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Abstract

The study of neural population codes relies on massively parallel recordings in combination
with theoretically motivated analysis tools. We applied two multi-site recording techniques to
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record from cells throughout cortical depth in a minimally invasive way. The feasibility of
such experiments in area 17 of the anesthetized rat is demonstrated. Bayesian reconstruction
and the interpretative framework of Fisher information are introduced. We demonstrate
applicability and usefulness of Bayesian stimulus reconstruction and show that even small
numbers of neurons can yield a high degree of representational accuracy under favor-
able conditions. Results are discussed and future lines of research outlined. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Stimulus representation in the mammalian visual system is achieved by large groups
of neurons. To study the means by which neural populations achieve high coding per-
formance, theoretical approaches are needed to identify potentially critical parameters
of population codes as well as recording techniques for the simultaneous acquisition of
signals from large neural numbers. Massively parallel recordings are required because
neural interactions or only very brieDy generated spatio-temporal activity patterns may
play a critical role for stimulus representation. A further requirement for recording
techniques is the capacity for reliable isolation of single units from all cortical layers,
since cells in diEerent layers may serve diEerent functions in information processing as
indicated by their diEerent connectivity patterns. For these reasons, we chose multi-site,
silicon-based electrodes [2,8,1,12,7,10] which promise the acquisition of large neural
numbers throughout cortical depth.

In this contribution we present results of an integrated approach combining electro-
physiological recordings with silicon-based multi-site probes in the rat primary visual
cortex, an analysis of the neural population code based on Bayesian reconstruction and
the interpretative framework of Fisher information.

Neural encoding strategies can be assessed using the framework of Fisher
information [9,6,14,3,11,15]. Fisher information employs the joint probability distribu-
tion P(n1; : : : ; nN ; x̃) of the spike count vector (n1; : : : ; nN ) obtained from a population
of N neurons during some time interval upon the presentation of a stimulus x̃. The
stimulus x̃ = (x1; : : : ; xD) is characterized by D features in a D-dimensional stimulus
space. The CramIer–Rao inequality [6] gives a lower bound on the expected estimation
error 	2i;min the ith feature for an arbitrary but unbiased estimator. In the case of a di-
agonal Fisher information matrix, it is given by 	2i;min =1=Jii (̃x), where the denominator
is the Fisher information associated to the ith feature.

The joint probability distribution P(n1; : : : ; nN ; x̃) can, in principle, be determined
empirically. However, additional assumptions, e.g. statistically independent Jring of
neurons, considerably reduce the amount of data required. Using assumptions of this
type, Fisher information can be used to derive encoding strategies that yield especially
small estimation errors, and thus allow for accurate stimulus representation. Recently,
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considerable progress has been achieved in this direction. For the inDuence of diEer-
ent tuning widths in multiple stimulus features and how they can be used to assess
optimality in codes, see [3,11]. These results give hints as to what eEects can be
expected in empirically obtained distributions P(n1; : : : ; nN ; x̃).

While Fisher information and the CramIer–Rao inequality yield (in the unbiased case)
estimates on the highest achievable neural encoding performance, in this paper, we use
a Bayesian reconstruction method to assess the actual encoding accuracy of neurons in
rat primary visual cortex for motion directions of drifting gratings. A comparison of
the results obtained from the use of Fisher information and the CramIer–Rao inequality
on the one hand with results from Bayesian reconstruction on the other hand is not
straightforward; if stimulus features are visual angles, the approach for features mea-
sured in real numbers [13] has to be modiJed. This is because the error estimate of
the mean rate given by the CramIer–Rao inequality needs to be backtransformed to an
error estimate of the angle in a more complicated manner than in the case of features
measured in real numbers (Etzold et al., in preparation).

