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Abstract

Auditory filterbanks have a long history in the preprocessing stage of automatic speech recognition
systems, with the most prominent examples being the mel frequency cepstral coefficients (MFCCs).
In this paper, we study the usefulness of auditory-filterbank analyses as a preprocessor for the genera-
tion of frequency-warping invariant features. The results indicate, that gammatone-filterbank analyses
following the equivalent rectangular bandwidth (ERB) scale yield the most robust feature sets. The
performance improvements are most significant when the vocal tract lengths in the training and test
sets differ, which is important when, for example, children speech is to be recognized with a system
that was mainly trained on adult data.

1 Introduction

Vocal tract length normalization has become an
integral part of many automatic speech recog-
nition engines [1, 2]. It is based on the idea
that the short-time spectra of two speakers A
and B are approximately related as XA(ω) =
XB(αω), where α is the so-called warping fac-
tor. The value of α is typically selected as
the one that yields the highest likelihood scores
in a subsequent hidden Markov model (HMM)
based recognizer [2, 3].

Recently, a method for the generation of vocal
tract length invariant (VTLI) features has been
proposed in [4]. In this method, the wavelet
transform was used as a preprocessor that pro-
duces a time-frequency analysis in which linear
frequency warping results in a translation with
respect to a log-frequency parameter. While
a strict wavelet analysis with logarithmically
spaced center frequencies exactly carries out
the conversion of linear frequency warping of
sinusoidal inputs into a translation in the log-
frequency domain, it does not exactly match
the frequency analysis that is carried out in the
human auditory system. The analysis of the
human auditory system as well as physiologi-
cal animal experiments have led to an approx-
imation of the cochlear frequency analysis by
so-called gammatone filters. Moreover, the fil-

ters should be equally spaced on the equiva-
lent rectangular bandwidth (ERB) scale. Both
paradigms can be combined, and gammatone
filterbanks can be used with center frequencies
and bandwidths that follow the ERB scale.

In this paper we study the usefulness of
auditory-motivated gammatone analyses as a
preprocessor for generating robust feature sets
that are nearly invariant to vocal tract length
variations. The paper is organized as fol-
lows. In the next section, we briefly in-
troduce the wavelet transform and then de-
scribe the gammatone analysis. Section 3
then presents the generation of the proposed
warping-independent VTLI features. In Sec-
tion 4 we describe the experimental setup and
present results on phoneme recognition experi-
ments. Section 5 gives some conclusions.

2 Primary time-frequency analysis

2.1 The discrete-time wavelet analysis

The discrete-time wavelet transform of a signal
x(n) can be computed as

wx(n, k) = 2−k/(2M)
∑
m

x(m)ψ∗
(m− nN

2k/M

)
,

(1)
where M is the number of voices per oc-
tave, and N is the subsampling factor used
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to reduce the sampling rates in the wavelet
subbands. Assuming K octaves, the scal-
ing parameter a takes on values ak = 2k/M ,
k = 0, 1, . . . ,MK − 1. The continuous-time
wavelet ψ(t), whose samples occur in the sum
in (1), is the so-called mother wavelet. For
this, in [4] the Morlet wavelet given by ψ(n) =

exp(jω0n)× exp(− n2

2σ2
n
) was used.

The wavelet analysis will have better time res-
olution at higher frequencies than needed for
producing feature vectors every 5 to 15 ms. Di-
rect downsampling of features will therefore in-
troduce aliasing artifacts. Since we are mainly
interested in the signal-energy distribution over
time and frequency, we may take the magnitude
of wx(n, k) and filter it with a lowpass filter in
time direction before final downsampling. The
final primary features will then be of the form
yx(n, k) =

∑
` h(`) |wx(nL− `, k)| where h(`)

is the impulse response of the lowpass filter, L is
the downsampling factor introduced to achieve
the final frame rate fs/(N ·L), and fs is the sam-
pling frequency. To avoid that the filtered val-
ues yx(n, k) can become negative, we assume a
strictly positive sequence h(n) like, for exam-
ple, the Hanning window. In [5], the lowpass
filter h(n) was simply a rectangular window of
200 coefficients, and the initial downsampling
was set to N = 1.

