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Abstract—As the practical footprint of machine learning (ML)
constantly enlarges to include even more new application areas,
the topic of safety becomes of major concern. Traditional
approaches to safety leverage causality. However, due to the
correlation-based nature of the currently dominating ML meth-
ods, a new take on safety is needed. In this context, we need
to answer in a convincing manner the same key question of
finding out the root causes of a failure. Generalization is the
ability to correctly decide on previously unseen data. Optimizing
the generalization ability, which (since always) lies at the heart
of ML, clearly implies dealing with generalization failures and
is therefore inherently related to safety. In this contribution,
we argue that generalization is a key factor to be considered
in building a safety argumentation for ML. The focus on
generlization shows clarly that two pillars of ML safety are
successful design and the avilability of the right data. ML design
and in particular safety-aware ML design needs prior knowledge.
We discuss modalities to bring prior knowledge to bear in this
setup. Getting the right data in particular for those problem
setups that enjoy a large degree of variability is problematic in
practice. We argue that this can be achieved by devising ways to
constantly sample the data distribution of that particular problem
space.

Index Terms—Machine Learning, Safety, Generalization.

I. INTRODUCTION

Artificial Intelligence (AI) represents the study of how to
create machines, which can perform tasks that when performed
by humans require intelligence, for the purpose of supporting
or even replacing the humans at such tasks [21]. Intelligence
is the ability to infer information from a potentially changing
environment, store it as knowledge and use it to generate opti-
mal behavior. By AI we mean here weak AI, i.e., a system that
acts like it would think, as opposed to a strong AI that would
actually think for itself. AI thus lays at the intersection of
several fields, including knowledge representation, deduction,
reasoning, learning, with the latter being related to the ability
to adapt to changes. The environment represents the problem
setup where AI is applied.

AI is implemented in practice by a set of mathematical
objects. The parameters of these mathematical objects can
be set as in the case of expert systems or learned as in
the case of learning systems. To do so, one needs a set
M = {m1,m2, . . .} of samples from the data distribution
governing the problem setup. Expert systems leverage to a
large extent causal chains related the prior knowledge and

understanding of the problem setup by the human designer.
The learning systems, while benefiting as well to a certain
degree from the abilities of the human designer, are engineered
to leverage correlations in the available data beyond the direct
understanding of the designer and are thus more likely to
provide solutions tailored to the data. Expert systems typically
require for the development less data samples than the learning
systems. Assuming the available data represents a proper
sample of the data distribution, learning systems – generally
gathered under the term Machine Learning (ML) – offer AI
solutions whose performance nowadays usually surpasses that
of expert systems on a majority of practical applications.
They show improved generalization in the sense that they are
better able to correctly handle samples of the data distribution
not present in M. This is the main reason for their current
pervasiveness.

In general safety is concerned with failure. As a first step
we need to understand what the consequences of failure are.
This implies taking at least three factors into consideration: the
severity of failure, the set of possible reactions to failure and
the probability of failure. Then we need to understand what
the prerequisites of failure are, more precisely, we need to
understand why does a failure of some severity happens with
some probability. In traditional safety approaches this last step
relies heavily on causality.

What AI is concerned, to a certain degree, a traditional
safety approach may be used for expert systems, but for ML,
due to its correlation-based nature, we need novel ways to
argue for safety [28], [23]. ML failure is mainly about weak
generalization [8], hence the strong relationship between the
two. Generalization has been in the focus of ML research since
always and lots of efforts have been invested in developing of
a learning theory leading to performant ML solutions [29].
It is interesting to notice that current learning theories show
that prior expert knowledge also plays a significant role in
the design of ML solutions [30], [10], [25]. From a safety
perspective such a hybrid approach has the appeal of also
introducing a certain degree of causality.

The constantly enlarging practical footprint of (supervised)
ML lead to a focus on ML safety which is expressed in a large
number of publications in various venues from workshops
over conferences to journals. Even though a majority of
publications approach ML topics from a safety perspective



[16], [27], [3], [23], [28] there are also safety-related topics
that animate the ML research community like for example
”Adversarial Samples” [15]. When coming towards ML from
safety, often the approach is structured in a traditional manner
along concepts that are already an integral part of international
standards like ISO26262 [12]. As the understanding of ML
safety evolved this is at least partially reflected in new stan-
dardization approaches like ISO/PAS 21448 [13] or ISO/PAS
8800 [14], however in general, one follows the same structure
built along the general development cycle of any item, starting
at requirements engineering and going over development to
verification and validation [23]. The approach includes besides
design-time measures [1], [9], [2] also runtime measures to
improve safety, such as the monitoring of the output of an
ML solution [18], [19] and makes provisions for redundancy
by diversity. Within this paradigm, ML safety lies at the
intersection of large set of measures each tailored to some
ML aspect that has some meaning with respect to safety.

