions, a reverberated speech sig-
nal y[n] can be described as the output of a linear time-
invariant system,

y[nl =Y x[m] hln —m], (1)

where x[n] is the clean speech signal, i[n| is a room im-
pulse response (RIR), and n is the discrete time index.
Note that the signal model in Eq. (1) does not take additive
noise into account. This somewhat unrealistic assumption
is handled in [12] by combining the ITD dereverberation
method with a noise compensation technique that is sup-
posed to compensate for additive noise and estimation ar-
tifacts. The dereverberation problem is to compute x[n]
from y[n]. However, neither x[n] nor h[n] are known and
one has to bring in some a priori information on the nature
of the problem to obtain a solution. The method of [10]
does this by describing the convolution (1) as a convolution
of short-time Fourier transform (STFT) magnitude spectra
and imposing nonnegativity on the estimated terms. In the
following, let X[n,k|, H[n, k], and Y[n, k] denote the respec-
tive STFT magnitudes of x[n], A[n], and y[n] and let

Y(nk] =Y X[m,k] H[n—m,k|. 2)

Here, k is the channel index with 1 < k < K. Then, the
STFT magnitude spectrum Y [n, k] of a reverberated speech
signal y[n| can be approximated with

Y(n.k| ~ Y[n,k|. 3)

An iterative least-squares approach that minimizes the er-
rors

1

2

Er=Y (Y[i,k] -y (X[m.k] H[i—m,k])) ., @
m

initialized by NMEF, is used to find X[m, k] and H|[n, k] from

Y[n,k]. Initialized with the NMF solution from [11] Ku-

mar et al. [10] showed that their proposed ITD method
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Figure 1: Illustration of the individual feature extrac-
tion stages of (left) the original ITD approach [10],
and (right) the proposed enhanced approach of this work.

converges to a global optimum with respect to the error
criterion (4). An overview of the processing stages of
ITD is shown in Figure 1 on the left. Basically, the orig-
inal processing scheme of the ITD method consists of a
dereverberation part, which generates an enhanced time-
signal, followed by a feature extraction part, which extracts
MFCC features in this work.

2.2 Enhancing ITD

The method proposed in this work is motivated by sev-
eral aspects. In the originally proposed ITD method an
analysis window with a length of 64 ms is used for the
time-frequency analysis and dereverberation, and shorter
lengths reduce the effectiveness of the approach. The
length of 64 ms is in contrast to the analysis window length
used for feature extraction in ASR systems, which com-
monly is 20-25 ms long. While the resynthesis of the time
signal, as carried out in [10] and shown in Figure 1 on the
left, and subsequent ASR feature extraction circumvents
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Figure 2: Illustration of considered neighboring spectral
values %’;f,k (light gray, here with a first-order neighbor-
hood, i.e. § =1 for an enhanced estimation of the clean
speech spectral value of X[n, k| (dark gray).

this discrepancy, it increases the computational load of the
front-end of the ASR system. Thus, by avoiding the resyn-
thesis the computational costs of the ITD dereverberating
are decreased. Here, we present a method that makes use
of a channel-dependent linear regression model, which is
known as “linear MMSE estimator”. As is described in
more detail in the following, this approach can be used for
compensating the different lengths of the analysis windows
as well as the artifacts that are introduced by the ITD dere-
verberation.

In the following, the MMSE estimation used within
this work is explained in detail: Given a vector of observed
parameters r,; € R, which is assigned to the observed
spectral value X[n, k] at time instance n and channel &, a
channel-dependent linear estimator a; € RM tries to esti-

mate the true parameter as X[n, k], where
X[n,k] = aj . (5)

Recall that X[n, k] denotes the dereverberated spectrogram
estimates at the output of the ITD stage. Given a spectral
value X[n,k], the set 25, of spectral values of the S-th
order neighborhood is formally given by

Ko ={ X[k+xn+v]|[k,y==S,..,+S}. (6

Figure 2 illustrates an exemplary first-order neighborhood.
As can be seen, the number of elements M of %ik is given
by

M=1+8Y j (7)

Now, the vector of observed parameters r, ; € RM | which
is assigned to the spectral value X[n, k] at time instance n
and channel k, is defined as the linearized set ‘%;f,k-