2.2 The gammatone analysis

The wavelet transform described yields the
same relative bandwidth in all frequency bands.
However, according to Patterson et al. [6],
the assumption of constant relative bandwidths
as well as the strict logarithmical frequency-
spacing as mentioned before does not exactly
correspond with the filtering process in the hu-
man auditory system. The impulse responses of
the filters in the auditory system can be approx-
imated by the sampled impulse response

gγ(n) = nγ−1 · ãn,

with n ≥ 0 and ã = λ · exp (jβ) of a com-
plex analog gammatone filter [7]. λ denotes
the bandwidth or damping parameter, γ denotes
the filter order, and β determines the center fre-
quency fc by β = 2πfc/fs. Using the analytical
expression for the equivalent rectangular band-
width (ERB) of auditory filters as a function of

the frequency f as given in [8], Patterson et
al. show in [6] that the damping parameter λ
can be well approximated by

λ = exp

(
− 2 · ERB · (γ − 1)!2

(2γ − 2)! · 2−(2γ−2) · fs

)
, (2)

leading to an auditory motivated, constant band-
width on the ERB scale. Keeping in mind that a
linear frequency warping of the signal by a fac-
tor α should yield in a translation in the log fre-
quency domain, the individual filters should be
logarithmically spaced. The corresponding rep-
resentation will be denoted as glog

x (n, k). From
the physiological point of view, however, the fil-
ters should be linearly spaced on the ERB scale,
resulting only in an approximate translation in
the log-frequency domain for a linear frequency
warping. This different spacing will be denoted
by gERB

x (n, k). Finally, we also used a MEL
spacing with the corresponding representation
gMEL

x (n, k). The final primary representation
yx(n, k) is then computed as for the wavelet
transform by lowpass filtering of |gx(nL−`, k)|.

3 Warping-invariant features

Due to the nature of yx(n, k), warping-invariant
features can be easily generated by taking the
Fourier transform of yx(n, k) with respect to pa-
rameter k and retaining only the magnitudes of
the transform coefficients. However, this is only
one of several possibilities to obtain warping-
invariant features. Other possibilities include,
but are not limited to correlation sequences be-
tween transform values or nonlinear functions
thereof at two time instances n and n− d.

In particular, we here consider

rx(n, d,m) =
∑
k

yx(n, k)yx(n− d, k +m)

and

cx(n, d,m) =
∑

k

log(yx(n, k)) · log(yx(n−d, k +m)).

The parameter d is a time lag, and m is the
lag for the log-frequency index k. The features
rx(n, 0,m) will give information on the signal
spectrum in time frame n. For d 6= 0 the fea-
tures rx(n, d,m) will give information on the
development of short-time spectra over time.
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Moreover, any linear or nonlinear combination
and/or transform or filtering of rx(n, d,m) and
cx(n, d,m), including taking derivatives (i.e.,
delta and delta-delta features) will also yield
warping invariant features.

4 Experimental results

In our experiments, different setups using the
linear-phase wavelet transform described in
Section 2.1 and the nonlinear-phase, auditory-
system motivated gammatone filterbank ac-
cording to Section 2.2 were used.

For the gammatone filterbank, a logarithmically
spaced, an ERB-spaced and a MEL-spaced ap-
proach with 90 filters were examined. Cen-
ter frequencies were considered in the range of
40Hz to 6700Hz, each with a bandwidth of one
ERB. The lowpass filter h(n) was a rectangular
window of 200 coefficients.

The original speech signals were sampled at
16 kHz sampling rate, and the final frame rate
was set to 10 ms. The following 45 vocal-tract
length invariant features (VTLI-F) were used:

• the first 20 coefficients of the discrete co-
sine transform (DCT) of log(r(n, 0,m))
with respect to parameter m for m =
0, 1, . . . , 83.

• the first 20 coefficients of the DCT of
c(n, 4,m) with respect to parameter m
with m = −83, . . . , 83.

• log(r(n, 4,m)) for m = −2,−1, . . . , 2

The warping-invariant features were also
amended with classical MFCC features. For
this, the 12 MFCCs and the single energy fea-
ture of the standard HTK setup were used (de-
noted by 13 MFCC in the following). More-
over, the first 15 DCT coefficients (DCT with
respect to frequency parameter k) of the log-
arithmized wavelet features log(yx(n, k)) were
used for feature set amendment as well. Finally,
for all features, also the delta and delta-delta co-
efficients were included. Altogether, this makes
a total number of 219 features. In a subsequent
step, the number of features was reduced, using
either feature selection or a linear discriminant
analysis (LDA) [9]. The following feature sets
were considered, where the factor 3 stands for
the inclusion of delta and delta-delta features:

Table 1: Accuracies in % for phoneme recog-
nition using a HMM recognizer with eight mix-
tures and diagonal covariance matrices.