In this contribution we argue that ML safety needs to
be looked upon through the prism of generalization. This
allows to approach ML safety in a principled, structured, and
unitary manner providing the foundation for cross-pollination
between the two academic fields. Ultimately, a majority if
not all safety related aspects from above are related to the
generalization ability of ML. The learning theory describes
how to generate an ML solution such as to optimize the
generalization performance and in doing so it addresses rel-
evant safety concerns. Even though by its correlation-based
nature the behavior of a fully developed ML-solution in a
particular context remains incomprehensible when trying to
rely exclusively on causality, the theory of learning provides
us with ways to broadly understand and control generalization
from a stochastic perspective while at the same time specifying
the role prior expert knowledge plays in this context. For this
purpose, the learning theory addresses both sampling from the
data distribution and how to use the generated sample to design
a ML solution. The design of ML algorithms has enjoyed
significant attention lately and we have arguably reached the
point where given a proper data sample and by leveraging
prior knowledge in an application-dependent way, we can
come up with an optimal solution. The focus in practical
ML should therefore now lay on how and what type of
prior knowledge can best be used in an application-dependent
way and especially on how to get a proper data sample. In
particular when the information content of the problem space
(i.e., the logical framework of the problem that is solved by
the ML solution) is large, obtaining a proper data sample
implies being able to continuously sample the data distribution
during the entire development phase of the ML solution. ML
design becomes thus a loop where we are ultimately able
to approximate the data distribution to the required accuracy
given a constantly improving training sample. Thus, from a
practical perspective one of the pillars of generalization and
thus a major safety argument is the ability to develop ML
solutions using continuous sampling.

II. THEORETICAL CONSIDERATIONS

Next, we introduce the foundations that allow us to establish
or at least underline the link between ML safety and general-
ization. In Section II-A we discuss the key concerns that need
to be addressed by various safety measures for ML. In Section
II-B we give a short overview on the theory of generalization.

A. ML Safety Concerns

The measures that need to be implemented within a safety
argumentation for ML [23] are ultimately related to a set of
concerns [28] that impact the performance of ML solutions.
These concerns are:
Inappropriate sample. In this case, the development sample
which is often divided into a training, a test and a validation
set, does not cover the problem space such that we have no
chance of estimating the data distribution from it. The reasons
for this may vary, including e.g., a misunderstanding of the
problem space.
Distribution shift. Should the problem space evolve and
change during the lifetime of the ML solution, then at a certain
point in time, the development sample will become inappropri-
ate, nolonger being representative for the new problem space.
Missing (long) tail. If the problem space includes very rare
events, properly sampling the corresponding long tail of the
data distribution is challenging. Ignoring this issue leads again
to an inappropriate sample of the problem space.
Brittleness. Sometimes changes in the input that should be
irrelevant for the output, lead to the ML solution returning a
bad decision.
Quality of labels. Label errors but also insufficient label
information afflict the foundation upon which the ML solution
is developed. Still, a limited amount of label noise can
arguably be instrumental in the development of a performant
ML solution.
Wrong metrics. Optimising performance with inappropriate
metrics leads to a poor solution for the given ML task.
Separation of train and test. A core assumption to be met
during the development of a ML solution is that the train and
test data are independent identically distributed (i.i.d.). This
assumption is hurt if the test data is identically distributed but
not independent of the training data.
Unreliable confidence. It would be desirable that an ML
solution should fail only when its internal confidence in the
respective decision is low. However, often when a ML solution
fails it does so with a high internal confidence.
Incomprehensible behavior. By its correlation nature an ML
solution is difficult to understand in a causal manner.

B. Generalization

In the ML setup we observe data generated by some
experiment without access to the internal mechanics of the
experiment. When developing an ML solution, we try to infer
on the internal mechanics using only a (limited) sample from
the distribution D that models the experiment. This underlines



the correlation-based nature of ML, as opposed to a causality-
based approach that would address the internal mechanics
directly.

