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Abstract. This paper presents a new algorithm for solving the permu-
tation ambiguity in convolutive blind source separation. When trans-
formed to the frequency domain, the source separation problem reduces
to independent instantaneous separation in each frequency bin, which
can be efficiently solved by existing algorithms. But this independency
leads to the problem of correct alignment of these single bins which is
still not entirely solved. The algorithm proposed in this paper models
the frequency-domain separated signals using the generalized Gaussian
distribution and utilizes the small deviation of the exponent between
neighboring bins for the detection of correct permutations.

1 Introduction

Blind Source Separation (BSS) is used to recover signals from observed mix-
tures without prior knowledge of the sources nor the mixing system. For the
case of linear instantaneous mixtures, a number of different efficient approaches
has been proposed [1,2]. When aiming at real-world mixtures of audio signals
like speech, the situation becomes much more difficult. In this case, the mixing
process is convolutive and can be modeled using FIR filters, where, for realistic
scenarios, the length of these filters can be up to several thousands taps. The
unmixing then has to be done using FIR filters of similar length. It is possi-
ble to calculate such filters directly in the time domain [3,4], but this approach
suffers from high computational cost and difficulties of convergence. The most
successful approach is to transform the signals to the frequency domain, where
the convolution becomes multiplication [5]. Then the separation can be done
independently in each frequency bin, which is a much simpler task. The major
drawback of this approach is that the separated bins usually have different scal-
ing and are arbitrarily permuted. Therefore they have to be correctly equalized
and aligned, because otherwise the entire process of separation will fail.

While it is possible to obtain a proper scaling for the frequency components [6],
there is still no algorithm that can tackle the permutation problem in all cases. One
idea for solving the permutation problem is based on the assumption that neigh-
boring bins have alike time structure [7]. Correlation coefficients for neighboring
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bins then yield a criterion for correct permutation. Another approach uses the un-
mixing matrices as beamformer. After computation of the directions of arrival for
all bins, most of them can be aligned properly [8]. Unfortunately, if there are more
than two sensors in a nonuniform array, the computation becomes very difficult.

In this paper we present a new approach for solving the permutation problem
based solely on the statistics of the signals. The new algorithm models the single
frequency bins using the generalized Gaussian Distribution (GGD) and utilizes
the small changes of the shape parameter of the GGD between neighboring bins.

2 Model and Methods

2.1 BSS for Instantaneous Mixtures

In the instantaneous case the mixing process of N sources into N observa-
tions can be modeled by an N × N matrix A. Given the source vector s(n) =
[s1(n), . . . , sN (n)]T and assuming negligible measurement noise, the vector of
observation signals x(n) = [x1(n), . . . , xN (n)]T can be described as

x(n) = A · s(n). (1)

The separation can be written as a multiplication with a N × N matrix B:

y(n) = [y1(n), . . . , yN(n)]T = B · x(n) (2)

The aim of BSS is to find B from the observed process x(n) so that BA = DΠ
where Π is a permutation matrix and D an arbitrary diagonal matrix. These
matrices represent the two ambiguities of BSS: (a) the separated signals appear
in arbitrary order and (b) they are scaled versions of the sources.

We here consider the well known gradient-based update rule [1]

ΔB ∝ (I + E
{
g(y)yT

}
)B (3)

with g(y) = (gi(yi), . . . , gn(yn)) being a component-wise vector function of non-
linear score functions gi of the assumed source probability densities pi(si):

gi =
p′i(si)
pi(si)

(4)

In order to achieve good separation performance, the probability density function
of the sources has to be known or at least well approximated [9].

2.2 Statistical Source Models and Estimators

Speech signals usually follow a Laplacian distribution. Therefore, for instanta-
neous mixtures, the nonlinear function gi(·) reduces to

gi(y) =
sgn(y)

σ
. (5)

Unfortunately, this assumption does not hold for the time-frequency represen-
tation X(ωk, n). The probability density functions of the components in the
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bins ωk can vary in a large range from being sub- to super-Gaussian. A suffi-
cient approximation can be achieved by the generalized Gaussian distribution
(GGD) [10]:

py(y) =
β

2αΓ (1/β)
e−(|y|/α)β

(6)

with α, β > 0 and the Gamma function given by Γ (y) =
∫ ∞
0 xy−1e−xdx. The β-

parameter of the GGD describes the overall structure of the distribution. With
β = 2 the GGD reduces to standard Gaussian distribution, with β = 1 to a
Laplacian distribution and with β = 0.5 to a Gamma distribution. Generally, a
large value of β indicates a flat distribution, whereas a small value yields a spiky
distribution. α is the generalized measure of the standard deviation.

Usually, nonlinearities for super-Gaussian distributions utilize sigmoidal func-
tions like sgn() or tanh(). Using the GGD, this model can be more gener-
alized. The nonlinear function gi(·) becomes gi(x) = |x|β−1sgn(x), and using
sgn(x) = x/|x|, we obtain

gi(x) =
x

|x|2−β
. (7)

As shown in [9], based on this nonlinear function, even mixtures of sub- and
super-Gaussian signals can be separated. Although the authors used fixed values
for β they could achieve good results.

