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Abstract: To enable content based functionalities in video processing algorithms, decomposition
of scenes into semantic objects is necessary. A semi-automatic Markov random field based multi-
resolution algorithm is presented for video object extraction in a complex scene. In the first frame,
spatial segmentation and user intervention determine objects of interest. The specified objects are
subsequently tracked in successive frames and newly appeared objects/regions are also detected.
The video object extraction algorithm includes discrete wavelet transform decomposition multi-
resolution Markov random field (MRF)-based spatial segmentation with emphasis on border
smoothness at different resolutions, and an MRF-based backward region classification that
determines the tracked objects in the scene. Finally, a motion constraint, embedded in the region
classifier, determines the newly appeared objects/regions and completes the proposed algorithm
towards an efficient video segmentation algorithm. The results are applicable for generic segment-
ation applications, however the proposed multiresolution video segmentation algorithm supports
scalable object-based wavelet coding in particular. Moreover, compared to traditional object
extraction algorithms, it produces smoother and more visually pleasing shape masks at different
resolutions. The proposed effective multiresolution video object extraction method allows for
larger motion, better noise tolerance and less computational complexity.
1 Introduction

The increasing popularity of multimedia applications calls
for the development of image and video processing
methods for effective distribution and representation of
the visual information to provide new image/video ser-
vices, such as interactivity, manipulation, editing,
content-based access and scalability. To achieve these
demands, image/video processing has moved away from
block-based towards object-based techniques. Object
oriented processing provides the great flexibility needed
for new content-based services such as interactivity and
manipulation. To this end, industrial standards which
support object-based representation of audiovisual
information were introduced by the Moving Pictures
Expert Group (MPEG) [1]. MPEG-4 and MPEG-7 provide
flexibility in manipulation, interactivity, editing, easier
archiving and content-based access and retrieval from
audiovisual databases [1, 2].

To enable the object-based image and video processing,
semantic segmentation which decomposes the scene into
meaningful objects is essential. The most challenging
aspect of this process is the fact that low-level features do
not lead to semantic objects directly, because a generic
object may contain different grey-levels, colours, textures,

# The Institution of Engineering and Technology 2007

doi:10.1049/iet-ipr:20045155

Paper first received 28th August 2004 and in final revised form 30th August
2006

F.A. Tab is with the Department of Electrical and Computer Engineering,
University of Kurdistan, Sanandaj, Iran

G. Naghdy is with the School of Electrical, Computer and Telecommunications
Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

A. Mertins is with the Institute for Signal Processing, University of Lübeck,
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motions and so on. The gap between meaningful objects
and low-level features makes automatic and comprehensive
semantic segmentation a very difficult task. Although a
great deal of research in segmentation has been carried
out, no dominant solution for this task has emerged. The
proposed methods, by and large, remain ad hoc with little
underlying theoretical foundation. Furthermore, segmenta-
tion is inherently an ill-posed problem [3]. This means
that there is no unique solution to solve the multi-faceted
segmentation problem. There are many different segmenta-
tion algorithms designed for specific problems with some
simplified assumptions. This makes segmentation algor-
ithms application dependent. On the other hand, segmenta-
tion is a first stage of processing for many image/video
processing applications such as pattern recognition, image
analysis and understanding, computer vision, image and
video databases with content-based access and object-based
coding. In particular, the new advances in networking and
digital processing offer the potential for an explosion in
multimedia applications over networks which require
enabling object-based processing. In conclusion, there is a
wide area of segmentation applications. It is a very import-
ant and formidable task with high demands and requires a
great deal of intensive research.

Although a large number of automatic or semi-automatic
video object segmentation methods have been proposed
[4–8], ideal segmentation is far from reality at this stage of
technology and the scope of research in this topic is still
very wide. The concern in this paper is two areas of research
which the available segmentation algorithms have not
been able to effectively resolve. Underpinning these two
areas is the concept of (spatial) scalability, where the
‘object-of-interest’ is extracted at different resolutions of
pyramid decompositions and visual quality is a constraint.
In this paper, considering the importance of coding for infor-
mation distribution over heterogeneous networks, special
attention is given to the application of the proposed
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segmentation algorithms with scalable wavelet-based object
coding algorithms [9, 10], although the results are useful for
generic segmentation applications such as pattern recog-
nition, image understanding and computer vision.

In a network environment such as in the Internet, it is
desirable that a large number of users with different proces-
sing capabilities and network access bandwidth could
access and transfer data easily. A new challenge with
such a heterogenous environment is to design a coding
system that produces a single bitstream for a given source
signal which is capable of optimally servicing each end
user according to individual bandwidth and computing
capabilities. To overcome this challenge, some sort of scal-
ability needs to be provided by the encoder. In object/
frame-based scalable coding, the bitstreams for low-end
users are embedded as a subset of the codestreams for
high-end applications. As a result, a single bitstream can
be applied to different users by selectively transmitting
and decoding the related parts of the bitstream [11, 12].
Some of the desirable scalable functionalities are signal to
noise ratio (SNR) scalability, spatial scalability and tem-
poral scalability [12]. In object-based spatial scalability,
the shapes and their texture information are coded and
decoded on the basis of a specific resolution. In this case,
the resolution is determined in correspondence with the
end user’s capabilities such as bandwidth and display resol-
ution. Therefore considering the spatial scalability of scal-
able object-based encoder/decoder system, it is necessary
to extract objects’ shape at different resolutions.

The existing video segmentation algorithms in the litera-
ture extract the shape at the highest resolution [4–8].
Therefore a regularly used option to produce shape at differ-
ent resolutions is to extract objects at the highest resolution
followed by downsampling. However, this single-resolution
procedure fails to deal with the requirement of multiresolu-
tion scalable segmentation and extraction processes and
loses the properties and advantages of multiresolution pro-
cessing, such as less computational complexity, better cap-
turing of the image structure and less noise sensitivity.
Moreover, this method cannot assure to produce the best
shapes for lower-resolutions for all shapes, and it
can produce shapes that are visually less pleasing.
Downsampling could result in deformation and distortion
at low resolution, which can damage the semantics of the
objects such as creation of holes in the object area [13].

In other words, a visually pleasing object at higher-
resolution does not necessarily ensure similar quality at
lower-resolutions. For example in Fig. 1, downsampling
of two digital circles are compared. It can be seen that
better approximation of a digital circle at high resolution
can result in worse downsampled shape.
22
In assessing the performance of the segmentation pro-
cesses, traditionally, the main emphasis is placed on the
statistical accuracy, while qualities such as well-defined
borders or visual merit of the extracted objects are not con-
sidered. Visual quality of the segmented objects, however,
has great influence on the viewers. Therefore as well as
the statistical criteria, visual effect and quality criteria
should be incorporated into the segmentation algorithms.
This paper presents a semi-automatic object extraction
algorithm which produces enhanced and visually pleasing
objects at different resolutions. To obtain more visually
pleasing shapes, the region/object smoothness has been
considered as a criterion in the segmentation process.
Considering the multiresolution applications such as
spatial scalable wavelet-based object coding algorithms,
the visually pleasing criterion is extended to multiresolution
object extraction and analysis.

The proposed algorithm includes a semi-automatic object
extraction algorithm which is based on spatial segmentation
and MRF-based backward region classification. The pro-
posed spatial segmentation fits multiresolution Markov
random field (MMRF) segmentation to scalable object-based
wavelet coding [14]. The image at different resolutions is seg-
mented with spatial scalability as a constraint. To extract
enhanced shapes, border smoothness, as a criterion of shape
analysis [15], is also included in the objective function of
spatial segmentation. For optimisation of MMRF modelling,
the iterated condition mode (ICM) algorithm [16] matched to
the scalable multiresolution segmentation is used. The
‘object-of-interest’ is determined by user intervention at the
first frame and is tracked by a backward MRF-based region
classifier which determines the foreground regions in the sub-
sequent frames. Motion constraint which determines the
newly appeared objects/regions completes the proposed
algorithm towards an efficient semi-automatic, multiresolu-
tion and semantic video segmentation algorithm.