Features Train. Test Acc.
3×13 MFCC M+F M+F 69.19
VTLI-WT-F+MFCC+WT M+F M+F 67.84
VTLI-GTlogF+MFCC+GTlog M+F M+F 68.15
VTLI-GTERBF+MFCC+GTERB M+F M+F 68.82
VTLI-GTMELF+MFCC+GTMEL M+F M+F 68.45
3×13 MFCC + 3×5 VTLI-WT-F M+F M+F 69.33
3×13 MFCC + 3×5 VTLI-GTlog-F M+F M+F 67.69
3×13 MFCC + 3×5 VTLI-GTERB-F M+F M+F 68.02
3×13 MFCC + 3×5 VTLI-GTMEL-F M+F M+F 67.96
3×13 MFCC M F 56.84
VTLI-WT-F+MFCC+WT M F 63.56
VTLI-GTlogF+MFCC+GTlog M F 62.49
VTLI-GTERBF+MFCC+GTERB M F 63.15
VTLI-GTMELF+MFCC+GTMEL M F 62.22
3×13 MFCC + 3×5 VTLI-WT-F M F 59.38
3×13 MFCC + 3×5 VTLI-GTlog-F M F 58.47
3×13 MFCC + 3×5 VTLI-GTERB-F M F 59.76
3×13 MFCC + 3×5 VTLI-GTMEL-F M F 59.04
3×13 MFCC F M 55.53
VTLI-WT-F+MFCC+WT F M 62.98
VTLI-GTlogF+MFCC+GTlog F M 62.15
VTLI-GTERBF+MFCC+GTERB F M 63.00
VTLI-GTMELF+MFCC+GTMEL F M 62.61
3×13 MFCC + 3×5 VTLI-WT-F F M 59.13
3×13 MFCC + 3×5 VTLI-GTlog-F F M 57.48
3×13 MFCC + 3×5 VTLI-GTERB-F F M 58.49
3×13 MFCC + 3×5 VTLI-GTMEL-F F M 57.75

• 3×13 MFCC
• All 219 features, reduced via an LDA to 47

features. In each case, it has been indicated
which filterbank and frequency spacing was
used. We have

WT wavelet-transform
GTlog log-spaced gammatone filters
GTERB ERB-spaced gammatone filters
GTMEL MEL-spaced gammatone filters

• 3×13 MFCC + 3×5 VTLI-F. These are the
MFCCs, amended with first five DCT coef-
ficients of log(r(n, 0,m)) with respect to the
frequency lag m.

We present results for phoneme recognition on
the TIMIT corpus (including the SA files). The
training and test sets were both split into male
and female subsets in order to allow training
and testing under different conditions. In the
following, M+F, M, and F denote training/test
on male+female, male, and female data, re-
spectively. Following the procedure in [10], 48
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phonetic models were trained, and the classifi-
cation/recognition results were folded to yield
39 final phoneme classes that had to be dis-
tinguished. The LDA was based on the 48
phonetic classes. Table 1 contains the results
for HMM-based phoneme recognition using
monophone models, three states per phoneme,
eight Gaussian mixtures per state, and diago-
nal covariance matrices. The recognizer was
based the Hidden-Markov-Toolkit (HTK). For
the M+F setting, where both male and female
data was used during training and test. We
see that all examined feature sets yield almost
the same performance as the MFCCs. How-
ever, when only male or only female data is
used for training, the degradation for the linear-
phase wavelet based feature sets as well as for
the gammatone based feature sets are far less
than for the MFCCs. Albeit the nature of pre-
processing, the best performances are achieved
when VTLI features, preprocessing features
and MFCCs are combined via an LDA to a final
number of 47 features. This combined feature
set is also the most robust one when the training
and test conditions are different. A closer ex-
amination of these results for the different pre-
processing steps shows that the incorporation
of all mentioned audiology aspects can slightly
enhance the detection rates. Using the pre-
sented approach incorporating both ERB-based
bandwidth and ERB-based frequency scaling
(GTERB) best recognition rates were achieved
although the center frequencies are not strictly
logarithmically spaced. Interestingly, the GTlog

case leads to lowest recognition rates of all
three approaches. The MEL spacing performs
slightly better than the logarithmic one, but it
cannot reach the performance obtained with the
ERB scale. As the results show, for the GTERB

feature set, the accuracy (definition according
to [11]) for the M+F condition is slightly bet-
ter than for the MFCCs, and at the same time,
it is significantly better for all other condi-
tions: When training on male and testing female
data, the accuracy is about 6% better than for
MFCCs. When training on female and testing
male data, it is even 8% better than for MFCCs.

5 Conclusions

We have proposed a technique for the extrac-
tion of vocal tract length invariant features

with an auditory-filterbank based preprocess-
ing. The performance of the new features
has been demonstrated for phoneme recognition
tasks. The results have shown that the incorpo-
ration of knowledge about the human auditory
system can lead to an enhancement of recogni-
tion rates.
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