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ABSTRACT

Deep Neural Networks (DNNs) are increasingly being considered for safety-critical approaches in which
it is crucial to detect misclassified samples. Typically, detection methods are geared towards either the
detection of out-of-distribution or adversarial data. Additionally, most detection methods require a sig-
nificant amount of parameters and runtime. In this contribution we discuss a novel approach for detect-
ing misclassified samples suitable for out-of-distribution, adversarial and additionally real world error-
causing corruptions. It is based on the Gradient’s Norm (GraN) of the DNN and is parameter and runtime
efficient. We evaluate GraN on two different classification DNNs (DenseNet, ResNet) trained on different
datasets (CIFAR-10, CIFAR-100, SVHN). In addition to the detection of different adversarial example types
(FGSM, BIM, Deepfool, CWL2) and out-of-distribution data (TinylmageNet, LSUN, CIFAR-10, SVHN) we
evaluate GraN for novel corruption set-ups (Gaussian, Shot and Impulse noise). Our experiments show
that GraN performs comparable to state-of-the-art methods for adversarial and out-of-distribution detec-

tion and is superior for real world corruptions while being parameter and runtime efficient.

© 2021 Published by Elsevier B.V.

1. Introduction

Deep Neural Networks (DNNs) achieve outstanding results in a
wide variety of areas such as speech recognition or object detection
and especially in perceptual tasks, they have gained a great advan-
tage over classical methods in recent years [1-3]. Due to this pro-
gress, DNNs are increasingly being considered for safety relevant
tasks, such as autonomous driving [4| or medical prognoses [5].

An input is misclassified by a DNN if it is not within its general-
ization area, the area in which the information contained in the
input sample is processed reasonably by the DNN [6]. There are dif-
ferent reasons for a sample to be outside the generalization area.
Unforeseen data-shift or corner cases can occur, such that the data
is not covered sufficiently by the training data. Such data is sum-
marized by the term out-of-distribution data. In research such a sce-
nario is typically simulated by using data from a dataset different
to the training data. Another reason for misclassifications are ad-
versarial examples that are constructed from methods exploiting
the generalization issues of DNNs on purpose [7-10]. Those meth-
ods, called adversarial attacks, typically generate adversarial sam-
ples from originally correctly classified samples by perturbing
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them slightly. Often, the perturbation is invisible to humans but
the DNN is fooled and a misclassification occurs. A third category
that leads to errors are real world corruptions such as sensor noise.
These kind of corruptions depend on different circumstances such
as lighting or bit errors and can cause misclassifications. In com-
parison to out-of-distribution samples and adversarial examples
such causes for misclassifications are more common in real world
datasets [11].

Especially for safety relevant approaches it is crucial to detect
misclassified data samples during inference time. For each, the
detection of out-of-distribution samples [12-20] and the detection
of adversarial examples [21-25,13], there exist a variety of meth-
ods. Each method is typically geared towards either the detection
of adversarial or out-of-distribution samples, and unfortunately,
in both fields the current state-of-the-art detectors typically
require significantly more parameters or runtime than the original
DNN itself. This is critical for applications such as autonomous
driving where the available resources are limited [26]. Further-
more, the detection of real world error corruptions is often not con-
sidered. There are efficient methods that detect corrupted data in
general [27], but they do not differentiate between corruption that
still alows a correct classification and corruption leading to a mis-
classification. For all set-ups we want to show that state-of-the-art
detection performance is possible while being runtime and param-
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eter efficient. GraN, a method based on the Gradient’s Norm of the
DNN [28], builds our basis for further investigation on a runtime
and parameter efficient detection of misclassifications.

Our main contributions are:

o Application of GraN on out-of-distribution, adversarial example
detection and novel real world error detection.

e Demonstrating the versatility of GraN by evaluating it on the
widely used image classification DNNs DenseNet and ResNet
on several datasets.

e Showing state-of-the-art performance of GraN on numerous
set-ups while being the most runtime and parameter efficient
detector.