2 Object-based wavelet decomposition

Because of the attractive features of wavelet-based coding
schemes such as potential to support SNR, spatial and tem-
poral scalability, spatial-frequency analysis support, high
energy compaction in low frequency coefficients and con-
sistency with the human visual system, wavelet-based
image/video coding schemes have become increasingly
important and have gained widespread acceptance. An
example is the JPEG 2000 still image compression standard
[17]. Finally, depending on the shape of filters used for the
wavelet decomposition during the encoding procedure,
there is an exact downsampling relationship between the
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Fig. 1 Circles in different resolutions

a Closer approximation of a digital circle at high resolution
b Downsampling to low resolution
c Worse approximation of a digital circle at high resolution
d Downsampling of c to low resolution
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Fig. 2 Decomposition of a non-rectangular object with odd-length filters

a Object shown in dark grey
b Decomposed object after horizontal filtering
c Decomposed object after vertical filtering
‘E’ and ‘O’ indicate the position (even or odd) of a pixel in the horizontal and vertical dimensions
higher- and lower-resolution shapes [18–20]. In this paper,
an odd-length filter (e.g. 9/7) is used, where all shape pixels
with even indices (suppose indices start from zero or an
even number) are downsampled for the lowpass band
[18]. Fig. 2 illustrates the wavelet decomposition of an arbi-
trarily shaped object when using an odd-length filter. The
final four-band decomposition is depicted in Fig. 2c.
Considering the self-similarity of the wavelet transform, it
is straightforward to suppose that the pixels of a shape
with even index have the same segmentation classification
as the corresponding pixels on its lower-resolution.

The wavelet self-similarity and down sampling relation-
ship extends to all lowpass subband shapes of different res-
olutions. Therefore the discussed relationship between
corresponding pixels is extended to shapes at different res-
olutions. Pixels with indices that are multiples of 2n are
downsampled to n lower-resolutions of the pyramid.
These pixels are corresponding pixels at different levels.
Therefore the number of downsampling or equivalently
the number of corresponding pixels at different resolutions
depends on the pixel indices. Moreover, any pixel at low
resolutions has a corresponding pixel at the higher
resolutions.

As mentioned earlier, the relationship between corre-
sponding object pixels at different resolutions should be
maintained and considered as a scalability constraint in
the mask producing algorithms. Therefore considering
scalability and wavelet self-similarity, a pixel and its corre-
sponding pixels at all other levels have the same segmenta-
tion label. They only change together during segmentation.

3 MRF-based image segmentation algorithm

The main challenge in multiresolution image segmentation
for scalable wavelet-based object coding is to keep the
same relation between the extracted objects/regions at
different resolutions as it exists between the decomposed
objects at different resolutions in a shape-adaptive wavelet
transform. The other constraint is border smoothness par-
ticularly in lower-resolutions. Different smoothness coeffi-
cients defined at different resolutions give some degree of
freedom to put more emphasis on the low-resolution smooth-
ness. To meet these challenges, Markov random field mod-
elling is selected as it includes low-level processing at
pixel level and has enough flexibility in defining objective
functions tailored to the problem at hand [21]. In the
IET Image Process., Vol. 1, No. 1, March 2007
following, first the principle of MRF-based single-resolution
image segmentation is explained and then it is extended to
the multiresolution scalable mode. Subsequently, a smooth-
ness term is added to the objective criterion, and then the
maximum a posteriori (MAP) estimation is presented.

3.1 Single-resolution image segmentation

In a regular single-level MRF-based image segmentation,
the problem is formulated using a criterion such as the
MAP criterion. If the desired segmentation is denoted by
X and the observed intensity function is given by Y, accord-
ing to the Bayes rule, the a posteriori probability can be
written as

PðX jY Þ/ PðY jX ÞPðX Þ ð1Þ

where P(XjY ) represents the conditional probability of the
segmentation label, given the observation, that is intensity
value Y. Label field X is normally modelled by a MRF.
Spatial continuity is easily incorporated into the segmenta-
tion, because it is inherent to MRFs [22]. Using a four- or
eight-neighbourhood system considering only pairwise
cliques, P(X ) is then a Gibbs distribution [23] and is
defined by its energy function U(X )

PðX Þ ¼
1

Z
exp �

1

T
U ðX Þ

� �
; U ðX Þ ¼

X
c[C

VcðX Þ ð2Þ

where Z and T are normalising constants and usually do not
have to be evaluated. C is the set of all cliques, and Vc is the
individual clique potential function. A clique is a set of
neighbouring pixels. A clique function depends only on
the pixels that belong to the clique. In single-level segmen-
tation, usually one- or two-pixel cliques are used as shown
in Fig. 3a, and for one-pixel cliques is assumed that the one
pixel clique potentials are zero, which means that all region
types are alike [23]. Spatial connectivity of the segmenta-
tion is imposed by assigning the following clique function:

VcðX Þ ¼
�b if X ði; jÞ ¼ X ðk; lÞ and ði; jÞ; ðk; lÞ [ C

þb if X ði; jÞ= X ðk; lÞ and ði; jÞ; ðk; lÞ [ C

�

ð3Þ

where b is a positive number, and s and r are a pair of
neighbouring pixels. Note that a low potential or energy
23



corresponds to a higher probability for pixel pairs to
have identical labels. This encourages spatially connected
regions.

To derive the conditional probability density P(YjX ), the
image is modelled as a collection of regions (a region is a
set of connected pixels with the same label) with uniform
or slowly varying grey-level. More precisely, the intensity
of region m is modelled as a constant signal mm plus addi-
tive, zero mean white Gaussian noise with variance s2.
The value of mm is computed by averaging the grey-level
of all pixels belonging to region m in the current estimation
of segmentation filed. In a more sophisticated model, the
mean value mX(s)(s) is a slowly varying function of pixel
s. The value of mX(s)(s) is computed by averaging the grey-
level of all pixels at neighbouring of pixel s which also
belong to the same region m in the current estimation of seg-
mentation field. Therefore at each pixel s of region m, the
image grey-level is characterised by a mX(s)(s) plus additive,
zero mean white Gaussian [23, 24].

PðY jX Þ/ exp �
X

s

1

2s2
ðY ðsÞ � mX ðsÞðsÞÞ

2

 !
ð4Þ

Considering equations (1), (2) and (4), the probability
density becomes

PðX jY Þ/ exp �
X

s

1

2s2
ðY ðsÞ � mX ðsÞðsÞÞ

2

 (

þ
1

T

X
c

VcðX Þ

!)
ð5Þ

Considering the MAP criterion, probability P(XjY ) should
be maximised which is equivalent to maximising the argu-
ment of the exponential function in equation (5) or minimis-
ing it’s negative value. The argument of exponential
function in (5) consists of two terms. Minimising the first
term encourages the intensity function to be close to the esti-
mated region’s average. The second term encourages the
adjacent pixels to have the segmentation label. Emphasis
on any of these two terms can be adjusted by the value of
any of three parameters s, T and b. Therefore to simplify
the expression, the parameters 2s2 and T are set to one,
and the segmentation result is controlled by the value of
b in the Vc function. This results in the following cost or
objective function which has to be minimised with respect
to X(s)

EðX Þ ¼
X

s

Y ðsÞ � mX ðsÞðsÞ
� �2

þ
X
r[@s

Vcðs; rÞ

( )
ð6Þ

where @s denotes the set of neighbouring pixels of s.
To obtain the final segmentation, this objective function

is minimised by one of the several MRF objective minimis-
ation methods [21].

3.2 Multiresolution scalable image segmentation

In this section, the objective function of the single-resolution
image segmentation algorithm is extended to a multiresolu-
tion scalable mode. To tailor the single-resolution objective
function in (6) to our application, the wavelet transform is
applied to the original image and a pyramid of decomposed
images at various resolutions is created. Let Y denote the
pyramid of grey-level pixels. The segmentation of the
image into regions at different resolutions will be denoted
by X. To change the segmentation label of a pixel, as
24
explained in Section 2, the pixel and all its corresponding
pixels at all other levels have to be analysed together. As a
result, an analysis of a set of pixels in a multidimensional
space, instead of a single-resolution analysis, needs to be
used. Instead of speaking of a set of pixels, in the multi-
dimensional space, the term ‘vector’ or ‘array’ is used for
convenience (direction is not important). An array includes
corresponding pixels at different resolutions of the
pyramid. A symbol fsg shows an array which includes
pixel s and its corresponding pixels at different resolutions.
The length of an array is equal to the number of correspond-
ing pixels at different resolutions, which depends on the
index of pixels, and it can be 1, 2 or more. Therefore
clique definition is extended to multidimensional or multi-
resolution space. The extended cliques act on two arrays
instead of two pixels. Fig. 3a shows regular one- and two-
pixel clique sets. In Fig. 3b, the extension of one of these
cliques to the array mode can be seen.