The above approach has been extended in [11], where an adaptive algorithm
has been proposed. Because, in the blind scenario, the sources are not available
and therefore an accurate estimation of β is not possible, the authors proposed
to calculate β based on the statistics of the separated signals. They used the
method of moments [12] to estimate β after each iteration of (3) and used this
new value for the next step. It was shown that the approach leads to improved
overall performance in terms of better separation and faster convergence.

2.3 Convolutive Mixtures

In real-world acoustic scenarios, the mixing channels can be modeled by FIR
filters of length L, where L can be 2000 or more, depending on the reverberation
time and sampling rate. The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =
L−1∑

l=0

H(l)s(n − l) (8)

where H(n) is a sequence of N ×N matrices containing the impulse responses of
the mixing channels. For the separation we use FIR filters of length M ≥ L − 1
and obtain

y(n) = W (n) ∗ x(n) =
M−1∑

l=0

W (l)x(n − l) (9)

with W (n) containing the unmixing coefficients.
Estimating W (n) in the time domain is a very difficult task, because the

number of unknowns, MN2, can reach several tens of thousands. Although there



Solving the Permutation Problem in Convolutive BSS 515

exist approaches to this problem [3,4] the results are not satisfying because of
distortions introduced by the unmixing system.

Due to this problem another approach is widely used. After transforming the
signals to the frequency domain, for example using the blockwise Short-Time-
Fourier-Transform (STFT), the convolution becomes a multiplication [5]:

Y (ωk, n) = W (ωk)X(ωk, n) (10)

Instead of estimating all coefficients at once, in the frequency domain it is possi-
ble to separate every bin independently. However, since there is the scaling and
permutation ambiguity in every bin, we obtain

Y (ωk, n) = W (ωk)X(ωk, n) = D(ωk)Π(ωk)S(ωk, n) (11)

with Π(ωk) being a permutation matrix and D(ωk) a diagonal scaling matrix
for frequency ωk. Therefore, it is necessary to correct the amplitudes and solve
the permutation before transforming the signals back to the time domain.

The scaling ambiguity can be resolved to an acceptable degree using the
method proposed by Ikeda and Murata [6]. The central idea is to recover the
signals as they have been recorded by the sensors. Matusuoka and Nakashima
[13] showed that this is the optimal approach, as it minimizes E{|y(t) − x(t)|2}.
Their Minimal Distortion Principle uses the following unmixing matrix:

W ′(ωk) = diag(W−1(ωk)) · W (ωk) (12)

with diag(·) returning the argument with all off-diagonal elements set to zero.
The correction of the permutation ambiguity is even more important. Even if

every bin is perfectly separated, different permutations at different frequencies
make both signals appear in every output channel.

3 Resolving the Permutation Ambiguity

One of the first ideas used for the permutation problem is based on the statistics
of the separated signals [6,7]. The key assumption is that the envelopes of all bins
of one source are highly correlated. With V (ωk, n) = |Y (ωk, n)| the correlation
between two bins k, l is defined as

ρqp(ωk, ωl) =
∑N−1

n=0 V (ωk, n)V (ωl, n)
√∑N−1

n=0 V 2(ωk, n)
√∑N−1

n=0 V 2(ωl, n)
(13)

with p, q being the indices of the separated signals. To decide if two bins are
permutated equally, the value of

r =
ρpp(ωk, ωl) + ρqq(ωk, ωl)
ρpq(ωk, ωl) + ρqp(ωk, ωl)

(14)

can be used. If r > 1, then the bins are sorted correctly. Otherwise, with r < 1,
a permutation has occurred. With more than two sources the value of r has to be
estimated for all pairs, which means that N ! calculations have to be performed.
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Fig. 1. Beta values of two signals over the frequency index. The detected clusters are
indicated with bars ��.

Although there are algorithms with less complexity, the practical use is restricted
to only few sources [7].

Trying to sort all bins with respect to r for all p and q usually does not work
for speech signals. The reason for this is that the key assumption of highly corre-
lated envelopes often does not hold for frequencies which are not close together.
Restricting the test to only neighboring frequencies is also not a solution, be-
cause at some frequencies, the envelopes of the individual signals do not differ
enough to allow for correct sorting. A compromise is the dyadic sorting [7], which
starts with pairwise correlation of two neighboring bins and then successively
builds groups of bins in a dyadic fashion. This algorithm utilizes the fact that,
in a sorted group, a few outliers do not preponderate, and the groups can be
aligned properly. But like other proposals that rely only on the correlation of the
separated signals, this algorithm suffers if there are too many poorly separated
bins close to each other. Because of this, some of the first small groups are often
not sorted properly, which then propagates while building the larger groups. The
results are block permutations and the separation of the whole signal fails.