¢ Investigations on the relevance of the pre-processing procedure
used in GraN which includes the option for further runtime
reduction.

e Research on which layers are most important for the perfor-
mance of GraN which also includes the option for further run-
time reduction.

2. Related work

Adversarial example and out-of-distribution detection are usu-
ally treated independently from each other despite of their com-
mon origin of detecting misclassified samples. Hence, methods
are only geared towards one of these set-ups. Nevertheless, the
methods of both fields can be split into the same four main cate-
gories [25,6]: generative, inconsistency, ensemble and metric
based approaches.

Generative methods are mainly based on a pre-processing pro-
cedure in which the image is shifted back into the direction of the
distribution of the training data by an encoder-decoder procedure.
In the case of adversarial example detection the goal is to remove
the adversarial noise [22,23]. For out-of-distribution detection, a
huge difference between the original and the output image of the
generative process is expected to hint towards an out-of-
distribution sample [16]. However, the encoder-decoder approach
induces many parameters. Therefore generative methods are not
compatible for parameter and runtime restricted applications.

Inconsistency based approaches expect the output of the DNN
for a misclassified image to be more sensitive to small changes in
the image. The difference to the generative methods is that the
changes are rather simple in their computation. A well-known
example is the method ODIN [12]. In its approach the original
image x is shifted in the direction of the steepest descend of the
loss function L computed for the output of the network F(x) and
the predicted class y by performing a one step gradient descent
with step size €

X =x—e€-sign(ViL(x,y)). (1)

ODIN shows good detection performance for out-of-distribution
samples while being runtime and especially parameter efficient.
Recently, an updated version of ODIN was introduced which out-
performs the original version [14]. The runtime, however, was
worsened by a pre-processing procedure that iterates over every
possible class. The updated version of ODIN is therefore not rele-
vant for runtime restricted problems. For the detection of adversar-
ial examples, unfortunately, it was shown that existing
inconsistency methods do not work well for some adversarial
attacks [24,25].

Ensemble based detectors are mainly used for out-of-
distribution detection. The procedure is based on an ensemble of
networks each typically trained slightly differently [17,20]. The
more the outputs of DNNs differ for the same image, the more
the image is expected to be out-of-distribution. The number of
parameters for several DNNs exceeds the limit of parameter
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restricted applications which makes them irrelevant for such use
cases.

Metric based methods compare if the current input sample is
behaving similarly to correctly classified input samples investi-
gated during training. The features for such methods are com-
monly the output or more rarely the gradient of each layer of the
DNN. During inference time the features are then compared to
those of training samples using a stochastic method. Metric meth-
ods are the most promising in the field of efficiency and hence
especially rather simple efficient methods in this category are
recently getting more attention [27,29]. However such methods
are usually less perfomand or are evaluated on rather restricted
set-ups. One well-known adversarial example detection approach
is LID delivering comparable to state-of-the-art results [21]. It is
based on a Local Intrinsic Dimensionality score, a weighted dis-
tance based on k-nearest neighbors from the training set. However,
LID was recently outperformed in the category of most efficient
methods for the detection of adversarial samples by GraN [28].
GraN is, similar to one older detection method [15], based on gra-
dient information. The main differences to the older method are
that GraN is applying an efficient pre-processing step and uses only
layer-wise L1-norm based features, which lowers the computa-
tional overhead. A detailed explanation of the method GraN can
be found in Section 3.1. Other, new procedures for adversarial
detection are typically more computational and parameter expen-
sive by using additional procedures such as classification networks
consisting of one fully connected softmax layer on top of each acti-
vation layer by delivering a comparable perfomance [25].

The current state-of-the-art of metric based methods in out-of-
distribution detection are dominated by computational expensive
methods based on computation of layer-wise higher-order Gram
matrices [18] or on an additional residual flow procedure [19].
Due to large runtime or many parameters, such methods can not
be considered in complexity restricted fields.