The extension of clique functions is achieved through the
following steps: (3) is used for cliques with length two at a
resolution where pixels s and r are two neighbouring pixels
on the same resolution level. Equation (7) is defined for
multiple levels

Vcðfsg; frgÞ ¼
1

N

� � XMþN�1

k¼M

Vcðsk; rkÞ

¼
1

N

� � XMþN�1

k¼M

ð�1ÞLkb

Lk ¼
1 if X ðskÞ ¼ X ðrkÞ

0 if X ðskÞ= X ðrkÞ

�
sk [ fsg; rk [ frg

ð7Þ

where fsg and frg are two neighbouring arrays which include
two neighbouring pixels s and r. The neighbouring pixels of
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Fig. 3 Single- and multiresolution image segmentation

a Normal one- and two-pixel clique sets
b Clique of two vectors with the vectors’ dimension equal to three
c Clique and its two neighbouring vectors V1 and V2 with dimension 3
are shown on the pyramid. Dashed lines connect the corresponding
pixels of vectors
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the two arrays fsg and frg at level k are denoted sk and rk.
The lowest resolution pixel on vector fsg is denoted by M
and the vector’s dimension is denoted N. At each resolution
such as level k, the single resolution clique function
compares two neighboring pixels sk and rk and the value
þb or 2b is achieved. Therefore (7) is the average of
single resolution clique function at different resolutions. A
positive value is assigned to parameter b, so that two neigh-
bouring pixels at the same level are more likely to belong to
the same class than to different classes [23]. It is notable that
(7) extends the clique definition to multiresolution mode.
Therefore the objective function can be written as follows

EðX Þ ¼
X
fSg

kY ðfsgÞ � mX ðfsgÞðfsgÞk
2
þ

X
frg[@fsg

Vcðfsg; frgÞ

( )

ð8Þ

The first summation is over the set of different arrays on the
pyramid, whereas the inner summation is over the set of all
neighbouring arrays of vector fsg, denoted by the @fsg. The
two arrays fsg and frg are neighbours if pixels of fsg and
frg located at the same resolution are also neighbours. The
grey-levels of pixels in set fsg form an array Y(fsg).
Similarly, m(fsg) and X(fsg) are mean and segmentation
label arrays, respectively. The explained approach used in
this section to develop (8) is a generalisation from regular
to scalable multiresolution image segmentation algorithm.

3.3 Scalable colour-image segmentation

The proposed multiresolution scalable algorithm can be
extended to colour images. Similar to grey-level image seg-
mentation, first the objective function of single-resolution
segmentation is extracted and then it is extended to scalable
mode. Let Y be the observed colour image with three chan-
nels shown by a three dimensional vector Y ¼ [Y1, Y2, Y3]
and the desired segmentation be denoted by X. By assuming
the conditional independence of the channels given the seg-
mentation field [25], we have P(YjX ) ¼ P(Y1jX )P(Y2jX )
P(Y3jX ). Then according to the Bayes rule, the a posteriori
probability density of the segmentation variables can be
written as the conditional probability

PðX jY Þ/ PðY jX ÞPðX Þ ¼ PðY1jX ÞPðY2jX Þ

� PðY3jX ÞPðX Þ ð9Þ

If each of the probability functions P(YijX ), i ¼ 1, 2, 3 can
be shown by an equation similar to (5), then (9) at single-
resolution mode can be written as

PðX jYiÞ/ exp �
X

s

X3

i¼1

1

2s 2
i

ðYiðsÞ � mi
X ðsÞðsÞÞ

2

 (

þ
1

T

X
r[@s

Vcðs; rÞ

!)
ð10Þ

where i ¼ 1, 2, 3 corresponds to the different colour channels.
Parameters 2s2

i , i ¼ 1, 2, 3 and T can be set to one, similar
to grey-level segmentation. Then, according to the MAP
criterion, the objective function can be written as follows

EðX Þ ¼
X

s

X3

i¼1

ðYiðsÞ � mi
X ðsÞðsÞÞ

2
þ

1

T

X
r[@s

Vcðs; rÞ

 !
ð11Þ

When moving from single-resolution to multiresolution
scalable mode, Yi, i ¼ 1, 2, 3 in Y ¼ [Y1, Y2, Y3] denotes
IET Image Process., Vol. 1, No. 1, March 2007
the intensities of different colour channels in the pyramid’s
pixels. Similarly, the multidimensional processing should
be used and the corresponding pixels at different resolutions
are expressed by the symbol f g. The concept of clique func-
tions is the same as for the scalable grey-level image
segmentation mode. Therefore, the objective function in
(11) is extended to scalable colour mode as follows

EðX Þ ¼
X
fSg

X3

i¼1

kYiðfsgÞ � mi
X ðfsgÞðfsgÞk

2

(

þ
X
frg[@fsg

Vcðfsg; frgÞ

)
ð12Þ

where mi is the intensity-average function of the ith colour
channel.

The proposed segmentation can be performed at any
colour space such as RGB or YUV. It has been recognised
that selecting of an appropriate colour space produces more
perceptually effective segmentation results [25, 26]. In par-
ticular, segmentation in YUV or LUV spaces often produces
more favourable results than in RGB space [25–27]. Many
of the images and image sequences in the databases are in
YUV format where Y is in full resolution whereas the U
and V components are in half resolution. The fact that the
Y, U and V channels are presented at different resolutions
is not considered in any of the existing regular single or
multiresolution colour image segmentation algorithms.
However, this fact calls for a specially fitted multiresolution
algorithm to perform the segmentation task effectively. The
proposed algorithm has enough flexibility to directly
segment this format of colour images. It is possible that
only the available components of colour data at different
resolutions be considered to classify the vector of corre-
sponding pixels at different resolutions under one of the seg-
mentation labels. In other words, it is possible that the terms
related to the chrominance components at the highest resol-
ution be deleted from the objective function in (12). Tying
the corresponding pixels together at different resolutions is
equal to considering all the available colour information
which classifies the vector and pixels at different resolutions
successfully. Considering the same argument, the objective
function can be simplified to segment the grey-level image.

3.4 Smoothness criterion

Object borders are one of the most important properties
for visual perception. Many natural objects exhibit
smooth borders/edges. Hence, to some extent there is a
correlation between visually pleasing objects and edge/
border smoothness. Psychologically, smoother edges/
borders increase the perceived visual quality of the seg-
mentation result. Therefore in some edge/contour-based
segmentation algorithms such as the active contour
model and the ‘Canny’ edge extraction algorithm, the
extracted objects, regions, edges or borders are smoothed
[28–30]. Some shortcoming of edge-based approaches for
segmentation are unclosed contour detection, problems in
the texture or noisy environments [28, 30], the need for
initial estimation, detection of only one object in the
scene, computational complexity and convergence pro-
blems in detecting convex regions [28] and so on.
While most of these problems are overcome in region-
based approaches, the smoothness criterion has not been
used in region-based approaches yet.

Traditionally, in region-based image/video segmentation
algorithms, the image features such as pixels’ grey-levels or
25



colours have been considered. In most of these approaches,
emphasis is put on the accuracy of segmentation. However,
the shape delineation of objects/regions and producing a
well-pleasing objects’/regions’ shape have not attracted
enough attention. On the other hand, perfect segmentation,
if not impossible, is very difficult and distortions created by
wrong segmentation in region-based approaches can result
in incorrect, rough and unpleasing borders/edges. For
example in pixel-wise segmentation algorithms such as
MRF-based algorithms, the segmentation algorithm
sometimes cannot capture the object/region structure very
well, especially in low contrast areas which can result in
border fluctuation. Therefore in the proposed region-based
segmentation algorithm, a smoothness criterion is incorpor-
ated into the objective function, which improves the visual
quality of the segmentation result.

Due to multiresolution object extraction applications
such as scalable coding, the smoothness constraint is
emphasised by considering it in the proposed multi-
resolution scalable segmentation’s analysis. At high
resolutions, the large number of pixels ensures more
visual quality for the segmentation. However, at lower-
resolutions the visual quality can suffer due to insufficient
information and downsampling distortion. Downsampling
distorts shapes and cannot necessarily preserve their top-
ology at lower-resolutions for all possible shapes [13].
This is more critical for complex shapes in terms of the
ratio between perimeter and area pixels. Therefore
achieving visually pleasing objects/regions at higher-
resolutions does not necessarily ensure similar quality at
lower-resolutions. Hence, it is necessary to enhance
smoothness at all resolutions.