2. Materials and methods

2.1. Recording technology

Recordings were performed with two types of micro-machined multi-site recording
probes in addition to standard varnish-coated tungsten electrodes. One micro-machined
probe was provided by a joint project of two groups at the California Institute of
Technology and at Stanford University, the other was provided by the Center for Neural
Communication Technology of the University of Michigan sponsored by NIH NCRR
Grant P41-RR09754. The Caltech=Stanford probes (see Fig. 1) were micro-machined
at Stanford’s Center for Integrated Systems.

The CalTech=Stanford probes feature 32 co-planar electrodes on a silicon substrate
with silicon-nitride passivation. Electrodes are 100 �m2 gold, with typical impedances
of 1–4 MM at 1 kHz. The probe shafts’ outlines are deJned by a plasma etch and are
designed to minimize insertion resistance, resulting in dimpling comparable to tung-
sten electrodes upon insertion [5]. Recordings were made using electrodes in tetrode
arrangements.

Fig. 1. Micrograph of Caltech=Stanford T1 probe. Inset on the right shows an enlarged view of four electrodes
in tetrode conJguration on one T1-shank. Each electrode’s surface area equals 100 �m2.
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2.2. Animals, preparation and maintenance

The results presented here are based on recordings in the primary visual cortex (area
17) of Jve rats (Brown Norway, 300–380 g). They were anesthetized with an i.m.
injection of ketamin=xylacin=chlorpromacin (10 mg=0:4 mg=1 mg=100 g b.w.) during sur-
gical preparation and maintained with a nitrous oxide=oxygen (30=70%)–isoDurane
(0.5%) gas mixture during the recording session. During surgery animals were placed
in a stereotaxic apparatus, body temperature was kept constant, and the heart rate was
monitored continuously. The cornea was protected with a non-refractive contact lens
throughout the experiment. The scalp was removed, and a small (2×2 mm) bone win-
dow above the left visual cortex was drilled (centered at AP = +1 and L= 3:25 mm
from lambda), the dura reDected and, after electrode positioning, the cortical surface
covered with 3% Agar in Ringers solution to prevent drying of the brain and decrease
pulsation. All procedures used in this study were performed in accordance with the
guidelines for the welfare of experimental animals issued by the Federal Government
of Germany, approved by local authorities and conformed to the guidelines of the
National Institutes of Health for the care and use of laboratory animals.

2.3. Recording and visual stimulation

Signals were ampliJed with conventional electrophysiological instrumentation (Jl-
ter: 350–3000 Hz) and displayed on an oscilloscope. In addition, spike activity were
digitized (sampled at 25 kHz) and stored on computer disk for oPine analysis, which
started with spike sorting.

Response properties and appropriate receptive Jeld (RF) boundaries of cortical cells
were determined qualitatively with visual stimuli generated by a hand-held pentoscope
and projected on a tangent white screen. Then RFs were centered on a monitor (EIZO
FlexScan F87) positioned 57 cm from the animal. Stimuli consisted of whole screen
black and white gratings, moving with constant velocity (5–20◦=s) and spatial frequency
(0.08–0:6 cycl deg) (cf. [4]). Background illumination was kept below 1 cd=m2, and
stimulus intensities ranged from 7 to 10 cd=m2. Each experiment consisted of several
blocks of trials in which 18 stimuli with particular moving direction were presented in
a pseudo-random order.

2.4. Bayesian reconstruction

Once the direction dependence of the Jring rates of a group of direction-sensitive
cells is known, the Bayes approach directly addresses the inverse problem: given the
Jring rates of one or more of these cells, what is the stimulus that triggered them? A
method to derive the stimulus from the neural Jring is called a reconstruction algorithm
(e.g. [13]).