The only method applied on both, adversarial and out-of-
distribution detection is based on the Mahalanobis distance M(x),
computed for each layer | of the DNN [13]. It is defined by the
layer-output f(x), of the test sample x and the closest class-
conditional Gaussian distribution determined by the layer-output
mean f, and the layer-output covariance %, for samples of the
class y

M(x), = ~(F(X) — )2, (F(x), = 1y).

It is performed in combination with a pre-processing procedure
based on the gradient for the predicted class.

Outlook: To show the efficiency of GraN [28], it is compared to
most known comparable methods: LID [21], an efficient method in
case of adversarial detection and ODIN [12] the most efficient
method in case of out-of-distribution detection. Furthermore to
demonstrate performance on par with the state-of-the-art, we
compare GraN to Mahalanobis [13], the only other method that
has been applied to both adversarial and out-of-distribution detec-
tion and often used as a baseline method in both fields.

3. GraN: A gradient-norm based detector

This section explains the systematic approach of GraN and its
intuition.

3.1. Method

GraN predicts if a pre-trained DNN with weights 6 is misclassi-
fying an input x by outputting a value p € [0, 1]. A high value p indi-
cates a high possibility for a misclassification and vice versa. The
approach can be divided into a pre-processing procedure, a feature
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extraction and a feature processing step. The feature extraction
step can be seen as the core of the method. A visualization of the
method is shown in Fig. 1.

3.1.1. Pre-processing

The method starts with a pre-processing step. The original input
image x is smoothened using a two dimensional symmetric kernel
derived from a Gaussian distribution G(u, v) for each color channel.
A two dimensional symmetric Gaussian is defined by

with u, v the horizontal and vertical distance from the center and o
the desired standard deviation. To get a discrete kernel that can be
applied to pixels a discrete function approximates G(u, ) [30]. The
resulting discrete values can then be used as a filter mask and
applied time-efficiently as an additional convolution step to the
image x to generate the smoothed image x.

3.1.2. Feature extraction

Both images, the original image x, and the smoothed image x are
processed by the pre-trained DNN. As usual the predicted class y is
derived as the index of the largest value of the output F(x) of the
network for the original image x. The output F(x) of the smoothed
image x and the predicted class y are fed into a loss function
L(®,F(X),y). In the next step the gradient with respect to the
weights VeL(®,F(X),y) is computed time-efficiently via backprop-
agation'. The large set of gradients VeL(®,F(x),y) is transformed to
a smaller set: For each layer i € {1,...,n} of the DNN, the gradient
regarding the layer’s weights ©; is replaced by its L; norm:

Vo, L(©,F(X),y) Ve, L(©,F(X),y)ll;
Vol(®,F(x),y) = :
Ve, L(©,F(X),y)ll;
(2)
This results in a feature vector of size n which reflects the num-
ber of layers in the DNN.

Vi, L(©,F(X),y)

3.1.3. Feature processing

The n-dimensional feature vector is processed by a logistic
regression network with n+ 1 parameters. During the training
phase of GraN this logistic regression network has to be trained
with correctly and incorrectly classified samples such that it pre-
dicts for each input the value p stating if the input is misclassified
(p>0)ornot (p<«1)

3.2. Intuition

The core of GraN is the norm of the gradient of the loss function
Vol(®,F(X),y).

From a mathematical point of view, the gradient over a variable
indicates the effect of small changes of that variable on the output.
Therefore, we can conclude that a high uncertainty at an evaluation
point of a function is indicated by a high gradient, which is directly
enlarging the values of the feature vector of GraN (Eq. (2)).

One natural indicator of uncertainty is a high difference
between the output of the DNN and the resulting predicted one-
hot class vector y. This information is included in the gradient over
the last layer which builds the starting point for the backpropaga-

! The last two steps are similar to a training step with the smoothed image as input
but instead of the label the predicted class y is used and the DNN is not updated.
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tion. Therefore, a huge distance between F(x) and the one-hot vec-
tor for class y directly increases all gradient values.