The parameters of the k estimators are determined with
the help of stereo training data that consists of the ITD-
processed spectral values X[n, k| and of the corresponding
true clean-speech spectral values X"™¢[n,k]. The two TF
representations can either use the same analysis window
lengths or use different lengths. In this work, we consider
the case in which both X and X'"™° are based on a win-
dow length of 20 or 64 ms, as well as the case in which



X is based on a 64 ms analysis window and X" is based
on a 20 ms analysis window. The latter approach investi-
gates, whether the estimation of spectral values based on
an ASR-typical window length is beneficial for a subse-
quent recognition stage in this case. With N denoting the
number of all available training frames, let Ry € RM*N
T

Ry =[rix T2k k| s ®)
denote all available observed parameters of channel k and
let x{¢ € RY denote all corresponding clean-speech spec-
tral values of channel k. Now, the MMSE estimator aj
for channel k& is chosen such that it minimizes the diagonal
components of the estimated correlation matrix of error,

1 true
N (x"

The solution that leads to minimal diagonal components
of (9) can be obtained as

akTRk) (x,t(me - akTRk)T . )

-1
ay = (RkRkT) Ry, (10)

Because it turned out to be beneficial in preliminary exper-
iments, we used the logarithmized magnitudes of the spec-
tral values. To ensure non-negativity of the spectral com-
ponents, we floored the potentially negative components to
a small positive constant. The overall processing scheme
with the MMSE estimator as described above is shown in
Figure 1 on the right. Compared to the originally proposed
ITD approach, the resynthesis step as well as the second
time-frequency analysis step are omitted, which decreases
the computational costs in comparison to the original for-
mulation of ITD.

3 Experiments
3.1 Data and Experimental Setup

For the performance evaluation of the proposed method
we conducted phoneme recognition experiments on the
TIMIT database with a sampling rate of 16 kHz and with-
out the SA sentences. The training and test sets consist
of 3969 and 1344 utterances, respectively, and are spoken
by 630 female and male adults. With a frame shift of 10 ms
about 1.1 - 10° frames were available for the training of the
MMSE estimators and the acoustic model parameters. We
used artificially generated RIRs with different reverbera-
tion times T¢y, which refers to the time it takes the RIR
energy to decay by 60 dB. To generate reverberant speech
signals in this work, values for Ty of 150 ms, 300 ms,
and 600 ms were chosen. For the simulation the imple-
mentation from [13] of the image method [14] was used.
We used a simulated room of dimension 5 x 4 x 3 m. The
microphone was located in the center of the room and the
source was located 1 m away from the microphone. The
original clean speech training set was used for the train-
ing of the acoustic models in all experiments. The hid-
den Markov model toolkit (HTK) [15] was used through-
out the experiments. The acoustic models were three-state,
left-to-right monophone HMMs without state skips. Fol-
lowing the standard procedure on TIMIT [16] the initial
phoneme set of 61 phonemes was folded to 48 phonemes
and further reduced to 39 phonemes for the evaluation of
the phoneme recognition rate. The output distributions

Table 1: Baseline phoneme recognition rates

Reverberation time [ms]
Enhancement | 150 300 600

- 60.7 38.6 25.6
NMF 58.6  46.7 27.7
ITD 58.6 48.8 32.0

were modeled with eight Gaussians and diagonal covari-
ances. The used language model was a bigram model de-
rived from the training data of TIMIT. For the TF analysis
a gammatone filter bank with 40 channels was used. The
final feature vectors consisted of 39 components, compris-
ing 13 cepstral coefficients together with the correspond-
ing delta and delta-delta features. CMN was applied in all
cases.

For each considered reverberation condition, an indi-
vidual set of estimators was trained. In these experiments
we used a first-order neighborhood, i.e., S = 1. In practice,
an estimate of the reverberation time would be needed,
which could be achieved with, e.g., [17]. ITD is initial-
ized with the solution of the mentioned NMF method. The
number of iterations for both methods were empirically de-
termined in preliminary experiments.