Generalization represents the ability to correctly classify
previously unseen data and learning theories address the
factors that need to be controlled in a learning machine such
as to achieve good generalization [8]. It is assumed that an
i.i.d. training sample S = {(x1, l1), (x2, l2), . . . , (xm, lm)} of
input-output pairs is available for choosing the best hypothesis
on the true functional relationship between the input and the
output of the ML problem. The best hypothesis is the one with
the smallest generalization error.

The generalization error is itself a random variable that
depends on how good can the true data distribution be inferred
from S that is randomly drawn from D. We impose that
the probability that S gives rise to a hypothesis hS with a
generalization error eD(hS) over the entire D larger than ε is
smaller than δ

PS(eD(hS) > ε) < δ (1)

and look for the factors that need to be considered for selecting
hS such that its generalization error is bounded

eD(hS) < ε(m,H, δ) (2)

The bound ε(m,H, δ) depends on the factors δ, discussed
above H , which is related to the function set from which hS
is selected and m, which is the cardinality of S and tells us
thus that h is probably approximately correct (PAC).

To proceed further we establish next a bound on
PS(eD(hS) > ε). We start by observing that the probability
that a certain h with a generalization error eD(h) > ε is
consistent and thus decides correctly for all m components
of S is

PS(eD(h) > ε) ≤ (1− ε)m (3)

We assume that we work with a finite set H of consistent
hypotheses that each perfectly handle the training set and all
these hypotheses have the same generalization error as h from
above. The probability that at least one of them – be it hS
– is consistent with S is bounded by the sum of individual
probabilities according to Boole’s inequality. Considering also
that (1− ε)m ≤ e−εm, we obtain

PS(eD(hS) > ε) ≤ |H|e−εm (4)

where |H| is the cardinality of H .
According to inequality (1), we would like PS(·) to be less

than δ, making use of the bound in inequality (4), we obtain
that

|H|e−εm < δ (5)

which leads to

ε >
1

m

(
ln|H|+ ln

1

δ

)
(6)

If the probability that the training set gives rise to a hypothesis
hS with a large error, as indicated in inequality (6) is smaller

than δ, then with a probability of 1−δ the generalization error
is upper bounded as

ε(m,H, δ) ≤ 1

m

(
lnC + ln

1

δ

)
(7)

This bound relates the size m of the training sample S,
the complexity C = |H| of the function class to which the
hypothesis belongs and the probability δ of S being a proper
sample to the generalization error ε. It provides thus the
foundation for searching for an optimal h, as the one that
exhibits the best generalization performance, if S is i.i.d.

The PAC bound in (7) assumes the hypothesis makes no
error on the training set (i.e., the empirical error is zero)
and measures the complexity of the hypothesis space by its
cardinality |H|. This can be further developed to allow for an
empirical error k larger than zero. To also cover hypotheses
spaces of infinite cardinality, a new measure of complexity
is needed in the form of the Vapnik-Chervonenkis (VC)
dimension d. The bound becomes then:

ε(m,H, δ) ≤ 2k

m
+

4

m

(
d log

2em

d
+ log

4

δ

)
(8)

The VC dimension may also be infinite. To handle such
cases, the effective VC dimension is used. The effective VC
dimension depends on the separability in the data distribution
as is it captured in the training sample S [8]. The effective
VC dimension can be considered as depending on the training
algorithm as well [10]. In this case, we typically make use
of prior knowledge to steer the training process, i.e., the
selection of hS such that this is successful and the required
generalization performance for the particular task is achieved.
Furthermore, prior knowledge may also be used to improve
separability.

The generalization bounds corresponding to these develop-
ments look differently than those introduced until now, nev-
ertheless as discussed next, they exhibt the same dependence
on a set of key factors for generalization performance.

1) Factors controlling the generalization.: Looking more
carefully at inequations (7) and (8) we observe that they both
rely on a set of factors for controlling the generalization. These
factors are: the empirical error, the (effective) complexity of
the hypothesis space, the cardinality of the training sample
and the appropriateness of the training sample, under the i.i.d.
assumption.

The generalization performance can be understood by ana-
lyzing how do these factors influence the respective bounds.
At the same time, these factors are related to the ML-
safety concerns. For example bad labels coming from an
inadequate development environment lead to a bad estimate
of the empirical error. Another example is that a training
sample of low cardinality is inappropriate, as it will likely
not cover the entire variability in the problem space. Yet
another example is that using a hypothesis space of unsuited
complexity leads to brittleness as it is less likely to correctly
model the (complex) similarity/dissimilarity relationships need
for a successful decision.