In order to increase the gradient for misclassified examples, a
smoothed input x is used. The Gaussian smoothing step is thought
to work as a low-pass-filter, small details and noise are removed
and the network is hence forced to concentrate on larger-scale fea-
tures. These larger scale features are harder to be influenced by
adversarial noise. Furthermore, if the prediction of the original
and the smoothed image do not resemble each other, we know that
the larger scale features and the smaller scale features contradict
each other. Such a contradiction eventually results in large gradi-
ents in the feature vector (Eq. (2)).

4. Evaluation

We evaluate GraN on a DenseNet with 100 layers [31] and a
ResNet with 30 layers [32] for the classification task and CIFAR-
10, CIFAR-100 [33] and SVHN [34] as in-distribution datasets.
There are predefined training and test samples for all datasets.
Each network is trained on each training dataset and tested on
the corresponding test set. The DNNs and their training procedure
are adopted from reference [13].

4.1. Adversarial example detection

In the adversarial set-up we want to evaluate the performance
of GraN in distinguishing between correctly classified images from
the test data and adversarial images. In the following we refer to
the correctly classified images as in-distribution images. In order
to generate adversarial examples four different attack methods
are used: FGSM |[7], BIM [8], Deepfool [9] and CW-L2 [10]. Each
adversarial attack method is applied to all in-distribution images
and defines a data-setup for the detection task together with the
in-distribution images. Each data set-up is split randomly into a
train (80%), validation (10%) and test (10%) set by keeping a ratio
of one between adversarial and in-distribution images in each
subset.

For each set-up the logistic regression for GraN and the train-
able parts of the methods LID [21] and Mahalanobis [13] described
in Section 2 are trained on the training dataset. The validation
dataset is used to find the best hyper-parameter setting for each
set-up and each method. The range of possible hyper-parameters
are adopted for Mahalanobis and LID from reference [13]. The only
hyper-parameter of GraN is the standard deviation ¢ for the Gaus-
sian smoothing pre-processing. It is chosen from the range
0 € {0.1,0.2,,...,2.0} by using the validation data.

We use the area under the receiver operating characteristic
curve (AUROC) as most widely adopted evaluation metric in the
adversarial example detection literature. The receiver operating
characteristic curve plots the true positive rate (TPR) of in-
distribution data against the false positive rate (FPR) of the adver-
sarial data.

The adversarial example detection AUROC score and the run-
time and parameter overhead for each method are provided in
Table 1.

4.2. Out-of-distribution detection

In the out-of-distribution task the detector has to distinguish
between in-distribution and out-of-distribution images. As in-
distribution datasets we use CIFAR-10, CIFAR-100 [33] and SVHN
[34]. As out-of-distribution datasets we use CIFAR-10 [33], SVHN
[34], Tiny ImageNet [35] and LSUN [36], each defining an out-of-
distribution set-up together with the in-distribution data. As in ref-
erence [21] the out-of-distribution images are resized in order to
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Fig. 1. Overview of GraN [28].

Table 1

AUROC score and efficiency comparison for adversarial example detection. We thrive for an parameter and runtime optimized solution at the same time, hence we marked the
results of the most efficient method GraN that are in the range of (less than 2 percentage points worse) the best result in bold. The best results are marked by an underline.

