
A Multichannel Data Acquisition and Analysis System based on
off-the-shelf DSP Boards

Andre Folkers, Ulrich G. Hofmann
Institute for Signalprocessing
Medical University of Lübeck

Seelandstr. 1a, Geb. 5, 23569 Lübeck, Germany
Phone: +49 (451) 3909 556, Fax: +49 (451) 3909 555, Email: {folkers, hofmann}@isip.mu-luebeck.de

Abstract— The EU-funded project VSAMUEL aims to
develop a versatile system for advanced neuronal record-
ings with multisite microelectrodes. Within this project we
are developing a data acquisition system for high channel
counts. The system will be able to acquire and process
data on 128 channels at a sampling rate of at least 32 kHz.
We are utilizing multiple DSP boards to perform that task.
Other project parts include development of multisite mi-
croelectrodes and respective pre- and main amplifier stages.
Besides data acquisition the DSP boards are used to per-
form online analysis of the data, e.g. spike detection and
spectrogram computation. Other project parts include de-
velopment of multisite microelectrodes and respective pre-
and main amplifier stages.

Keywords— Digital Signal Processors, Multichannel Data
Acquisition

I. Introduction

The principal goal of the project VSAMUEL sponsored
by the European Commission is to provide a versatile data
acquisition system to the neuroscience community which is
able to acquire simultaneous recordings from hundreds of
cells in the nervous system. The project includes the devel-
opment of silicon based microelectrodes, amplifier stages,
and data acquisition software and hardware, where the lat-
ter part is where we turn our attention in this paper. The
data acquisition hardware is based on off-the-shelf DSP-
boards in combination with a personal computer running
under Windows NT. The software provides basic function-
ality like acquiring data on 32 channels, and streaming this
raw data to disk. Furthermore, online visualization of a
high channel count, and spectrogram of single channels is
implemented.

II. Microelectrodes and Amplifier

The next two sections give a short description of the
microelectrodes and the amplifier stages.

A. Mircoelectrodes

A key issue in understanding the nervous system is to
make simultaneous observations of the activity of a large
number of cells. Therefore, it is desired to have a large
number of recording sites inserted in the neural tissue,
while the insertion causes as smallest possible tissue dam-
age. The design and construction of the microelectrodes is
done by ACREO AB (Sweden) with respect to these con-
straints.

The microelectrodes are of fork shaped silicon with shafts
of width 25 µm having a pointed end. The recording sites
(Ir, 10 µm × 10 µm) are arranged in a two dimensional

Base plate Conductors

Electrode sites

Contact pads Shafts

Fig. 1. Sketch of Microelectrode

array (Fig. 1) at the front end of the shafts. They are con-
nected with the contact pads (Au) by fine and narrowly
spaced metal (Au) conductor traces. There are several de-
signs, which differ in shaft length (4 mm to 15 mm) and
shaft count (1 to 4), and also in recording site spacing (see
also [1, 2]).

B. Amplifiers

The amplifier rack consists of a precision low-noise pre-
amplifier with gain factor of up to 20 and main ampli-
fier providing gain factors of up to 2000. Both pre- and
main-amplifier are newly designed by Thomas RECORD-
ING (Germany) for 64 channels. The amplifier rack gain
settings are controlled by a micro controller, and can be
setup either manually or by software via a PC-serial port.
All channels can have an individual gain settings. The
electrical connection of microelectrodes and pre-amplifier
is realized with a ”zero insertion force” connector on the
pre-amplifier side and a several centimeters long flexible
PC-board at the probe site (Fig. 2).

Fig. 2. Schematic drawing of a microelectrode (1), wire bonded (2)
to a flexible PC-board (4) on a carrier (5). The bonded probe is
epoxy sealed (3) and may be connected via the stiffened flex-board
(6) to a zero insertion force connector on the pre-amplifier

Ulrich G. Hofmann
Proceedings of the EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services, Budapest, 2001.