4 The Proposed Method

In this paper we propose to use the smoothness of the exponent β of the GGD.
For this, we approximate the statistics of every bin by (6). Although the values
of β vary in a significant way, the values in neighboring bins do not differ much.
Furthermore, two different signals usually have distinct values in most bins, as
can be seen in Fig. 1 for a typical situation. However, it can also be seen in Fig. 1
that there are some bins with almost the same value of β, like the bins around
3920. In this range, no differentiation of the two signals is possible on the basis of
the value of β. But huge ranges like the bins 3800-3840, can be clustered with cer-
tainty. These clusters can be used to correctly de-permute wide frequency ranges.
Afterwards, the remaining bins can be de-permuted using alternative methods.

The proposed method consists of three parts: (1) estimation of the boundaries
of the clusters, (2) calculation of the permutation between the clusters, and (3)
aligning the remaining bins. The algorithm is at first derived for two signals and
then extended for multiple signals.
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4.1 Calculation of the Cluster Boundaries

The first step is to estimate the β values for all bins of both estimated sources.
One possibility is to estimate this parameter in every iteration of the BSS algo-
rithm mentioned in Section 2.1. Alternatively, any other known BSS algorithms
can be used, because β can be also estimated after separation.

The second step is to make a simple grouping. The bins are compared pairwise:
the ones with higher values of β are assigned to one and the ones with lower
values are assigned to the other source.

The third step is to determine the actual clusters. The idea for a simple
and fast method is the following: Take an existing cluster and find out if the
neighboring bin can be added to it. The decision is based on the assumption of
the values of β being distinct and smooth.

The actual implementation is as follows:

1. Start at bin l = 1.
2. Test by comparing the β-values if the next bin l + 1 can be added.
3. If yes, then add this bin to the cluster, increase l and go to Step 2.
4. If not, then the end of the cluster has been found. If the cluster is large

enough, mark it as being correctly permutated. Increase l, mark l as the
beginning of a new cluster and go to Step 2.

The result of this algorithm is shown in Fig. 1.
If there are more than two signals, the algorithm can be extended. For this,

the β values are sorted, and the two largest ones are assigned to βH(ωk) and
βL(ωk), respectively. After clustering and removing βH(ωk), the same procedure
can be applied to the remaining bins. An analogous procedure can be applied to
the bottommost values for increased performance.

4.2 Calculation of Cluster Correlations and Aligning the Remaining
Bins

The next step after the identification of the clusters is to determine the per-
mutation between them. As the gaps between clusters are usually much smaller
than the clusters themselves, the assumption of highly correlated envelopes can
be used. Here we follow the idea of dyadic sorting and calculate the value of r,
as defined in (14), for all combinations of all bins of two clusters. As the bins
within the clusters are de-permuted with high confidence, the correct permuta-
tion between clusters can be determined by the highest or lowest value of r, as
for the dyadic sorting in [7].

After calculating the correct permutation for the clusters, the remaining bins
also have to be aligned. Again, a comparison of the correlation coefficients r for
these bins with all coefficients for the bins in the neighboring clusters can be used.

5 Simulations

In a first simulation, the algorithm has been used on unmixed audio signals,
which have been arbitrarily permuted in the frequency domain. This should
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simulate the behavior of the algorithm in ideal conditions, as if the blind sepa-
ration stage in each frequency bin would be able to work perfectly. In this case,
the algorithm was able to correctly de-permute all bins.

When using real-world data, the separation in the single bins is not always
perfect. Therefore, the estimation of correct permutations is harder. In the ex-
periments we used a data set where the individual contributions from the sources
to the microphones were available [14], and the separation performance could be
estimated using the signal-to-interference ratio

SIRyi = 10log10
E[(gii(n) ∗ si(n))2]

E[(
N∑

j=1,j �=i

gij(n) ∗ sj(n))2]
(15)

with gij(n) = wi(n) ∗ hj(n). In Fig. 2, the separation performance for the single
bins is given.

As the individual sources are known, the best possible unmixing can be es-
timated. In Fig. 3, the difference between this best approach and the result of
the proposed algorithm is shown. As we can see, above 300 Hz the proposed
algorithm produces exactly the same output as the ideal de-permutation. Below
this frequency there occur permutations, but this is a frequency range where the
separation has failed in several bins. Further inspection of the data showed that
the estimation of clusters worked, but the cluster correlations were incorrect.
This is a typical behavior for correlation-based approaches, when the separation
is not perfect. The overall performance with swapped bins is an SIR of 13.16 dB.
When leaving the low frequencies out and recovering only the signal components
above 300 Hz, the overall performance increases to 20.03 dB.
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6 Summary

In this paper, we presented a new approach for resolving the permutation prob-
lem, which occurs in convolutive blind source separation. For this we modeled
every bin using the generalized Gaussian Distribution and used the exponent β
for estimating the correct permutation. The performance of the algorithm has
been studied on artificial and real word data.
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