Net Data Advers. LID [21] Mahalanobis [13] GraN [28]
Type Para. Time AUROC Para. Time AUROC Para. Time AUROC
DenseNet CIFAR-10 FGSM 62.4k 0.02[s] 98.50 157.9k 0.07[s] 99.99 0.3k 0.04[s] 99.52
BIM 99.75 99.73 98.50
Deepfool 85.86 73.49 86.21
CWL2 81.17 79.68 86.58
CIFAR-100 FGSM 62.4k 0.02[s] 99.79 214.1k 0.07[s] 99.74 0.3k 0.04[s] 99.54
BIM 97.93 97.77 96.80
Deepfool 75.44 78.74 85.63
CWL2 73.68 80.68 85.66
SVHN FGSM 62.4k 0.02[s] 98.14 157.9k 0.07[s] 99.92 0.3k 0.04[s] 98.72
BIM 96.28 99.39 98.00
Deepfool 93.87 96.44 96.59
CWL2 95.05 96.97 96.89
ResNet CIFAR-10 FGSM 102.4k 0.02[s] 99.85 362.5k 0.02[s] 99.99 0.1k 0.01[s] 99.07
BIM 97.03 99.68 98.11
Deepfool 56.78 92.38 90.42
CWL2 82.89 95.74 80.06
CIFAR-100 FGSM 102.4k 0.02[s] 99.13 454.7k 0.02[s] 99.83 0.1k 0.01[s] 99.58
BIM 97.01 97.34 98.01
Deepfool 73.88 86.01 89.13
CWL2 80.59 92.45 91.72
SVHN FGSM 102.4k 0.02[s] 97.95 362.5k 0.02[s] 99.69 0.1k 0.01[s] 98.28
BIM 90.72 96.97 94.82
Deepfool 92.33 95.36 97.01
CWL2 88.15 92.99 92.77
Average 89.66 93.79 94.07

have the same size as the corresponding in-distribution images.
Similar as in the adversarial example task a training, evaluation
and test set is built for each set-up. For each out-of-distribution
set-up the methods GraN, ODIN and Mahalanobis are trained on
the training set and the best hyperparametersetting are found
using the evaluation set. The out-of-distribution detection AUROC
performance and the runtime and parameter overhead for all
methods are provided in Table 2.

4.3. Real world error detection

In real world applications the occurence of adversarial or out-
of-distribution data far from the training data is often not the main
cause for misclassifications. More relevant are misclassifications
caused by data corruption or misclassifications of in-distribution
samples. The following experiments cover such real world error
causing scenarios. The original set-up is build by the misclassified
images and the same amount of randomly chosen correctly classi-
fied images. In the real world error detection set-ups the detectors
have to distinguish between corrupted images that are still cor-
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rectly classified by the DNN and corrupted images in which the
corruption leads to a misclassification. Sensor related corruption
types are relevant in most computer vison tasks. We therefore
based the corruption set-ups on the three sensor related corruption
types introduced by Hendrycks and Dietterich: Gaussian noise
which can appear in low-lighting conditions, shot noise which is
also called Poisson noise and is electronic noise caused by the dis-
crete nature of light itself and impulse noise which is a color ana-
logue of salt-and-pepper noise and can be caused by bit errors
[11]. For each dataset, network and corruption type we perturbed
the original data using the corresponding noise and adapted the
noise level such that half of the original data is misclassified and
half of the data is still correctly classified by the DNN. In each
set-up the detectors have to distinguish the correctly classified
images from the misclassified ones. Again, as underlying datasets
we use CIFAR-10, CIFAR-100 [33]| and SVHN [34]. Similar to the
adversarial example task a training, evaluation and test set is built
for each set-up. The best performing methods in the earlier exam-
ples, GraN and Mahalanobis, are evaluated by being trained on the
training set and the best hyperparameter settings are found using
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AUROC score and efficiency comparison for out-of-distribution detection. We thrive for a parameter and runtime optimized solution at the same time, hence we marked the
results of the most efficient method GraN that are in the range of (less than 2 percentage points worse) the best result in bold. The best results are marked by an underline.