The proposed smoothness definition is based on the
border’s curvature, which is the rate of the angle change
between a curve and the tangent line to the curve. In a
digital environment, an estimation of curvature can be
used. The estimation is explained in Fig. 4. Minimising
the proposed estimation of smoothness prevents unwanted
fluctuations in the border pixels.

Therefore the objective function is extended according to
the following equation

EðX Þ ¼
X
fSg

X3

i¼1

kYiðfsgÞ � mi
X ðfsgÞðfsgÞk

2

(

þ
X
frg[@fsg

Vcðfsg; frgÞ þ
X
q[fsg

lresðqÞ � kðqÞ

)
ð13Þ
26
where k(q) shows the curvature estimation of pixel q, a pixel
of vector fsg, and lres(q) is a coefficient which can be
resolution dependent. To more emphasise on the lower
resolution smoothness or visually pleasing lres(q) increases
when resolution decreases (the values of lres(q) can be appli-
cation dependent. In our examples, it is doubled when res-
olution is halved). In grey-level images, only the
grey-level/intensity channel is available, and (13) can be
reduced to

EðX Þ ¼
X
fSg

½Y ðfsgÞ � mX ðfsgÞðfsgÞ�
2
þ

X
frg[@fsg

Vcðfsg; frgÞ

(

þ
X
q[fsg

lresðqÞ � kðqÞ

)
ð14Þ

where Y is the grey-level/intensity function and m is the
grey-level/intensity average function.

The proposed smooth object extraction is different from
a simple objects’ border smoothness as has been done in
the work of Marques and Llach [31] which is a filtering
of the extracted video object shape to remove the small
elongations introduced during the segmentation process.
The differences are in the following areas: (a) our smooth-
ing process takes part in the segmentation algorithm and
changes the segmentation outcome; (b) with sufficient
contrast, the proposed algorithm produces borders that
are more faithful to the region’s true shape; (c) on some
occasions, some background pixels are added to the fore-
ground regions to produce better looking shapes,
especially at different resolutions; (d) by changing the
smoothness coefficients (lres(res)), the emphasis on the
smoothness can be adjusted at different resolutions
which produces visually pleasing shapes at different
resolutions.

As an example of smoothness effect in spatial segmenta-
tion, consider the circle in Fig. 5a. It has two grey-levels,
100 in the background area and 200 in the foreground
area. Considering a uniform noise in the range (0, 50)
added to the background and subtracted from the object
intensity. This noise changes the image from binary to grey-
level and reduces the pixels intensity variation of the fore-
ground to the background pixels. The image is segmented
by the proposed algorithm at two resolutions 20 � 20 and
10 � 10. The lower-resolution smoothness is augmented
by decreasing the smoothness coefficients to zero for the
highest level and increasing the smoothness coefficient for
S

a b c

Fig. 4 Curvature estimation

a Corner point, k ¼ 90
b Same direction k ¼ 0
c Change direction point k ¼ 45
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Fig. 5 Scalable segmentation of a digital circle with emphasis on low-level smoothness

a Original image
b Noisy image
c Segmentation at 20 � 20 resolution
d Segmentation at 10 � 10 resolution
lower-resolution to 10. The other parameters of segmenta-
tion are k ¼ 2 and b ¼ 10. The results are shown in
Figs. 5c and d In this example, the smoothness criterion
has deleted some pixels of the shapes at different resolution.
The results could be compared with Figs. 1a and b at low
and high resolutions considered as regular segmentation.
The proposed segmentation method extracts a more pleas-
ing shape at lower resolutions, albeit sometimes adding
some distortion at higher resolution. However, larger
number of pixels at higher resolutions increase visually
pleasing effect of the extracted objects/regions.

3.5 MAP estimation

The iterated condition mode (ICM) optimisation method
[16] is used to minimise the objective function in (13).
The segmentation is initialised with the k-means clustering
algorithm for each channel separately. Then neighbouring
pixels with equal labels at all three channels form a
region. The segmentation estimation is improved using
ICM optimisation [16]. In single-resolution image segmen-
tation, ICM optimises the objective function pixel by pixel
in a raster-scan order until convergence is achieved. At each
pixel, the segmentation of the processed pixel is updated
given the current X at all other pixels. Therefore only the
terms in the objective function related to the current pixel
need to be minimised

EðX ðsÞÞ ¼
X3

i¼1

ðYiðsÞ � mi
X ðsÞðsÞÞ

2
�
X
r[@s

Vcðs; rÞ ð15Þ

ICM was used in the single-level segmentation algorithm
for grey-level images by Pappas [23] and was extended to
colour images by Chang et al. [25]. In this paper, it is
adapted to the multiresolution scalable segmentation algor-
ithm. Similar to ICM optimisation technique for single-
resolution image segmentation, the objective-function
terms corresponding to the current vector are optimised
given the segmentation at all other vectors of the pyramid.
The resulting objective function term related to the
current vector is

EðX fsgÞ ¼
X3

i¼1

kYiðfsgÞ � mi
X ðfsgÞðfsgÞk

2
þ

X
frg[@fsg

Vcðfsg; frgÞ

þ
X
q[fsg

lq � KðqÞ ð16Þ
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For grey-level images there is only the intensity channel and
the objective function is simplified to

EðX fsgÞ ¼ ðY ðfsgÞ � mX ðfsgÞðfsgÞÞ
2
þ

X
frg[@fsg

Vcðfsg; frgÞ

þ
X
q[fsg

lq � KðqÞ ð17Þ

During the optimisation process for each pixel s of a vector
fsg, the terms mi(s), i ¼ 1, 2, 3, are estimated by averaging
the channel intensities of all pixels that belong to the region
i and are inside a window with width w centred at pixels s.
The window size w is doubled when moves to the next
higher-resolution. The average of any pixel s and its corre-
spondences at all other levels in fsg are used to classify the
pixels of fsg to a label which minimises (16). To reduce
computational complexity, it is enough to consider only
labels of fsg and its neighbouring vectors to select the best
label by the energy minimisation through (16). Therefore
for the pixels inside a region there is no computation and
the regions’ borders are gradually refined. Furthermore,
this border processing prevents isolated noise pixels from
becoming a new cluster, resulting in fewer wrongly detected
boundaries [24].

Let us consider the overall optimisation algorithm now.
As mentioned earlier, the initial segmentation of the
pyramid is obtained by the k-means clustering algorithm
[32, 33]. The pyramid’s pixels are processed progressively
from low to high resolutions. At each resolution, pixels
are visited in a raster scan order. Intensity average mi(s),
i ¼ 1, 2, 3, at each pixel s and its corresponding pixels
at the other resolutions for all possible classes are esti-
mated with a pre-determined window size w used for esti-
mation. Then the estimate of Xfsg is updated using the
ICM approach with a multi-level analysis using (17). By
updating the segmentation labels of pixels at the current
resolution, the corresponding pixels at the other levels
are also updated. After convergence at the current resol-
ution, the algorithm moves to the next higher resolution
and updates the estimates of m and X and so on, until
all resolutions are processed. The stopping criterion at
each resolution is the number of X updates which
should be below a pre-defined threshold. Other optimis-
ation and convergence criteria can also be used
[21–23]. The whole procedure is repeated with a
smaller window size. The algorithm stops when the prede-
termined minimum window size for the lowest resolution
is reached.
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4 Semantic video object extraction

At the core of semantic video segmentation is always a
tracking algorithm. Tracking techniques are classified as
forward or backward methods. In the forward method, the
current frame objects/regions are projected to the next
frame [7, 34, 35]. Conversely, in the backward method,
the objects/regions are back projected to the previous
frame using motion information. In forward tracking algor-
ithms, the projected regions often need to be adjusted
through a post-processing stage [34]. In backward tracking,
the spatial segmentation gives the precise borders of objects
[8]. This overcomes the problem of non-rigid moving
objects. Therefore in this papers a multiresolution backward
tracking algorithm is used. To detect the newly appeared
objects/regions, the tracking algorithm is extended to
present a video segmentation routine.