FIFO

1KB
AD16

FIFO

1KB
AD16

PCI Bus to Host

512 KB

AsyncRAM

32 Input Channels

Sync Link

128KB RAM

Texas Instruments

C6701

150 MHz

Fig. 3. Hardware arrangement and data flow of one DSP board

III. Data Acquisition Hardware

Our hardware consists of four DSP boards (M67, In-
novative Integration, Thousand Oaks, CA, USA) which
are combined with analog digital converter (ADC) mod-
ules (AD16 Omnibus modules, II). The M67 board has
a single digital signal processor, i.e. a TMS3206701 pro-
cessor (Texas Instruments, Dallas, TX, USA) clocked at
150 MHz with 128KB onchip memory. The CPU is pro-
vided with three different types of external memory: asyn-
chronous SRAM (ASRAM, 512KB), synchronous DRAM
(SDRAM, 16 MB), and synchronous burst SRAM (SB-
SRAM, 1MB). Each DSP board is equipped with two AD16
modules. Fig. 3 shows the arrangement of the hardware
components and the data flow for one DSP board.

The AD16 module provides the M67 board with 16 chan-
nels of high speed 195 kHz, 16-bit resolution analog input to
digital output conversion (A/D) per module site. There are
16 A/D converters for simultaneous conversion on all chan-
nels. Each of the 16 input channel consists of a high pre-
cision, DC accurate sigma-delta A/D converter (AD7722,
Analog Devices, Norwood, MA, USA) with front end condi-
tioning circuitry, which removes the need for multiplexers.
The A/D converters are clocked either using a DDS timer
of the M67 board or an external clock. Due to the 64 times
oversampling performed by the A/D converters the clock
rate is 64 times higher than the actual sampling rate. Con-
version results are transferred into a FIFO which can store
up to 512 16-bit samples. The AD16 triggers an interrupt
when the FIFO contains a certain amount of samples. Usu-
ally this threshold is set to half of the samples which can be
stored in total. This interrupt is serviced by a routine run-
ning on the DSP which fetches the data from the FIFO and
stores it into the onchip memory using a DMA transfer.

A. Synchronization

Multiple AD16 modules may be synchronized by linking
the synchronization signals between modules by a cable.
Sync input and output signals allow software sync com-

mands from one AD16 module to be shared with other
AD16 modules on the same M67 board and also across
multiple M67 boards. This allows a single sync command
to synchronize multiple AD16 modules and causes simul-
taneous sampling across the converters present on those
modules. The A/D converters of modules residing on the
same board are exactly synchronized. If the AD16 mod-
ules reside on different M67 boards and do not use the same
A/D clock, then the synchronization is not quite perfect.
They are only synchronized within one A/D clock cycle.
The length of such a cycle is quite small with e.g. 521 ns
at a sampling rate of 30 kHz. This effect may be eliminated
by providing the same clock to all AD16 module, e.g. by
using a synchronization link between the M67 boards or an
external clock source.

IV. Data Acquisition Software

The software can be divided into three parts, i.e. the
program which runs on the DSP, the DSP application, a
data acquisition server (DAQ server), and a data acquisi-
tion client (DAQ client). The DSP application performs
the raw data acquisition, the transfer to the data acquisi-
tion server, and executes different online or off-line analysis
modules, like for example compression, filtering, and spike
sorting. The DAQ server provides a general interface to the
DSP program for the DAQ clients. A user interacts with
the system through the DAQ client. It configures experi-
ments and executes them using the DAQ server. Results
are sent back to the DAQ client which in turn visualizes
them appropriately.

We are developing the software using Texas Instru-
ment’s ”Code Composer Studio 1.20” and Borland’s ”C++
Builder 5.0”.

A. DSP Application

The DSP application is organized in four parts, i.e. A/D
conversion module, processing module, transfer module,
and a control task. Fig. 4 illustrates how the different parts
interact. The control task can send and receive messages
to and from the DAQ server. A message consists of a re-
ceiver field, a command field, and a data field. The control
task routes the messages with regard to the receiver field
toward one of the other modules, or it handles the com-

Control Task

ProcessingA/D Conversion Transfer

DAQ-Server

Target

Host

Fig. 4. Structure of the DSP application

mand directly if it is the receiver. The messages are used
to configure the modules, e.g. setting the sampling rate in
the A/D conversion module. A message can also request a
certain parameter from a module. In this case the module
sends a message back via the control task containing the
requested parameter.