Net In. Data Out-of-distr. ODIN [12] Mahalanobis [13] GraN [28]
Data Para. Time AUROC Para. Time AUROC Para. Time AUROC
DenseNet CIFAR-10 SVHN 2 0.06[s] 95.62 157.9k 0.07[s] 97.83 0.3k 0.04[s] 98.04
T.Imagenet 98.51 98.24 97.41
LSUN 99.23 99.30 99.31
CIFAR-100 SVHN 2 0.06][s] 93.81 214.1k 0.07[s] 95.74 0.3k 0.04[s] 98.79
T.Imagenet 85.22 92.57 98.06
LSUN 84.45 97.17 99.41
SVHN CIFAR-10 2 0.06[s] 91.37 157.9k 0.07[s] 98.99 0.3k 0.04[s] 97.90
T.Imagenet 95.11 99.88 98.70
LSUN 94.54 99.91 99.22
ResNet CIFAR-10 SVHN 2 0.02[s] 96.65 362.5k 0.02[s] 99.19 0.1k 0.01[s] 98.83
T.Imagenet 94.04 99.43 98.04
LSUN 94.14 99.73 99.26
CIFAR-100 SVHN 2 0.02[s] 93.94 454.7k 0.02[s] 98.36 0.1k 0.01[s] 98.78
T.Imagenet 87.62 98.06 98.55
LSUN 85.64 98.13 99.51
SVHN CIFAR-10 2 0.02[s] 92.09 362.5k 0.02[s] 99.33 0.1k 0.01[s] 98.34
T.Imagenet 91.99 99.88 98.74
LSUN 89.43 99.89 99.14
Average 92.41 98.42 98.67

the evaluation set. In addition, a baseline method is introduced to
ensure that the comparatively better performance of GraN is not
only due to the Gaussian pre-processing. This pre-processing base-
line uses the Gaussian pre-processing step of GraN but performs
the detection only based on the difference of the softmax value
of the predicted class. The real world detection AUROC perfor-
mance and the runtime and parameter overhead for all methods
are provided in Table 3.

4.4. Discussion of the results

Runtime: In all tables (Tables 1-3), the column Time provides
the runtime that is needed for each detection method. The time
for the forward pass of the classification network to classify the
input image is not included. Times are measured on a single Nvidia
GeForce GTX 1080ti GPU and the DNNs are implemented in
PyTorch Version 1.5.1. With a runtime overhead of 0.04 s for Den-
seNet and 0.01 s for ResNet, GraN has a shorter runtime than all
other three methods on all set-ups except for LID on DenseNet.
The pre-processing step in GraN can be performed time-
efficiently as convolution and the resulting image can be processed
by the DNN in parallel to the classification step of the original
image. The main computation-time overhead of GraN comes from
the necessary backpropagation step to calculate the gradients. The
following layer-wise summation and the processing by the logistic
regression account for only a small part. A backpropagation step
for the 100 layer DenseNet needs longer than a backpropagation
step for the 30 layer ResNet, which explains the runtime difference
between these settings. The pre-processings of ODIN and Maha-
lanobis need gradient information depending on the predicted
class. Therefore, their pre-processing steps are based on a forward
and backward pass. Hence, the forward passes of the preprocessed
and the original image can not be computed in parallel, which
roughly leads to a doubling of time compared to the runtime of
GraN. In addition, Mahalanobis is based on the layer-wise Maha-
lanobis distance, which is complex to calculate and therefore con-
tributes to even more runtime. LID is not based on a pre-processing
procedure. However, it needs an expensive computation of the
layer-wise local intrinsic dimensionality score. The absence of a
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pre-processing step results in a runtime advantage over GraN for
deep networks. For flatter networks, on the other hand, the more
complex feature extraction process is relatively slower and GraN
is faster. This behavior can be observed when comparing the run-
time for GraN and LID for the flatter network ResNet and the dee-
per network DenseNet. For real-time relevant applications, even
flatter networks are usually used, for which the runtime advantage
of GraN extends.

Parameters: The column Para. provides the additional parame-
ters each method needs in the corresponding set-up (Tables 1-3).
LID and Mahalanobis do require a huge amount of parameter over-
head in comparison to GraN and ODIN. This is due to their feature
extraction method. On top to the parameters required for the logis-
tic regression part, Mahalanobis needs to store the layer-wise out-
puts’ average and standard deviation, and LID the layer-wise
output of 100 different samples. ODIN does not need any parame-
ters, while GraN only needs the parameters of the logistic regres-
sion part that are very few. Hence, from the parameter
perspective ODIN and GraN are relevant for parameter restricted
applications.

