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Abstract
This paper presents new results about the robustness of invariant-
integration features (IIF) in noisy conditions. Furthermore, it is
shown that a feature-enhancement method known as “power-
bias subtraction” for noisy conditions can be combined with the
IIF approach to improve its performance in noisy environments
while keeping the robustness of the IIFs to mismatching vocal-
tract length training-testing conditions. Results of experiments
with training on clean speech only as well as experiments with
matched-condition training are presented.
Index Terms: speech recognition, speaker independency, noise
robustness, invariant integration, power normalization

1. Introduction
Automatic Speech Recognition (ASR) systems have to deal with
different kinds of variabilities with background noise being one
of them. Besides feature representations that try to be immune
to noise, e.g., RASTA-PLP [1], many methods have been pro-
posed to compensate for the acoustic mismatch between train-
ing and testing data due to noise. Generally, these methods
are either speech feature or model enhancement techniques, and
some methods can be seen as hybrid approaches. Cepstral mean
normalization, stereo piecewise linear compensation for environ-
ment (SPLICE) [2], andvectorTaylor-series (VTS)expansion [3]
are exemplary methods for feature enhancement methods. Gen-
erally, these methods try to remove the effects of noise from
the feature vectors to reduce the mismatch between training and
testing data. Parallel model combination (PMC) [4] is one ex-
ample for the group of model enhancement techniques, where
the parameters of the clean acoustic models are adapted such
that they approximate the model parameters of training with cor-
rupted speech. An advantage of feature enhancement methods
are the smaller computational costs compared to the model adap-
tation techniques. A feature enhancement method that is based
on maximizing the sharpness of the power distribution and on
power flooring was recently proposed [5] and yields so-called
power-normalized cepstral coefficients (PNCC). It was shown
that the PNCC approach outperforms other common methods
like PLP and VTS.

The size of speakers is another variability that generally
leads to a mismatch between training and test data. More pre-
cisely, the vocal-tract length (VTL) is a parameter that can re-
late these differences between the speakers to each other. Com-
mon approaches like vocal-tract length normalization (VTLN) or
maximum-likelihood linear regression (MLLR) are applied after
the feature extraction stage to count for the distorting effects due
to different VTLs. Similar to the feature-based noise-robustness
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methods as described above, there also exist methods that directly
try to extract vocal-tract length invariant features. Generally,
invariant feature extraction methods compute parametric repre-
sentations from speech signals that are invariant to certain trans-
formations. ASR systems may benefit from invariant features
in several aspects: For example, the performance of speaker-
independent ASR systems without any adaptation methods due
to limited hardware resources may be increased. In case of ASR
systems that already use speaker-adaptation methods, it has been
shown that the additional use of invariant feature extraction may
further increase the accuracy of those systems; one example of
such an extraction method was proposed as invariant-integration
features (IIFs) [6]. IIFs were originally designed for increasing
the ASR systems’ robustness to the effects of VTL changes which
naturally occur between individual speakers.

In practice, ASR systems must be robust to several types
of variability at the same time. As will be described in the next
section, a combination of the processing chain of PNCCs with the
one of IIFs is possible and promises to yield features that are not
only robust to noise, but also to the effects of VTL changes. This
work investigates on the one hand the noise-robustness of the
originally presented IIFs and presents experimental results for
different noisy conditions. These are compared to the results of
mel frequency cepstral coefficients (MFCCs), PLPs, and PNCCs.
On the other hand, it is shown that the accuracies of the IIFs un-
der noisy conditions, as well as in mismatching training-testing
conditions with respect to the mean VTL under noisy conditions
can be improved when the PNCC-principles are combined with
the original IIF computation.

In the next section we give a brief summary of the computa-
tion of IIFs and the idea of “power-bias subtraction”. Also, the
combined processing chain is motivated by observations made
with estimated probability density functions (pdfs) of individual
features. The third section explains the experimental setting and
the results. Conclusions are given in Section 4.