Bayesian reconstruction needs various distribution functions derived from the data.
The Jrst one is the prior probability P(x) for a single direction x to occur. This function
is determined by the experimenter and was Dat in our case: all stimuli appeared equally
often. The second distribution needed for reconstruction is the conditional probability
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P(n|x), which is the probability for numbers of spikes n= (n1; : : : ; nN ) to occur, given
the direction of the presented stimulus. If we assume that the spikes have Poisson
distribution and that diEerent cells are statistically independent of one another, we
obtain the expression

P(n|x) =
N∏
i=1

P(ni|x) =
N∏
i=1

(�fi(x))ni

ni!
exp(−�fi(x)); (1)

where fi(x) is the average Jring rate of cell i during presentation of the stimulus x,
and � is the length of the time window for counting the spikes. The average Jring rate
fi(x) is also called the tuning function of cell i.

Given the number of spikes Jred by a population of cells within a Jxed time interval,
the goal is to compute the probability distribution of the direction of the stimulus. Under
the assumptions mentioned above, this is achieved by applying the Bayes formula in
its Jnal form

P(x|n) = C(�; n)P(x)

(
N∏
i=1

fi(x)ni
)

exp

(
−�

N∑
i=1

fi(x)

)
; (2)

where C(�; n) is a normalization factor which can be determined by the normalization
condition

∑
P(x|n) = 1. The Bayesian reconstruction method thus computes the proba-

bility for each stimulus direction, given the number of spikes of all the cells within the
analysis time window. From this probability distribution the direction of the presented
stimulus can be estimated by various estimators. We applied the maximum a posteriori
(MAP) estimator

x̂Bayes = arg max
x

P(x|n); (3)

where the direction of the stimulus is reconstructed by taking the most probable direc-
tion of the stimulus.

3. Results

Successful multi-site recordings were obtained from rat area 17 throughout corti-
cal depth. Example traces from seven recording sites are shown in Fig. 2. A high
signal-to-noise ratio was obtained in both multi-site probe types used in our experi-
ments. The example traces shown were obtained during high activity levels, i.e. most
of the signals result from neural activity and are much larger in size than hash dur-
ing low-activity, background phases. No systematic diEerences between probe types in
recording quality or neural yield have been noticed so far.

Of all 101 neurons recorded so far, 90% were visually responsive, many of which
were orientation or direction tuned. Typically, tuning properties changed substantially
over time (Fig. 3). Thus, for our current purposes we can conclude that the new
recording technique leaves the cortical tissue functional and allows for the investigation
of population coding mechanisms.
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Fig. 2. Three channel simultaneous recordings with a Michigan probe (top) and four channels from a T1
probe (bottom) over 37:5 ms during cortical activation. Signals were z-transformed for comparison and shifted
upwards=downwards within the two sub-plots ETun or display purposes. Data was obtained from sites with a
200 �m or larger spatial separation. However, the two central stretches in the bottom plot were recorded from
two sites of the same tetrode arrangement. Therefore, these two signals are highly correlated. Nevertheless,
not all spike activity of one channel appeared on the other one as well. Therefore, the stereo-capability of
the tetrode-like geometrical arrangement of recording sites is useful for spike sorting purposes.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 3. Tuning Properties of a single neuron recorded in rat primary visual cortex. The upper graph shows
Jring rate as a function of time (x-axis) and stimulus orientation (y-axis) coded by color. Lighter colors
indicate Jring rates higher than average, darker colors, Jring rates lower than average. Below, the PSTH is
depicted which was computed as the average Jring rate over all stimulus conditions (marginal distribution)
of the above plot. Shown is a time interval of 2800 ms. The stimulus was turned on at 1000 ms and switched
oE at 2000 ms. Stimulus presentation leads to a steep increase of Jring rate (to about 20 Hz on average) for
about 100 ms. The tuning curve of the Jrst 150 ms (shown as a polar plot on the lower left) shows only a
weak modulation. A clear directional (orientational) tuning is only apparent after the initial burst of activity.
The tuning curve of all spikes Jred in the time period between 1150 and 2000 ms after stimulus onset
shows two peaks around 70–90◦ and 250–270◦ of visual angle. In this phase, both response enhancement
and suppression as compared to the pre-stimulus interval lead to the cell’s tuning properties. Therefore, in
the PSTH averaged over all stimulus conditions (middle) Jring rates during stimulation are only slightly
higher than that before stimulus onset. Stimulus oEset leads to a strong suppression of activity in all stimulus
conditions tested, lasting for about 1 s.
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With Bayesian reconstruction the current stimulus conJguration can be estimated
based on the neurons’ Jring rates. As an illustration, Fig. 4 shows the probability
distribution of neural responses to diEerent stimuli, P(n|x). The cell Jres most vigor-
ously to horizontal grating stimuli (i.e. vertical motion directions). Due to the cell’s
high selectivity, only at high Jring rates (above 20 Hz) the actual stimulus orientation
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Fig. 4. Bayesian analysis of responses of neurons in rat cortical area V1 to drifting gratings. The conditional
probability estimate (gray-scale coded with lighter colors indicating higher probability values) of response
(depicted along the y-axis as mean Jring rate in Hz) of a single neuron to a given stimulus direction (x-axis).
For each of 18 directions, a Poisson distribution with the same mean as the recorded response of the cell,
normalized to have an area equal to 1, was used as an estimate of the conditional probability distribution,
P(n|x). Note that the actual stimulus orientation can be estimated with an acceptable error margin only at
high Jring rates (approx. 20 Hz and higher). This analysis is based on the same data as that of Fig. 3 for
illustrative purposes.