In the first frame, through user’s intervention and spatial
segmentation, a meaningful object (foreground) is deter-
mined. In special scenes such as ‘head and shoulder’ or
‘car on the road’, automatic image object extraction algor-
ithms can be used [36, 37]. However, these algorithms are
not matured yet, and they have many limitations such as
detecting only predefined objects in a specific scene. High
computational complexity is another problem of these algor-
ithms. As a result, they cannot be used in a generic scene and
need further development [38]. In the subsequent frames, the
object (foreground) is tracked in an automatic procedure. In
each frame, a multiresolution spatial segmentation is fol-
lowed by an MRF-based backward region classification
stage, which decides whether the regions belongs to the fore-
ground or background. The images at different resolutions of
the pyramid are separated to different regions by the pro-
posed scalable image segmentation algorithm and the same
segmentation patterns are produced at different resolutions.
This feature is used in the proposed tracking algorithm. On
the basis of the region size, each region is processed at the
proper resolution and results are extended to corresponding
regions in the other resolutions of the pyramid. Classifying
larger regions at lower resolutions significantly reduces the
computational complexity of the classification algorithm.

The proposed multiresolution video object extraction
algorithm, with scalability, extends the attractive features of
multiresolution image segmentation to video segmentation
algorithm. Some of the improvements are better noise toler-
ance, faster classification and less computational complexity.

4.1 Objective function of MRF-based
region classifier

MRF-based processing is the most frequently used stochastic
model in image processing and computer vision. It has the
ability to capture the spatial continuity of natural images,
and similarly it can capture the spatial and temporal continu-
ity of video signals. Pixel-based processing increases the
computational complexity of the algorithm, and therefore
in this work, MRF-based classification is used for region lab-
elling. Regions are obtained from the scalable spatial seg-
mentation; region-based processing therefore increases the
spatial accuracy of the video segmentation processing.
Since the number of regions is much lower than the
number of pixels, the presented algorithm is very effective.

The proposed algorithm starts by partitioning the current
frame into different regions using the proposed scalable
spatial segmentation algorithm. Then by an MRF-based
objective function, each region and its corresponding
regions at the other resolutions are classified to foreground
or background. At first the region classifier’s objective
28
function is extracted at single resolution and then it
extends to multiresolution scalable mode.

According to the MAP estimation criterion, the con-
ditional probability of video segmentation labelling X,
given the observations, should be maximised. The obser-
vations include the last frame segmentation X2, motion
information u and colour/intensity I of the current frame.
Hence using the Bayes theorem, we obtain

PðX jX�; u; IÞ/ PðX�ju;X ; IÞPðujX ; IÞPðX jIÞ ð18Þ

The first term on the right-hand side of (18) explains the
temporal continuity of the segmentation field. This term
encourages corresponding regions/pixels at the subsequent
frames to have the same label. Considering MRF-based
modelling for the labelling process, the conditional prob-
ability of the estimated label field at the previous frame
X2 is modelled as a Gibbs distribution

PðX�jX ; u; IÞ ¼
1

z1

expf�ET ðX ;X�; u; IÞg ð19Þ

where z1 is a normalisation constant that does not affect the
optimisation process. The energy term ET (X, X2, u) is mod-
elled by the Gibbs distribution potentials VT

Ri
over single

cliques consisting of just one region as follows

ET ðX
�; u;X ; IÞ ¼

Xk

i¼1

V T
Ri
ðX�; u;X ; IÞ

V
T
Ri
ðX
�; u;X ; IÞ ¼ ztQðRiÞ ð20Þ

In this equation, k is the number of regions, and index i
points to different regions. zt is a normalisation constant.
Q(Ri) is the number of pixels in Ri which after the back pro-
jection process have different labels compared to the current
frame. Therefore a smaller Q indicates a higher probability
for the region to have the same label as the corresponding
projection at the previous frame determined by uRi

. The
coefficient zt determines the trend to track the same label
field for corresponding regions in consecutive frames.
This term also allows tracking of stationary objects/regions.

The second term on the right-hand side of (18) is a motion
constraint which explains the relationship of the motion
vectors to the labelling process. It is modelled as a Gibbs
distribution

PðujX ; IÞ ¼
1

z2

expf�EM ðu;X ; IÞg ð21Þ

where z2 is a normalisation constant which does not affect
the optimisation process. Considering the compensated,
global motion and the labels set as F, B, the above-
mentioned constraint for labels along the motion trajectory
means that any non-zero motion vectors indicate foreground
areas. Therefore the energy term is formed by the Gibbs
potential function as

EM ðX ; u; IÞ ¼
XK

i¼1

V M
Ri
ðX ; u; IÞ ð22Þ

where energy term VM
Ri

, corresponding to the region Ri, is
described as follows

V
M
Ri
ðX ;u; IÞ ¼

�aAðRiÞ ðXRi
¼ F and uRi

= 0Þ or

ðXRi
¼ B and uRi

¼ 0Þ

þaAðRiÞ ðXRi
¼ F and uRi

¼ 0Þ or

ðXRi
¼ B and uRi

= 0Þ

8>>><
>>>:

ð23Þ
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where A(Ri) is the size of region Ri, and a is a coefficient.
This term encourages moving regions to be classified as
foreground. The magnitude of the motion vector is not con-
sidered, but only whether it is zero or not. Since this term
detects the newly appeared/moved objects/regions, its
effect is similar to that of a change detector.

The third term on the right-hand side of (18) models the
spatial continuity of the segmentation field. It is modelled as
a Gibbs distribution whose energy term ESp

is formed by the
Gibbs potentials VSp as a clique function of two neighbour-
ing regions Ri and Rj as follows [39]

PðX jIÞ¼
1

z3

expf�ESðX ;IÞg

ESðX ;IÞ¼
Xk

i;j¼1;i=j

V
Sp

RiRj
ðX ;IÞ

V
Sp

RiRj
ðX ;uÞ¼

�zf � f ðMRi
�MRj

Þ �NRiRj
; XRi

¼XRj
¼F

�zb � f ðMRi
�MRj

Þ �NRiRj
; XRi
¼XRj

¼B

zdiff � f ðMRi
�MRj

Þ�NRiRj
; XRi

=XRj
ð24Þ

8><
>:

where z3 is a normalisation constant, k is the number of
regions, NRiRj

is the length of the common border between
regions Ri and Rj. MRi

and MRj
are the means of regions

Ri and Rj, respectively. f is a function which compares
regions’ mean values and gives a small value for dissimilar
regions and a large value for similar regions. A good defi-
nition for f is given by Tsaig and Averbuch [40], which
is shown in Fig. 6. The corresponding formula can be
expressed as

f ðdÞ¼

Th d ,dl

Tl�
Th�Tl

dh�dl

ðd�dlÞ dl ,d ,dh

Tl d .dh

8>><
>>: ð25Þ

where Tl, Th, dl and dh are the entered thresholds. Therefore
two regions with similar spatial properties are more likely to
have the same label.

Since the classification function is modelled as an MRF
processing, its probability function in (18) can be modelled
as a Gibbs distribution as follows

PðX jX�; u; IÞ ¼
1

zL

expf�ELðX jX
�; u; IÞg

¼
1

zL

exp �
Xk

i¼1

ULðXRi
jX�; u; IÞ

( )

ð26Þ

F(d)

Tl

Th

dl dh

d

Fig. 6 Similarity function [39]
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Therefore considering (18)–(22), (24) and (26), the objec-
tive function for the scalable multiresolution video segmen-
tation is equal to using

ELðX jI;X�; uÞ ¼
XK

i¼1

(
zt � QðRiÞ+ a � AðRiÞ

þ
X

P[@Ri

zx � f ðMðRiÞ �MðPÞÞ � NRiP

)

ð27Þ

where K is the number of regions, @Ri are the neighbouring
regions of region Ri and finally Q, A and f are the functions
as defined in (20), (23) and (25). The set of neighbouring
regions of Ri is shown by @Ri, and the coefficient zx

comes from (24) and is equal to

zx ¼

�zf X ðRiÞ ¼ X ðPÞ ¼ F

�zb X ðRiÞ ¼ X ðPÞ ¼ B

zdiff X ðRiÞ= X ðPÞ

8<
:

4.2 Objective-function optimisation

The objective function should be optimised by one of the
MRF optimisation methods. However, at first, an initial esti-
mation is necessary. The initial estimation is obtained by
considering the temporal continuity term. The regions are
simply back projected to the previous frame, and the
number of object pixels is counted. If the ratio of the
counted object pixels over the area of a region exceeds a
threshold, the processed region is considered as a fore-
ground area. In multiresolution mode, the average of the
computed ratio at different resolutions is compared with
the threshold. Then an ICM-like optimisation is performed.
However a raster scan of regions, unlike the raster scan of
an image’s pixels, does not have a physical interpretation.
Since large-size regions are more likely to be classified cor-
rectly, regions are put in a queue in the order of their size
from large to small regions. The correct classification of
large regions can help with the right classification of their
neighbouring small regions. Regions are visited according
to the priority queue. For any region such as s, the terms
of the objective function corresponding to this region are
optimised given the classification of all the other regions.
Hence, considering (27) and (28), the objective function
related to region s is stated as follows

ULðRiÞ ¼ ztQðRiÞ+ aAðSÞ þ
X

P[@ðRiÞ

zX f ðMðRiÞ

�MðPÞÞNRiP
ð28Þ

One cycle of optimisation process continues until the queue
is empty. The convergence criterion updates more than a
threshold value such as 5% of regions, in one cycle of
region visits. To reduce the computational complexity,
regions which, when back projected to the previous
frame, are covered by foreground (background) pixels by
more than a threshold (i.e. 90%) do not need reclassifica-
tion, and they take part in the objective function only for
classification of their neighbouring regions. The different
coefficients are determined empirically.