3.2 Baselines

Table 1 shows baseline phoneme recognition rates for the
three different reverberation conditions and different en-
hancement methods. The rows from top to bottom show
the accuracies for the cases in which no further enhance-
ment is performed, when only NMF is applied, and when
ITD is applied, respectively. In case of Tgy = 300 ms and
Teo = 600 ms it can be seen that the NMF enhancement
leads to higher accuracies compared to the case in which
no enhancement is done. Surprisingly, the accuracy de-
creases slightly for Tgp = 150 ms. This might indicate
a nonoptimal choice for the parameters or even the opti-
mized error function and has to be further investigated. The
application of ITD, which is initialized with the NMF solu-
tion, further increases the accuracies for T¢9 = 300 ms and
Tso = 600 ms, while keeping the same accuracy as NMF
for T¢y = 150 ms.

4 Results for Enhanced Method and
Discussion

The first two rows of Table 2 show the recognition rates for
different analysis window lengths and the case in which
the original ITD method is used without the resynthesis
and without MMSE estimation (see also Figure 1 on the
right without the MMSE estimation). The analysis win-
dow lengths of 20 and 64 ms were considered. It can be
observed that the use of a window length of 64 ms is bene-
ficial for reverberation times of 300 and 600 ms in compar-
ison to a window length of 20 ms. By comparing the accu-
racies of the I'TD method with a 64 ms window and without
resynthesis with the ITD accuracies from Table 1 one can
see that the performance decreases for reverberation times
of 150 and 300 ms and increases for a reverberation time
of 600 ms.

The last three rows of the table show the accuracies



Table 2: Phoneme recognition rates without resynthesis
and with the proposed enhancement method

window
length Reverberation time [ms]

[ms] Enhancement 150 300 600
20 ITD 557 46.3 314
64 ITD 55.1 48.5 34.3
20— 20 | ITD+MMSEest. || 56.2 47.3 32.8
64 — 64 | ITD + MMSE est. || 569 50.6 35.6
64 — 20 | ITD+MMSEest. || 55.6 49.7 35.5

that are obtained when the MMSE estimation as described
above is used. For these cases, the notation “A — B” in
the left column of the table refers to the analysis window
length A of the ITD-processed spectral values X and to the
analysis window length B of the true spectral values X'™¢,
which was used for determining the parameters of the esti-
mator. Compared to the accuracies as results of ITD with-
out resynthesis as shown in the first two rows, it can be seen
that the application of the linear MMSE estimator leads
to performance improvements. In average, the increase in
accuracy is larger with analysis window lengths of 64 ms
than with lengths of 20 ms. As can be seen in the bottom
row of Table 1, a conversion of the windows lengths from
64 ms to 20 ms my means of the MMSE estimator does not
show any benefits.

5 Conclusions

In this work we investigated a possible way for enhanc-
ing a recently proposed dereverberation technique for ASR
referred to as ITD. This technique originally generated
a dereverberated speech signal, which is subsequently
passed to the front-end of an ASR system. In this work,
we investigated, whether a linear MMSE estimator can be
used such that the resynthesis is omitted and the overall
recognition performance of the ASR system is enhanced.

The results of the experiments showed that the combi-
nation of ITD and MMSE estimator can lead to increased
recognition rates under certain reverberant conditions. Fur-
thermore, it was shown that the use of an analysis window
length of 64 ms is preferable for this approach compared to
a window length of 20 ms. Using a target window length
for the MMSE estimator (20 ms) that is different from the
length used by the ITD method (64 ms) did not lead to
higher recognition rates than using a fixed analysis win-
dow length of 64 ms.

The results of this work can only be seen as prelim-
inary for several reasons. First, the ASR system of this
work used monophones as acoustic models to make the ex-
periments more feasible and a triphone systems might give
more competitive accuracies. Second, the use of nonlinear
estimation techniques might prove beneficial in compari-
son to the linear MMSE estimator of this work. As pointed
out by [10] the initialization and also the number of itera-
tions of the ITD method are crucial for a dereverberation
in ASR and might still give room for improvements. Fur-
thermore, a formulation of an MMSE estimator that adapts
to the reverberation could avoid the necessity for several
individually trained MMSE estimators.
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