2. Review of Invariant-Integration Features
and Power Normalization

The processing chain for the computation of IIFs is shown in
Figure 1, where the originally presented computation follows
path (a). For an efficient computation of the time-frequency (TF)
representation, a gammatone filter bank is used which is based on
the weighting of the magnitude of a short-time Fourier transfor-
mation (STFT) with gammatone filter shaped coefficients. The
frequency centers of the filters are linearly spaced on the ERB
scale. Empirically determined, a power-law compression with
an exponent of 0.1 is applied on the spectral values to resemble
the nonlinear compression found in the human auditory system.
Interestingly, the use of a gammatone filter bank together with the
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Figure 1: Processing chain for the computation of invariant
integration features. (a) originally proposed computation [6].
(b) The combined computation as investigated in this work.

same power-law nonlinearity was also proposed in the original
work on PNCCs [7], where this approach also showed supe-
rior properties in comparison to a standard mel filter bank with
triangular shaped filter weights.

After the application of the nonlinearity, an invariant inte-
gration according to [6] is performed. Invariant integration is a
general approach for the construction of invariants for arbitrary
transformation groups. Generally, its computation involves the
integration of (possibly nonlinear) functions m over all possi-
ble transformed observations. For the group of discrete trans-
lation, which approximately occurs in ASR as effect of VTL
changes (e.g. [8, 9]), it was shown in [10] that the use of mono-
mials as m yields a complete transformation.

Practically, with a given TF representation yk(n), where n
is a frame index and k is a subband index, the monomials are
defined as [6]

m̂(n;w,~k,~l, ~m) :=

[
M∏
i=1

yli
ki+w (n+mi)

]1/
∑M

i=1 li

, (1)

where ~k ∈ NM , ~l ∈ NM
0 , and ~m ∈ NM describe the used sub-

bands, integer components, and temporal offsets, respectively,
andw is a subband-index offset. Following the integral approach,
a monomial is evaluated on several translated versions of each
frame and their results are averaged over a window size 2W +1:

Am̂(n) :=
1

2W + 1

W∑
w=−W

m̂(n;w,~k,~l, ~m). (2)

The final feature vector ~A ∈ RN is a composition of several of
these averages,

~A(n) = (Am̂1(n), Am̂2(n), . . . , Am̂N (n)) . (3)

A component-wise mean subtraction is the last step of the IIF
computation. The parameters of the IIFs where determined with
an iterative feature selection method that is based on a linear
classifier [11]. In [6] it was shown that already an IIF set with
appropriately chosen monomials of order one yields accuracies
that outperform MFCCs significantly in matching average VTL
training-test conditions as well as in mismatching VTL training-
test conditions.

The computation of PNCCs also involves in its first steps
the computation of a TF representation with a gammatone filter
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Figure 2: Estimated pdfs for exemplary IIF with clean speech
(solid) and with noisy speech (dashed, SNR 10 dB) without PN-
processing (a) and with PN-processing (b).

bank, which is the same as for IIFs. Then, the PNCC approach
uses a power-normalization based on the 95th percentile and
a “power-bias subtraction” (PBS) [5], which aims to maximize
the sharpness of the power distribution and thereby minimize
the acoustic mismatch due to noise. After applying a power-
law compression, the discrete cosine transform (DCT) and a
subsequent mean subtraction are used as final feature extraction
steps for the computation of PNCCs.

While both approaches are similar in their computation, IIFs
and PNCCs have their emphasis on two different stages within
the feature extraction process: While the PNCC approach con-
centrates on the enhancement of the noise-distorted TF repre-
sentation, IIFs replace the DCT with an invariant-integration,
such that shifts in the TF representation due to different VTLs
have a minimal distorting effect in the feature space. Because
these shifts are still present after the PN-processing, the two
approaches can be combined with each other as depicted in Fig-
ure 1 by following path (b). This path involves an additional
processing step compared to the original processing chain and is
denoted as “power-normalization (PN) processing”.

As an illustration of the effects of the combined processing,
Figure 2 shows estimated pdfs of an original IIF for clean and
noisy speech without and with PN-processing enabled. For both
cases clean speech and noisy speech with an SNR of 10 dB were
considered. It can be seen that the acoustic mismatch between
clean and noisy speech features is generally smaller with the
combined feature type than with the originally proposed IIFs.
For quantitative measures, phoneme recognition experiments
under different noise conditions and different training-testing
scenarios with respect to the mean VTL were conducted. These
experiments are described in the following.