However, more reduction in the computational complex-
ity is achieved by classifying each region in a proper resol-
ution and extending the result to the corresponding regions
at the other resolutions. Depending on the size of the region
and the defined thresholds, a resolution is selected, the
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region at that single-resolution is classified, and the result is
extended to the other lower- and higher-resolutions. For
example the largest regions are classified at the lowest res-
olution, and very small regions are classified at the highest
resolution. This significantly reduces the computational
complexity because motion estimation and back projection
to the lower-resolution has much less computational com-
plexity than working at the higher-resolutions.

Since functions Q, A, f and N can be extended to multi-
resolution mode, the proposed objective function for the
video segmentation in (27) or (28) can be extended to multi-
resolution mode. These functions are performed on the array
of corresponding regions at different resolutions. The idea is
that the single resolution function be computed over corre-
sponding regions at different resolutions of the pyramid and
then be averaged. Owing to the smaller size of lower resol-
utions, the result of lower resolutions (in case) can be
scaled by the resolution’s size reduction factor over
pyramid such as 4, 16 or 64 to make the average more accu-
rate. For example at low resolution phase of function Q,
counting the number of pixels with different labels following
region back projecting to the previous frame is first scaled by
a proper factor and then it is averaged with the function
values at other resolutions.

The proposed objective function does not need the exact
motion vectors. Therefore a simple translational motion
model in the following equation is used, which significantly
reduces the computational complexity

v̂x ¼ b; v̂y ¼ c ð29Þ

For small size regions, the assumption of constant motion
vector is justified. In addition, exact motion compensation
is not required at this stage, and classifying only the fore-
ground region is enough. Motion estimation is obtained
by shifting the region over the last frame and finding the
best match in a hierarchical framework. The hierarchical
search is started at the coarsest resolution and propagates
to the higher resolutions while the motion estimation is
refined at each resolution until fine resolution is achieved
[40]. At each resolution, a threshold determines the area
of the region search. The second energy term EM in the
objective function encourages regions with non-zero
motions to be classified as foreground. The problem
behind this classification is the occlusion related to
covered and uncovered regions [41, 42]. Backward apparent
motion classifies these regions as moving regions, and in the
classification they might be incorrectly detected as fore-
ground regions. To overcome this problem, only valid
motion vectors in the energy term (EM) in the objective
function are processed. The backward motion vector such
as (vx1, vy1) computed for region A is valid, if the corre-
sponding forward motion vector from the projected
regions in the previous frame towards current frame is in
the opposite direction. However, in practice, some vari-
ations could be tolerated and a threshold for the differences
can be determined. These will project the corresponding
region in the previous frame to region A. Figure 7 explains
this relationship. Otherwise, this motion vector is called
invalid and is replaced with the zero vector. This replace-
ment prevents the detection of uncovered regions.

4.3 Object’s border fine tuning

For most of the object-based applications such as video
editing and manipulation, the ‘object-of-interest’ should
be extracted with pixel-wise accuracy. However, the
proposed scalable grey-level segmentation can result in
30
under-segmentation and may fail in discriminating
between foreground and background objects in areas with
low contrast. One way to increase the discriminating
power of the segmentation is by using colour segmentation,
which partitions the image into more regions than the grey-
level segmentation. This decreases the under-segmentation,
but increases the computational complexity of spatial seg-
mentation. However, in some image sequences with low
colour contrast, under-segmentation can still happen. In
this case, the suggestion is to divide the image into water-
shed basins, which results in an over-segmentation includ-
ing many small regions [43, 44]. The region growing
algorithms can also produce over-segmentation, but the
watershed is more faithful to the natural borders.

To retain the smoothness feature of the extracted regions
and ensure visually pleasing segmentation, the scalable
multiresolution grey-level/colour image segmentation is
used. The regions which are smaller than a threshold are
left, and the other regions are divided into smaller basin
regions by the watershed algorithm [44]. The watershed
basins are also downsampled to lower-resolutions to
create the corresponding regions at the lower-resolutions.
Subsequently, the vector basin regions are classified. This
leads to avoiding the unnecessary partitioning of small
regions and retaining most of the aesthetically pleasing
borders resulting from the scalable segmentation. Fig. 8
shows the idea. For the spatial segmentations of the frame
displayed in Fig. 8a, the partitioning of the regions to the
basins is shown in Fig. 8b.

Partitioning into basins overcomes the under-
segmentation problem, but it significantly increases the

I(k)

I(K+1)

Background
to be covered

Uncovered
background

AA

‘‘

A‘ Object

Fig. 7 Detection of uncovered background [41]

Region A0 at frame k is projected to region A at frame kþ 1, but region
A is back projected to region A0

R1
R2

R3

R5R4 R6

R3

R4

ba

Fig. 8 Partitioning the segmentation regions to the basins

a Original (scalable) image segmentation
b Partitioning the segmentation regions to the basins
Regions R2 and R3 are smaller than the predefined threshold and have
not been divided to basins
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Table 1: Parameters for the proposed and alternative algorithms

Sequence Spatial segmentation Video segmentation algorithm

Number of clusters b zt zf zb zdiff a Th dh Tt dl

Claire 5 50 10 5 5 5 15 2 80 0.5 20

Table-Tennis 6 100 10 5 5 5 15 2 80 0.5 20

Hall-Monitor 7 50 10 5 5 5 15 2 80 0.5 20

Mother and Daughter 7, 2, 2 40 10 5 5 5 15 2 80 0.5 20
number of regions and the computational complexity of the
labelling optimisation process. In addition, due to having
more information in the large-size regions, their classifi-
cation is also more confident than for small-size basin
regions. However, the challenge is how to automatically
determine the use of grey-level or colour segmentation and
whether the partitioning of the image into watershed basin
regions is necessary or not. It is clear that it depends on the
contrast between foreground and background. However,
except through human intervention, we are not aware of
any effective solution for an automatic decision to choose
regular or over-segmentation for generic application. This
is somewhat similar to the problem of threshold and par-
ameter tuning that requires many thresholds and parameters
to be set by the users in different algorithms for image/video
processing and generally in signal processing algorithms.

5 Experimental results and discussion

To evaluate the performance of the presented algorithm, four
different sequences, ‘Claire’, ‘Hall-Monitor’ with CIF
IET Image Process., Vol. 1, No. 1, March 2007
format, ‘Table-Tennis’ with SIF format and colour sequence
‘Mother and Daughter’ with QCIF format are segmented.
The simulations were performed on a Pentium 4 PC compu-
ter with 2.4 GHz CPU clock and 512 Mbytes RAM. The
algorithms were coded in the Microsoft Visual Cþþ 6.0
environment and Matlab software was also used for user
interface and input/output functions. The parameters for
the spatial segmentation and video object extraction algor-
ithms are shown in Table 1. These parameters are set empiri-
cally. Further research is needed for their automatic tuning.

At the initial step, the user determines the rough bound-
ary of the ‘object-of-interest’ through a graphic user inter-
face (GUI). Subsequently, all regions with the majority of
their area, more than a predetermined percentage (i.e.
50%), located inside this closed contour are selected to
belong to the extracted object. This is more explained in
the first example of this section.