AUROC Performance: For each set-up the best result is marked
by an underline (Tables 1-3). To get an overview if GraN is always
in the range of the best result we additionally marked the result of
GraN in bold if its performance is less than two percentage points
worse than the best result. Only two set-ups fell below the two
percent mark for the adversarial, one for the real world corruptions
and none for the out-of-distribution case. The last line in all tables
provides information on the average performance of each method.
On average GraN outperforms LID by 4.41 percentage points and
Mahalanobis by 0.28 percentage points for the adversarial example
setting. For the out-of-distribution setting GraN outperforms ODIN
in average by 6.26 percentage points and Mahalanobis by 0.42 per-
centage points. The most significant performance difference is
found for the real world set-ups. Here, GraN was on average over
15.76 percentage points better than the Mahalanobis method.
The Baseline method is 13.06 percentage points worse than GraN,
which confirms the relevance of the gradient analysis of GraN. The
Mahalanobis method has problems with detection especially when
DenseNet is used as the underlying classification network. The
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AUROC-score and efficiency comparison for fault leading data corruption detection. We thrive for a parameter and runtime optimized solution at the same time, hence we marked
the results of the most efficient method GraN that are in the range of (less than 2 percentage points worse) the best result in bold. The best results are marked by an underline.

Net Data Corruption Prepro. Baseline Mahalanobis [13] GraN [28]
Noise Para. Time AUROC Para. Time AUROC Para. Time AUROC
DenseNet CIFAR-10 Original 2 <0.01[s] 79.68 157.9k 0.07[s] 50.95 0.3k 0.04[s] 87.74
Gaussian 82.23 57.89 92.63
Shot 79.64 58.90 91.11
Impulse 82.41 61.47 91.96
CIFAR-100 Original 2 <0.01[s] 78.01 214.1k 0.07[s] 54.18 0.3k 0.04[s] 85.16
Gaussian 74.21 59.33 89.51
Shot 76.22 58.00 89.03
Impulse 67.19 56.95 85.52
SVHN Original 2 <0.01[s] 58.62 157.9k 0.07[s] 90.40 0.3k 0.04[s] 84.88
Gaussian 78.64 72.84 90.26
Shot 78.28 71.01 89.80
Impulse 73.25 73.16 87.10
ResNet CIFAR-10 Original 2 <0.01[s] 84.90 362.5k 0.02[s] 94.69 0.1k 0.01[s] 96.22
Gaussian 75.65 7217 87.66
Shot 74.09 75.58 85.73
Impulse 82.17 84.30 92.00
CIFAR-100 Original 2 <0.01[s] 76.73 454.7k 0.02[s] 84.72 0.1k 0.01[s] 87.04
Gaussian 73.32 82.31 87.96
Shot 73.16 83.69 88.20
Impulse 67.65 83.45 86.02
SVHN Original 2 < 0.01[s] 61.02 362.5k 0.02[s] 91.65 0.1k 0.01[s] 89.67
Gaussian 84.32 82.49 92.47
Shot 84.98 81.21 92.97
Impulse 81.15 81.27 90.39
Average 76.14 73.44 89.20

direct connection of each layer to all previous layers seems to make
an evaluation over the Mahalanobis distance difficult. GraN on the
other hand seems to have no problems with the DenseNet set-ups.
Also for the ResNet set-ups GraN performs on average significantly
better than Mahlanobis. We interpret the advantage of GraN as fol-
lows: The real world corruption set-ups are build such that the dat-
apoints lie on the classification boundary. Mahalanobis measures
the layer-wise distance to correctly classified data. For data points
that are on the border between being classified correctly or incor-
rectly, the layer-wise distance is very small. GraN on the other
hand measures the contradiction within the network to the pre-
dicted class via the gradient, which is more meaningful for such
data points.

These results in addition to the investigated parameter and run-
time requirements show GraN in advantage especially for real
world scenarios or applications with limited resources.