To benefit from the theoretic advantages of IIFs, an appropri-
ate selection of monomial parameters is crucial. It was shown in
previous works of the authors [6] that a feature selection method
based on the mean square error of a linear classifier yields features
that outperform MFCCs when the TIMIT training set was used
for selection. Within the experiments of the present work, no
clear consistency between the relevance measure of the feature
selection method and the resulting recognition accuracies were
observed when the monomial parameters where selected on base
of distorted TIMIT speech signals. Therefore, optimal parame-
ter selection for noisy data will be further investigated in future
work. For the remainder of this paper, we used parameters that
proved to work well on clean data.

3. Experiments
Experiments were conducted on the TIMIT corpus with a sam-
pling rate of 16 kHz to allow for the comparison to previous
results. We used the NIST standard training set and the NIST
complete test set which excludes the dialect (SA) sentences. The
training set consists of 462 female and male speakers and con-
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tains 3696 utterances. The test set contains 1344 utterances from
168 speakers with no overlap between training and test sets. To
allow for an assessment of the performance of the feature types
under mismatching training-test conditions with respect to the
average VTL, two different scenarios were defined: The match-
ing VTL scenario refers to the standard training and test sets. The
mismatching VTL scenario uses only the male utterances from
the training set for training and only the female utterances from
the test set for testing. Phoneme recognition experiments with
these two scenarios were conducted under different noise con-
ditions. Clean and matched-condition training were considered
in the experiments. The distorted speech signals were generated
with the tool “FanT” as it was used for the AURORA corpus.
All noise experiments were conducted with two different types of
environmental noise, namely noise recorded at a station platform
and noise recorded in a busy shopping mall1. In the following,
the average accuracies obtained with the two noise types are
presented.

The toolkit HTK was used for the training of the acoustic
models as well as for decoding. A bigram language model based
on the TIMIT training set was used in all experiments. Tied-
state triphones with diagonal covariance modeling were used.
The number of Gaussians in the mixtures of the individual mod-
els was chosen relative to the available size of the training data.
While a maximum number of 16 Gaussians was used for MFCCs,
RASTA-PLPs, and PNCCs, a maximum number of 8 Gaussians
was used for IIFs. Following the standard procedure for TIMIT,
the initial 61 phonetic labels were collapsed to a set of 48 labels.
For testing, the phonetic labels were further collapsed to 39 la-
bels. In case of PNCCs, the parameters as proposed in [5] were
used. All feature vectors were concatenated with the log-energy
and also with their first- and second-order time derivatives.

For the computation of the MFCCs, the standard HTK imple-
mentation was followed and 12 coefficients (with cepstral mean
subtraction) were computed for each frame. For the computation
of the PNCCs, the implementation from [5] was taken. For the
comparison with the originally proposed IIFs, the IIF set consist-
ing of 30 features that is based on a 110-band TF-representation
from [6] was taken. These features are denoted as IIFOrig in the
following. In case of the IIFs, the 30-component feature vector
was first reduced with a linear discriminant analysis (LDA) to 20
dimensions and then concatenated with the log-energy feature
and the delta features. The LDA used the whole training dataset.
Hence, the final feature dimensionality of the IIF-based system
was 63. A maximum-likelihood linear transformation (MLLT)
was computed to allow for diagonal covariance modeling. In
all experiments, normalization and adaptation with VTLN and
MLLR were applied for speaker-adaptive training and for testing.

3.1. Baseline results

The first part of the experiments presents baseline recognition
accuracies and thereby compares the accuracies between the
originally presented IIFs, the standard feature types MFCCs and
RASTA-PLPs, as well as PNCCs under noisy conditions and for
the matching and for the mismatching VTL scenarios. Figure 3
shows the results of these experiments.