III. A GENERALIZATION-BASED SAFETY
ARGUMENTATION

Analyzing the concerns in Section II-A, we observe that
these can be grouped into several categories by their core
reasons and related generalization-controlling factors, which
are detailed in Section II-B. This is shown in Table I.

What the incomprehensible behavior is concerned, we
can do little about it, given the correlation-based nature of
ML, however, the other concerns can be addressed over
their reasons. This represents the foundation for building a
generalization-based safety argumentation.

In general, the addressable concerns lead to poor estimates
of the generalization thus afflicting the performance of the
ML solution. This underlines the link between ML safety
and generalization, as in this case at least, safety does mean
performance. Considering the construction of a good devel-
opment environment a task that may be accomplished with a
fair amount of engineering skills, data and design should be
in the focus of ML safety. The topic of ML safety and design
is discussed in more detail in Section III-A, while the topic
of ML safety and data is addressed in Section III-B.

A. Prior knowledge in design and inference

The theory of generalization also shows how prior knowl-
edge can be used to improve design [25], [30], e.g., by con-
trolling the effective capacity. Such an approach is particularly
appealing for a safety argumentation as it also introduces a
certain amount of causality in the whole setup. Leveraging
prior knowledge leads also to interesting modalities of sup-
porting a safety argument by verifying at inference time if an
ML method does abide by the prior knowledge cues specific
to the target task when reaching a decision. There are several
approaches that may be followed in this case, like for example
verifying if the decision violates physical laws or checking if
the decision obeys known invariance properties and so on.

There are many different ways to leverage prior knowledge
in the design and inference of an ML solution [7], [25].
While the largest amount of effort has been spent in using
prior knowledge in the design phase, using prior knowledge
at inference time has attracted a fair amount of attention lately,
in particular in relation to the topic of ’Adversarial Examples’.
A unified approach to using prior knowledge in both design
and inference may be defined by targeting separability. As
shown before, separability is related to effective capacity and
thus to generalization. We will discuss next how to approach
separability over invariance and give examples of how to do
so in design and inference.

Intuitively, in order to separate two pattern from each other,
we need to concentrate on what tells the patterns apart and
ignore what they have in common. This intuition lays at the
foundation of the definition of separability. The input data
enjoys the property of separability when the variance between
classes is large, while the variance within each class is small
[26], either in the raw inputs or in some feature space that
may be computed (ideally without loss of information) from

these raw inputs. Therefore, we can improve separability by
targeting invariance in the representation of each class.

Invariance [22], [4] is related to the prior knowledge stem-
ming from our intuition on separability, as discussed above.
Thus we can introduce prior knowledge on some ML task by
means of enforcing invariance to specific cues. For example
we know a-priori that object recognition from images should
be invariant to distortions due to the optical path but also
to geometrical transformations of the object such as rotation,
translation, etc.

Invariance can be used at design time such as to limit the
size of hypothesis space [20], [5], [6], but also at inference
time, using the fact that if the input changes along directions of
invariance, this should not afflict the ML decision [18]. What
inference time is concerned [17], the invariance properties may
come from prior expert knowledge or from various design-time
considerations [19].

B. Continous sampling of the data distribution

Another major reason for concern what generalization and
ML safety is concerned is data. The best possible design
still may lead to unsatisfactory generalization performance if
the data is unsuited. While for problem spaces of limited
variability, the training data can be collected in a limited
number of iterations, we argue that for problem space of large
variability, data needs to be collected continuously over the
lifetime of the ML solution and steps need to be taken to be
able to constantly update it in this time.

Continuous sampling definitely has an active-learning [24]
flavour to it, but while active learning is mostly concerned with
selecting existing instances, continuous sampling is concerned
with generating instances. By continuously sampling the data
distribution, one ensures that there is a chance that the best
possible sample is available at some point during the lifetime
of the ML solution. This implies at the same time that the
ML solution is stuck in a cycle of development, inference
and evaluation up to the point where performance at inference
time is so good that no additional development step is needed.
Eventually the engineering effort for implementing such an
approach may become large. An illustration of ”Continuous
Sampling” is shown in Figure 1

Key to running this cycle is the evaluation step, where we
need to establish what samples are still needed. Depending
on the application, the evaluation step may be limited to
one or distributed over several modules of the ”Continous
Sampling” cycle. The evaluation step involves the definition
of a set of measures for the appropriateness of data given
the ML task. Appropriate data sample are in this case those
samples where the ML solution shows limited performance
viz. poor generalization. These samples can be selected either
at inference time, when the ML solution is used or at test
time, when the ML solution is developed. Checking the
generalization performance of the ML solution at inference
time is possible, for example, with the help of dedicated
methods such as [18]. Conversely, data mining [11] and data-
set design [9], [2] techniques may be used to select relevant



TABLE I
REASONS FOR ML SAFETY CONCERNS AND CORRESPONDING GENERALIZATION-CONTROLLING FACTORS.