In the first example, the proposed video segmentation
algorithm is run over the 75 frames of the sequence. The
user’s selection of the ‘Claire’ object in the first frame of
the ‘Claire’ sequence is shown in Fig. 9a. The subsequent
Fig. 9 First frame ‘Claire’ object separation

a Rough object separation by user intervention
b Segmentation by the proposed algorithm
c Extracted object at the first frame
d Object extracted in frame 20
e Object extracted in frame 45
f Object extracted in frame 65
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spatial segmentation by the proposed algorithms is shown in
Fig. 9b. The exact borders of the object at finest resolution
are shown in Fig. 9c. The extracted objects at frames 20, 40
and 60 in multiresolution mode are shown in Figs. 9d– f.

To compare the proposed algorithm with other region-
based object tracking and extraction methods, an alternative
tracking algorithm is used. It is an ordinary backward track-
ing algorithm [45, 46] which includes only the temporal
continuity term at the highest resolution. First, the current
frame is partitioned into different regions by the
MRF-based single resolution image segmentation proposed
by Pappas [23]. Each region is then back-projected to the
previous frame. If the number of projected pixels inside
the foreground area at the previous frame is more than a
threshold (i.e. 50% of the region’s area), the region is classi-
fied as a foreground region. The alternative algorithm will
be called the ‘regular (backward) tracking algorithm’. The
quantitative criterion for comparing the extracted objects
by different algorithms is border smoothness which is aver-
aged over the curvature of object border pixels. Although it
is not an ideal criterion, it is well consisted with the results
of our subjective tests. The smoothness comparison for the
‘Claire’ sequence for the three resolution levels are shown
in Table 2. (The proposed scalable tracking algorithm
directly produces the object at different resolutions,
however, the object produced by regular tracking algorithm
is down-sampled to lower resolutions.) The smoothness
term modifies the segmentation in areas of the image that
have lower grey-level contrast. In the ‘Claire’ sequences,

Table 2: ‘Claire’ sequence smoothness

88 � 72 144 � 176 288 � 352

Scalable tracking 54.67 54.7 53.15

Regular tracking 58.95 58 56.87

Improvement, % 7.54 6.03 6.77
32
the regions around the head have lower contrast compared
to the shoulder and body areas. If the only head area be con-
sidered, the smoothness improves by 13.17%, 11.5% and
10.5% at different resolutions. As a subjective test
example, Fig. 10 shows the extracted objects of the 23rd
frame of the ‘Claire’ sequence when using the scalable
and a regular algorithm, respectively. In this figure,
images of different resolutions are shown at the same size
to highlight the details. The analysis of both images (by
any viewer) clearly shows that our algorithm has extracted
a smoother and more visually pleasing ‘Claire’ object.

In the second example, the standard MPEG-4
‘Table-Tennis’ sequence which has textured background
with fast moving objects is processed. In Fig. 11, frames
10, 23 and 32 with the extracted objects by the proposed
video segmentation algorithm are shown. For the compari-
son purpose, observe the extracted objects in frame 10 of the
‘Table-Tennis’ sequence that were extracted by the pro-
posed scalable video segmentation algorithm and by the
alternative algorithm which is single-level version of the
proposed tracking algorithm without any smoothness cri-
terion called as regular algorithm. The extracted objects
by the proposed and regular video segmentation algorithms
at three different resolutions are shown in Fig. 12.
Subjective comparison shows the better visual quality of
the object’s extracted by the proposed object segmentation
algorithm. For a quantitative comparison, the object
smoothness for the first 35 frames of the sequence is
measured which presented in Table 3. Again, if only the
hand and fingers with the racket are considered, the smooth-
ness is nearly doubled. The computational complexity of the
multiresolution tracking algorithm is reduced typically to
,30% of tracking at the finest resolution, because smaller
regions and less motion decrease the complexity of the
matching procedure at lower-resolutions.

The proven high noise tolerance of the multiresolution
image segmentation [15] is extended to video segmentation
by the proposed algorithm. (Noise sources can be from
Fig. 10 ‘Claire’ object 23rd frame

a Scalable 288 � 352
b Scalable 144 � 176
c Scalable 72 � 88
d Regular 288 � 352
e Regular 144 � 176
f Regular 72 � 88
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Fig. 11 ‘Table-Tennis’ object extraction

a Frame 10
b Frame 23
c Frame 32
transmission channels, image acquisition or saving equip-
ments, and so on.) In video object extraction, especially at
low contrast areas, noise can adversely affect the regions
matching, resulting in wrong classifications. For example
some small background regions close to object areas are
merged with the object and some regions belonging to the
object areas are merged with the background. To overcome
these matching errors, the proposed algorithm effectively
uses the noise-reduced, lower resolution information to
classify the regions. This is possible due to the proposed
multiresolution video segmentation algorithm.

To test the algorithm in noisy environments, a uniform
noise in the range (225, þ25) is added to the ‘Table-
Tennis’ sequence. The noisy sequence is segmented with
IET Image Process., Vol. 1, No. 1, March 2007
the proposed algorithm and the results are compared with
the single-level tracking algorithm. Table 4 presents the
smoothness of both algorithms. The misclassified numbers
of pixels for different resolutions are counted in Table 5.
The number of misclassified object pixels in the scalable
multiresolution video segmentation algorithm decreases to
’50% of the pixel misclassification of the regular single-
level segmentation algorithm. This confirms the superiority
of the multiresolution algorithm. Fig. 13 shows the extracted
objects in frame 14 for both multiresolution and single-level
object extraction.

In the third example, the ‘Hall-Monitor’ CIF sequence
is segmented. In this example, the ‘object-of-interest’
appears gradually. Consequently, the change detector
Fig. 12 ‘Table-Tennis’ object 10th frame

a Scalable 240 � 352
b Scalable 120 � 176
c Scalable 60 � 88
d Regular 240 � 352
e Regular 120 � 176
f Regular 60 � 88
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embedded in the second term of the MRF objective function
identifies newly appearing objects/regions, whereas the
tracking algorithm inherited in the first term of the MRF
objective function detects already-present objects/regions.
In this algorithm, due to low contrast of the foreground
and background, the spatial segmentation cannot discrimi-
nate between the foreground and background in some
areas of the image. Therefore the algorithm partitions the
regions bigger than 20 pixels by the watershed algorithm,
and the basin regions are classified.

The object of frame 40 extracted by the scalable algor-
ithm at different resolutions is shown in Fig. 14. The
extracted objects of frames 34, 44 and 60 using the scalable
and the regular algorithms can be seen in Fig. 15. Some
regions related to shaded areas are also detected as
objects, because the shading between two consecutive
frames is also changed.

Increasing the value of change-detector thresholds can
reduce the size of detected areas of shading but increases

Table 5: Misclassified object’s pixels in noisy
‘Table-Tennis’

60 � 88 120 � 176 240 � 352

Scalable tracking 17 63 262

Regular tracking 35 134 528

Improvement, % 51 53 50

Table 4: Noisy ‘Table-Tennis’ smoothness

60 � 88 120 � 176 240 � 352

Scalable tracking 56.73 55.42 55.55

Regular tracking 62.8 62.66 63.62

Improvement, % 10.7 13.1 14.54

Table 3: ‘Table-Tennis’ sequence smoothness

60 � 88 120 � 176 240 � 352

Scalable tracking 55.6 53.87 53.10

Regular tracking 58.82 57.63 56.22

Improvement, % 6.84 6.97 5.88
34
the risk of missing some parts of the object during the detec-
tion process. As a subjective test, the comparison of the
extracted objects in Fig. 15 confirms the superiority of the
proposed video object extraction algorithm over the
regular object-detection algorithm in creating a visually
more pleasing segmentation. Table 6 confirms the improved
smoothness of the proposed algorithm.

In the fourth example, the 75 frames of the QCIF size
‘Mother and Daughter’ colour image sequence are pro-
cessed. The frames are in YUV format, where Y is in
full resolution and U and V are in half resolution. At the
first step, the grey-level image is segmented by the pro-
posed scalable image segmentation algorithm. As
Figs. 16a and b show, the spatial segmentation does not
separate the object from background. In particular, the fore-
ground and background regions around child’s face and
neck are mixed together. Colour information increases
the discrimination and separation capabilities of the seg-
mentation process. Therefore each frame of the ‘Mother
and Daughter’ sequence is segmented by the proposed scal-
able colour image segmentation at three different resol-
utions. Figs. 16c and d show that the foreground regions
are successfully separated from background and the next
stages of the video segmentation algorithm can be per-
formed. The ‘object-of-interest’ is selected by user inter-
vention at the first frame, and it is tracked in the next
frames by the proposed video-segmentation algorithm. In
Fig. 17, frames 32, 50 and 68 are shown with the extracted
objects at the highest resolutions.