can be estimated with an acceptable error margin. Intuitively, the quality of stimulus
estimation should improve as increasing numbers of neurons are combined for this
analysis. Fig. 5 illustrates this point, showing that the minimal square error of stimulus
orientation decreases with population size.

Fig. 5 also shows that good estimation accuracy is already achieved with a small
number of neurons. However, this result is based on an analysis of the whole response
period. As Eq. (1) shows, resolution depends in a linear fashion on the amount of time
the cells have at their disposal. With less time available, reliable coding can only be
achieved with larger number of neurons.

4. Summary and conclusions

Our experiments demonstrate the feasibility of multi-site recordings in the rat visual
cortex with two kinds of micro-machined multi-site recording probes. Importantly, spike
activity was successfully recorded throughout cortical depth, and visually triggered,



W.A. Freiwald et al. / Neurocomputing 44–46 (2002) 407–416 415

Fig. 5. Application of the Bayesian reconstruction algorithm to assess the minimum square error a population
of cells makes in the reconstruction of the presented stimulus. Reconstruction error drops with an increasing
number of cells in an exponential fashion. A MAP estimator was used for this analysis, because this estimator
is quite robust against noisy Ductuations in the cells’ activity, for it will still reconstruct the stimulus under
noisy circumstances, unless noise becomes overall dominant. Thus, the reconstruction exhibits both robustness
against noisy inputs and high degrees of accuracy.

orientation- or direction-tuned responses provide evidence for the integrity of the tissue
after probe insertion. Thus, the activity of many cells can be simultaneously monitored
with a minimal number of cortical penetrations.

We have shown that Bayesian reconstruction and the MAP estimator based on re-
sponses of small groups of neurons can yield good reconstruction results. However,
data was sampled over long time intervals for this analysis. Eq. (1) implies that the
resolution achieved by a population of cells depends, in a linear fashion, on the amount
of time the cells have at their disposal. Thus, shorter analysis periods have to be traded
for larger neural numbers, if coding accuracy is to be maintained. Furthermore, each
additional stimulus feature adds a new dimension to the stimulus space, requiring a
multiplication of the number of coding neurons.

How neural population size can compensate for shorter analysis intervals is one of
the objectives of our future research. This will have to take deviations from Pois-
son assumptions into account, consider the role of neural correlations and exploit the
Jne temporal structuring of responses to address the question how multiple stimulus
dimensions can be rapidly represented by one set of active neurons in rat visual cortex.
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