The data acquisition, processing and transfer is driven
by interrupt events. The first interrupts in the cascade
are triggered by the AD16 modules if their FIFO fill level
reaches a certain threshold. Each AD16 module triggers
on its own interrupt line. The FIFOs are independently
read with DMA transfers into a frame in the onchip mem-
ory. Hereby the data is interleaved, such that the samples
from all channels taken at the same time build a single
block. The number and size of frames used is variable,
but there must be at least two frames where each can hold
the samples from the two FIFOs. This in turn depends on
the FIFO fill level threshold of the FIFOs. The maximum
number and size of frames is constrained by the size of the
onchip memory.

After a frame has been filled it is put into the processing
queue and a message is sent to the processing task which
initiates the desired processing for this frame. During pro-
cessing the raw data can either be replaced by the results
or certain channels can be extracted into a separate buffer.
For example given the case that only a certain frequency
band is of interest raw data would be replaced by the result
of the respective filtering. On the other hand if a spectro-
gram of a certain channel is requested a copy of this channel
is created from the raw data and if enough sample points
are collected the FFT is performed. After the processing
is completed the frame is transferred into ASRAM and an-
other interrupt is triggered to initiate the transfer via the
PCI bus to the DAQ server.

The transfer from the DSP application to the DAQ server
over the PCI bus is organized in packets. Each packet
consists of a header and a data part. The header indicates
which kind of data the packet contains in the data part.
In order to keep the communication simple and fast the
packets have a fixed length. One packet contains only one
type of data, e.g. either raw data or Fourier coefficients not
both. The packets are written into shared memory (shared
between M67 board and Host PC), which is divided into
two blocks. Each block can hold half of the packets which
fit into the shared memory in total. The DAQ server is
notified each time a block is filled with packets. This keeps
the event rate for the DAQ server as low as possible.

B. Data Acquisition Server

The DAQ server provides services of the DSP applica-
tion, like data acquisition or analysis, and other services
like data retrieval to the DAQ client. For example the DAQ
client creates an experiment object initialized with the ex-
perimental parameters and sends it to the DAQ server,
which in turn uses it to configure the data acquisition hard-
ware. The DAQ server has an entry queue for each type
of data that can be sent from the DSP application. These
queues are connected to queue transmitters. A queue trans-

private T* Buffer;

public void QueueReceiverAdd()
public void QueueReiceiverRemove()
public void Transmitt()
public void Transmit(T* Buffer, int Size)

VSQueueTransmitter

private T* Buffer;

public int QueueSize()
public int T Dequeue()
public void Enqueue(T)
pulblic int Room()

VSQueue

VSQueueReceiver

public int Decimation;
public int QueueBlockSize;
public int QueueBlockCount;
public int QueueBlockFrequencyIn;
public int QueueBlockFrequencyOut;

public void Receive(T* Buffer, int Size)

QueueReceiverList

0..*

MainQueue

Fig. 5. Class diagram of queue receiver and queue transmitter

mitter has a list of references to queue receivers. Fig. 5
illustrates the relation of the respective classes. The asso-
ciation MainQueue refers to the entry queue of a certain
type of data. The content of this queue is distributed to the
queue receivers within the method Transmit() which copies
a chunk from the queue into a buffer and calls the method
Receive() of every queue receiver passing this buffer. The
transmit method is periodically called by the DAQ server.
A queue receiver can decimate the data which is passed to
the received method according to the setting of block input
frequency and block output frequency. This is e.g. used to
keep the data volume for a visualization module below a
specific rate. A visualization module would set the block
output frequency to the number of sample points which
can be displayed in one second. This feature of a queue
receiver can also be turned off, e.g. streaming to disk is
done without any decimation.

The data which needs to be stored is streamed to disk
by the DAQ server. Only the data needed for visualization
is sent to the DAQ client.

C. Data Acquisition Client

The DAQ client consists of dialogs to setup and con-
trol an experiment and several visualization components.
Data acquisition and replay is controlled by a panel having
buttons like a DAT player and recorder. Currently under
development is an experiment planer which schedule is pro-
cessed automatically. The following section shortly intro-
duce the visualization components which include a virtual
scope, a blueplot, and a spectrogram.