In Fig. 18, the objects of frames 48, 58 and 72 extracted
by the proposed scalable algorithm and regular backward
tracking algorithm are compared. The objects extracted by
the proposed object extraction algorithm are shown in the
top row of the figure. The objects extracted by the regular
tracking algorithm are shown in the second row.
Subjective comparison of the extracted objects clearly
shows better visual quality of the objects extracted by the
proposed object segmentation algorithm.

The simulation details include the number of frames, size
of frames, grey-level or colour images, with/without global
motion estimation and compensation, divided to basins or
not, average the time of frame processing and the number
of processed frames per minute for the proposed scalable
algorithm. Details of the proposed and the alternative algor-
ithms for different sequences are shown in Tables 7 and 8.
The strings ‘þþ’ and ‘2’ declare that the sub-process
determined at that column’s title is performed for that
sequence or not. The following comparisons were made:
Fig. 13 Object extraction from noisy ‘Table-Tennis’ sequence

a Frame 14 at resolution 240 � 352
b Scalable object extraction at resolution 240 � 352
c Single-level object extraction at resolution 240 � 352
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Fig. 14 ‘Hall-Monitor’ sequence object extraction at frame 40

a Resolution 288 � 352
b Resolution 144 � 176
c Resolution 72 � 86
† The ‘Claire’ and ‘Mother and Daughter’ sequences: com-
pared with regular backward tracking without global motion
compensation.
† The ‘Table-Tennis’ and ‘Hall-Monitor’ sequences: com-
pared with an algorithm similar to the proposed algorithm,
but in the single resolution mode without the smoothness
constraint.

The running times for the proposed scalable and the
alternative algorithms are compared in Table 7. The alterna-
tive regular backward tracking algorithm is faster than the
proposed algorithm. The main reason is the computation
of the smoothness term. If the smoothness term is deleted
from the scalable segmentation process, the computational

Fig. 15 ‘Hall-Monitor’ sequence object extraction

a Scalable extraction at frame 34
b Scalable extraction at frame 44
c Scalable extraction at frame 60
d Regular extraction at frame 34
e Regular extraction at frame 44
f Regular extraction at frame 60

Table 6: ‘Hall-Monitor’ smoothness

72 � 88 144 � 176 288 � 352

Scalable tracking 45.4 45 45.5

Regular tracking 54.9 56.8 53.6

Improvement, % 17.3 20.8 15.1
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complexity of the proposed scalable segmentation algor-
ithm decreases to less than one third.

Although inherently the algorithm can be performed in
real time, practically, as Table 8 shows, due to too much
computational complexity the algorithms are not real
time. In sequences such as ‘Table-Tennis’ which need
global motion compensation, the computational complexity
is much higher. Also, switching from the grey-level to
colour segmentation nearly doubles the complexity.
Similarly, decomposition of the segmented grey regions to
basins increases the computational complexity by about
three times. In some tracking algorithm such as that in the
work of Zhou et al. [47], the global motion estimation is
deleted, which decreases the computational complexity.
However, this algorithm tracks the already-detected
objects, and detecting newly appearing objects is not
considered.

All the performed subjective and objective tests at this
section confirm the superiority of the proposed video seg-
mentation algorithm particularly in terms of visual quality
of the extracted objects. However, for a more commonly
used objective comparison, the results were also evaluated
by a method used by MPEG standard [48, 49]. This

Fig. 16 Frame 34 of ‘Mother and Daughter’ QCIF sequence
segmentation with k ¼ 7, 2, 2 clusters and b ¼ 40

a Original grey-level image
b Regular grey-level single resolution segmentation
c Colour image of ‘Mother and Daughter’ where U and V are in half
resolution
d Proposed scalable segmentation
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Fig. 18 ‘Mother and Daughter’ sequence object extraction by the proposed scalable algorithm and regular tracking algorithm at different
frames

a Scalable at frame 48
b Scalable at frame 58
c Scalable at frame 72
d Regular tracking algorithm at frame 48
e Regular tracking algorithm at frame 58
f Regular tracking algorithm at frame 72

Fig. 17 ‘Mother and Daughter’ sequence object extraction

a At frame 32
b At frame 50
c At frame 68
method uses a reference segmentation (ground truth) to
determine if each pixel is classified correctly or not. The
ratio of misclassified pixels to the number of pixels deter-
mines the spatial segmentation accuracy for each object
[48, 49]. For the first 25 frames of the four tested sequences
in this section, the ground truth are extracted with pixel-
wise accuracy. A graphical software lets the user determine
the border of the interested objects manually with pixel-
wise accuracy. The spatial accuracy is evaluated for both
the objects extracted by the proposed algorithm and the

Table 7: Details of the proposed scalable video
segmentation algorithm

Sequence No. of

frames

Size Grey/

colour

Global

motion

Basins

Claire 78 CIF Grey 22 22

Table-Tennis 35 SIF Grey þþ 22

Hall-Monitor 65 CIF Grey 22 þþ

Mother and

Daughter

75 QCIF Colour 22 22
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regular algorithm used in each experiment. The results are
shown in Table 9.

As the table shows, for the sequences with enough con-
trast between object and background and small object
motion, the spatial accuracy for the proposed algorithm is
close or a little less than the compared traditional algor-
ithms. In these cases, most object extraction algorithms
extract the objects. However, the smoothness criterion at
the proposed algorithm misclassifies small number of

Table 8: Running times of the proposed and alternative
algorithms, performed on a 2.4 GHz Pentium 4

Sequence Proposed

scalable

Alternative

algorithm

Sec/

frame

Frame/

min

Sec/

frame

Frame/

min

Claire 6.9 9 3.48 17

Table-Tennis 76 0.8 54.5 1.1

Hall-Monitor 19.3 3 13.92 4.3

Mother and Daughter 12.8 4.7 6.97 8.6
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pixels around the object’s contour to improve the visual
quality of the extracted object. This introduces a small con-
trolled error to improve the performance of the proposed
algorithm according to the visual quality criterion. For
more complex sequences with less contrast between
object and background and fast moving objects, the multire-
solution feature increases the spatial accuracy of the pro-
posed algorithm compared to single-resolution algorithms
in the literature. In this case, the error resulted due to
smoothness criterion can be negligible compared to the
errors resulted from other algorithms not suitable to cope
with these complexities.

6 Conclusions

In this paper, a new semi-automatic MRF-based multireso-
lution video segmentation algorithm for VOP extraction is
proposed. The objective function of the algorithm includes
spatial and temporal continuity. Temporal continuity tracks
the objects already extracted in the previous frames even
when they stop. The motion constraint term detects newly
appearing objects/regions. The motion-validity examin-
ation overcomes the occlusion problem. Region continuity
considers the spatial consistency of the labelling algorithm.
Region smoothness is introduced as a new criterion for
region classification and is added to the objective function.
The algorithm is extended to multiresolution by considering
the corresponding regions at different resolutions and pro-
cessing them in multidimensional or vector space. The
final solution is obtained by the MAP criterion and an
ICM-like optimisation method. The objects are extracted
at different resolutions of the pyramid. The algorithm
includes a version for object extraction from scenes with
low grey-level or colour contrast. This version divides the
region into watershed basin regions and classifies the
basins. The proposed method provides fine localisation of
the borders of regions. Multiresolution processing allows
larger motion, better noise tolerance and less computational
complexity. The algorithm also deals with the occlusion
problem and corrects motion estimation. Comparison with
different algorithms confirms the superiority of the pro-
posed algorithm.

For further improvement of the algorithm, a more sophis-
ticated solution for the occlusion problem can be considered.
Better processing of the motion information to prevent shade
detection is also necessary. Discrimination between different
objects in the scene can be considered. More research is
needed to determine the necessity of partitioning the seg-
mentation into basins. Most of the computational complexity
of the algorithm lies within the global motion estimation.
Therefore more effective global motion estimation or delet-
ing its role from the algorithm can be considered. Finally,
more research into fully automatic object extraction includ-
ing the identification of the ‘object-of-interest’ in the first

Table 9: Spatial accuracy for the extracted objects by
the proposed and compared algorithms

Sequence Claire, % Table-

Tennis, %

Hall-

Monitor, %

Mother and

Daughter, %

Proposed

algorithm

99.8 98.5 87.4 99.4

Traditional

algorithm

99.9 99.6 82.3 98.3
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frame and the automatic determination of the parameters
and thresholds are necessary.
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