Reason Concern Factor
Correlation nature of ML Incomprehensible behavior –

Poor development env. Quality of labels Empirical error
Separation of train and test The i.i.d. assumption

Bad data Inappropriate sample Cardinality
Training sample suitability

Distribution shift Training sample suitability
Missing (long) tail Cardinality

Training sample suitability
Poor design Brittleness Complexity of hypothesis sp.

Training sample suitability
Unreliable confidence Complexity of hypothesis sp.

Training sample suitability
Wrong metrics Complexity of hypothesis sp.

Empirical error

Fig. 1. The ”Continuous Sampling” cycle consist of several modules. Manda-
tory modules are depicted in blue. The ”Sampling” module is responsible for
gathering data, the ”Mining” module is responsible for handling the data
(including visualization and knowledge discovery among others), the ”Label”
module is responsible for generating the ground truth, the ”Check & Split”
module is responsible for ensuring a high-quality ground truth and a correct
split between the train and test datasets, the ”Train” module is responsible
for establishing the parameters and architecture of the ML solution, the
”Verification” module is responsible for verifying that the solution performs
satisfactory given the available data, and the ”Deploy” module is responsible
for the application of the ML solution to the problem space from which
the ”Sampling” module starts again to gather data. The ”Simulate” module,
accordingly handles simulation tasks.

samples at a certain iteration of the cycle. Continuous sampling
may be enhanced by simulation, for example, in the sense that
the moment we become aware that extremely rare samples
are needed, we may resort to data augmentation by means of
simulation.

IV. DISCUSSION AND CONCLUSIONS

In this contribution we have argued in favor of
generalization-based approach to ML safety. We have shown
that the core ML safety concerns may be addressed within the
learning theory framework that aims at optimal generalization.
Starting here, we have identified design (in particular the
effective capacity) and data as the main topics to be targeted
in a safety argumentation, with data ranking above design.
We have also proposed ways to approach these topics by
using prior knowledge on invariances to control the effective
capacity and verify the decision at inference time and by using

continuous sampling to obtain a proper sample of the data
distribution.

Once a fully developed ML solution has failed at inference
time, it is difficult to understand in a causal manner why
it did so, event though to a certain extent, causality can
be introduced in this setup over prior knowledge. We can
however take measures to ensure that we do not do any obvious
errors during the development process, which includes the
development setup, the design process and the available data.
The development setup should include tools and measures
to ensure that the labels are correct, but also that the i.i.d.
assumption is respected in train and test data. In the design
phase, prior knowledge over invariance properties may be used
to control capacity and improve generalization. Producing a
proper development sample is arguably the central challenge
what ML safety is concerned and continuous sampling should
support this.

Even though continuous sampling is theoretically simple,
the engineering burden that needs to be overcome to im-
plement it, depending on the target setup is by no means
negligible. For example, approaches as continuous sampling
are currently being developed in the field of Autonomous
Driving (AD), where safety plays a major role. In this case
continuous sampling is implemented with the help of a fleet
of vehicles that constantly gathers data from the problem
space and sends selected samples back to initialize a new
development step. In the case of AD, the evaluation step
is supported by the fact that currently we have a human in
control. The reactions of the human driver may be compared
against the reactions of the AI chain implementing AD such as
to detect limited-performance sample for which the two would
decide differently. Considering that an AD system in general
consists of a perceive block that measures the environment and
a planning block that computes the part to be followed, also
other specific steps can be taken to solve the evaluation issue
of continuous sampling in a satisfactory manner. For example,
some outputs of the perceive block may be checked against
a high-definition map. As soon as the development step is
finished the new set of ML solutions are deployed in the fleet
and the continuous sampling cycle proceeds.



With proper care, concerning mainly the availability of data
from the problem space and the development environment, and
eventually with additional measures such as controlling the
performance at inference time, ML can definitely be used for
safety-critical applications. By optimizing generalization ML
has always had safety in focus.
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