C.1 Virtual Scope

The virtual scope (Fig. 6) can be used to inspect the
details of certain channels. Currently it supports up to
eight traces. Each trace can have a different scaling, offset,
color, and line width. The assignment of a recording site
to a trace can be done either by name, or by selecting the
recording site in a schematic drawing of the probe. The
scope supports arbitrary zooming.

Fig. 6. Virtual scope

Fig. 7. Blueplot

C.2 Blueplot

The simultaneous visualization of a high count of chan-
nels in a scope does not give an appropriate overview of
the acquired data. A better mode of visualization is pro-
vided by a so called blue plot (Fig. 7). For each channel a
colored bar is shown, whereby the amplitude of the chan-
nel is coded into a color value. Small amplitudes in the
order of the root mean square of the signal are mapped
onto blue color values with mean intensity. High positive
and negative amplitudes are mapped onto green with high
intensity or onto red with low intensity, respectively. Due
to the variation of intensity the blueplot can also be shown
using gray colors whereby the information about the ampli-
tudes (high negative or positive, mean) is preserved. The
mapping of amplitudes can be either manually or automat-
ically adjusted in the color bar. The user can also define a
threshold

C.3 Spectrogram

One example for online processing of raw data and visu-
alization is the spectrogram. The computation of the win-
dowed FFT of a certain channel is done on the DSP. The
log magnitudes of the Fourier coefficients are computed by
the DAQ client and the result is mapped onto a color. The

Fig. 8. Spectrogram

color mapping can be manually adjusted, such that only a
range of interest is displayed (Fig. 8).

V. Concluding Remarks and Future Work

The described data acquisition system provides basic
data acquisition functionality on a flexible hardware ba-
sis build from off-the-shelf components. The software pro-
vides a modular framework for future extensions. Already
implemented is a windowed Fourier transform, which re-
sult is used to display the spectrogram. Future work will
include development and implementation of methods for
online and offline data processing like filtering with high-
pass and lowpass FIR filters, compression based on wavelet
decomposition [3], spike detection and spike sorting [4–7].

Acknowledgment

We grateful acknowledge the help of our project partners
at ACREO AB (Kista, Sweden), Thomas RECORDING
(Giessen, Germany), Center for Sensory-Motor Interaction
at Aalborg University (Denmark), Instituto Nationale Neu-
rologico ”Carlo Besta” (Mailand, Italy), Theoretical Neu-
robiology at University of Antwerp – UIA (Belgium).

References

[1] Ulrich G. Hofmann, Erik De Schutter, Ken Yoshida, Marco De
Curtis, Uwe Thomas, and Peter Norlin, “On the design of multi-
site microelectrodes for neural recordings,” in Proceedings of the
MICRO.tec 2000, P. M. Knoll, Ed., Berlin, 2000, vol. 1, pp. 283
– 288, VDE Verlag.

[2] Ken Yoshida, W. Jensen, Peter Norlin, M. Kindlundh, and Ul-
rich G. Hofmann, “Characterization of silicon microelectrodes
from the EU VSAMUEL project,” in Biomedizinsche Technik,
J. Werner, Ed., Bochum, 2001, Schiele & Schön GmbH, to ap-
pear.

[3] B. Weber, T. Malina, K. Menne, A. Folkers, V. Metzler, and U. G.
Hofmann, “Handling large files of multisite microelectrode record-
ings for the European VSAMUEL consortium,” Neurocomputing,
Jun 2001.

[4] M. S. Lewicki, “A review of methods for spike sorting: the de-
tection and classification of neural action potentials.,” Network,
vol. 9, no. 4, pp. 53–78, Nov 1998.

[5] J. C. Letelier and P. P. Weber, “Spike sorting based on discrete
wavelet transform coefficients,” Journal of Neuroscience Meth-
ods, vol. 101, no. 2, pp. 93–106, Sep 2000.

[6] M. S. Fee, P. P. Mitra, and D. Kleinfeld, “Automatic sorting of
multiple unit neuronal signals in the presence of anisotropic and
non-gaussian variability,” Journal of Neuroscience Methods, vol.
69, no. 2, pp. 175–188, Nov 1996.

[7] Maneesh Sahani, Latent Variable Models for Neural Data Anal-
ysis, Ph.D. thesis, California Institute of Technology, Pasadena,
California, 1999.