It can be observed that for clean speech the IIFs perform best
in both training-testing scenarios, and the accuracies resemble
the ones presented in [6]. Looking at the performance of all
feature types under noisy conditions, it can be seen that MFCCs

1Noise signals are available for download at http://www.isip.uni-
luebeck.de/downloads.
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Figure 3: Baseline results for clean and noisy speech under
matching (top) and mismatching (bottom) VTL training-test con-
ditions (clean speech training).
yield the lowest accuracies compared to the other feature types.
Besides IIFs, the PLPs show overall a superior noise-robustness
to MFCCs, and PNCCs in turn a superior noise-robustness to
PLPs. In terms of the lateral threshold shift, PNCC process-
ing provides a maximum improvement in the matching and in
the mismatching VTL scenario of about 7 dB, when compared
to MFCCs. This holds for both scenarios and confirms the find-
ings of [5], in this case on the TIMIT corpus. With respect to
the IIFs, the experimental results show comparable accuracies
to the PNCCs for an SNR of 20 dB for both scenarios. However,
the performance of the IIFs aligns more and more with the one
of PLPs when the SNR decreases.

3.2. PN-processed invariant-integration features

Originally, IIFs have specifically been designed for increasing
the robustness of ASR systems under mismatching conditions
with respect to the average VTL. Motivated by the observations
made when PN processing is combined with the IIF computa-
tion (as described above and illustrated in Figure 2), we designed
combined feature types in the second part of the experiments.
Therefore, the default parameters of the power-bias subtraction
algorithm were adjusted in preliminary experiments to better fit
the characteristics of the used filter bank; with respect to the
concepts described in [5], the power-flooring coefficient was set
to 0.02, the medium-duration window factor was chosen as 3,
and the weight-smoothing factor was set to 13. The results of
these experiments are shown in Figure 4.

For clean speech, it can be observed that the accuracy of
the combined feature type decreases by about one percentage
point compared to the original IIFs (76.2% compared to 77.3%).
However, these features still show better performance than PLPs
andPNCCs in both scenarios. Thisdecreasemightoriginate from
a still suboptimal parameter choice and will be part of further
investigations. For noisy speech, the improved accuracies in both
scenarios show that the noise robustness of the combined IIFs
generally benefits from the additional PN-processing. For SNRs
of 15 dB and above, the lateral threshold shifts to the PNCCs
are about 5 dB and 7 dB for the matching and mismatching
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Figure 4: Results for enhanced features under matching (top)
and mismatching (bottom) VTL training-test conditions (clean
speech training).

VTL scenarios, respectively. For distorted speech with an SNR
of 10 dB, the combined features yield similar accuracies as the
PNCCs, which is also a significant improvement. For an SNR
of 5 dB, the PNCCs perform best.

Matched noise-condition training is a common approach to
increase the noise-robustness of ASR systems. The idea is to
decode noisy speech with acoustic models that were trained on
data with equal noise-conditions. The last part of the experi-
ments analyzed the performance of PNCCs and the features of
the combined processing with this approach. The result of these
experiments are shown in Figure 5. Besides the expected increase
in accuracy under noisy conditions, it is interesting to see that the
performance of the PN-processed IIFs did increase especially for
SNRs of 5 and 0 dB and now perform equally well as PNCCs
for low SNRs and significantly better for high SNRs. Overall,
it can be observed that the combination of PN-processing and
invariant integration leads to features that are both robust to noise
and robust to varying VTLs.

4. Conclusions

In this paper we have presented new results that show that the
invariant-integration features (IIF) without any feature-enhance-
ment method for noisy conditions perform at least as good as
RASTA-PLPs under noisy conditions. Furthermore, the pro-
cessing chain for the computation of IIFs can be combined with
the “power-bias subtraction” algorithm, such that the different
benefits of both feature types are observable: Under clean condi-
tions, the combined feature type shows better performance than
MFCCs, PLPs, and PNCCs in matching as well as in mismatch-
ing VTL scenarios. When trained on clean speech only, but tested
under noisy conditions, the combined processing also leads to the
highest accuracies among the considered feature types for SNRs
above 10 dB. For matched-condition training, the proposed fea-
tures yield the best overall results. The computational cost for
the combined processing is only slightly increased.
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Figure 5: Results for enhanced features under matching (top) and
mismatching (bottom) VTL training-test conditions (matched-
condition training, black). For comparison, the gray lines indi-
cate the accuracies for the clean-speech training case.
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