4.5. Pre-processing relevance study

In order to investigate the relevance of the pre-processing pro-
cedure used in GraN we performed experiments without any pre-
processing. In this experiments only the original image x is used for
the algorithm and replaces the Gaussian smoothed image x. A
direct performance comparison with and without pre-processing
for an adversarial and an out-of-distribution setting is shown in
Fig. 2.

For the out-of-distribution setting the pre-processing leads to a
performance improvement but no tendency is visible if it is more
relevant for some out-of-distribution data. For the adversarial set-
ting however, such a trend is visible. Especially for the two attack
methods Deepfool and CWL2, the pre-processing leads to a perfor-
mance boost. When comparing the CWL2 and the Deepfool adver-
sarial attack methods to those of FGSM and BIM we notice that
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Deepfool and CWL2 are more advanced methods. This means that
the average euclidean difference between the original and a gener-
ated adversarial image that fools the DNN is typically smaller. The
Gaussian pre-processing procedure is able to denoise the image
from a small amount of noise. To remove a high level of noise, a
high smoothing rate would have to be chosen which then also
destroys necessary image information. Therefore, the smoothing
is not as beneficial for a high noise level. However, through that
higher noise-level, FGSM and BIM are easier to distinguish from
images of the original dataset. The performance on those is better
in general, cf. Table 1. The gaussian smoothing is originally thought
to remove sensor noise, hence as expected the highest difference in
performance can be observed for the corrupted set-ups, but also for
the original set-up the performance is improved by the pre-
processing step. Depending on the setup and whether the associ-
ated performance loss can be tolerated, it is an option to omit
the pre-processing step to save runtime.

Inspired by the method ODIN and Mahalanobis we made some
additional experiments replacing the Gaussian pre-processing pro-
cedure with the gradient descent based pre-processing procedure
described in Eq. 1. However, it did not lead to an improvement of
the detection score while consuming more runtime. Their gradient
based pre-processings can be interpreted as a shift away from the
original distribution and hence the generalization area, while the
gaussian smoothing is thought to shift the data point closer to a
correct classified in-distribution sample. Such a pre-processing is
therefore not recommended.

4.6. Logistic regression study

A logistic regression network can be seen as a one-layer neural
network, resulting in the question if the performance of GraN could
be improved by replacing the logistic regression part with a several



J. Lust and A.P. Condurache

100 A

98.27 98.28

98 1

96 1 94.82 94.82

94 1

92 1

90 1

AUROC Score

88 1

86 1

84

82 -

BIM Deepfool

Il w.o0. pre-processing B with pre-processing

(a) Adversarial example detection for ResNet on SVHN.

100
99.41
99

98 1

97 1

AUROC Score

96 1

95 -

SVHN ImageNet LSUN

N w.0. pre-processing B with pre-processing

(b) Out-of-distribution detection for DenseNet on CIFAR-
100.

100 4

AUROC Score

Shot

Original Gaussian Impulse

EEE w.0. pre-processing B with pre-processing

(c) Corruption detection for ResNet on CIFAR-10.

Fig. 2. Performance comparison for GraN with and without pre-processing eval-
uated for different networks and datasets.

layer neural network. We made some experiments on that using
simple two- and three-layer neural networks but no relevant
improvement in the detection performance could be observed. This
indicates that an additional combination of features allowed by a
deeper neural network does not bring any new information gain
for the detection of a misclassification. The simple use of regression
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weighting is sufficient. Therefore, and since a logistic regression
network can be trained hyper-parameter independently, we do
not recommend using a multilayer neural network instead.

4.7. Layer importance study

We investigate from which part of the network GraN extracts
the most relevant features. Therefore, the feature vector is split
into ten parts. Each part i consists of the i-th tenth of the feature
vector and hence includes the gradient information of the corre-
sponding layers of the classification neural network. In each set-
up only the i-th part of the feature vector is used to train and eval-
uate GraN. The performance for all ten parts are compared. Exam-
ples for different settings and set-ups are shown in Fig. 3. The
corresponding dashed line in the same color for each set-up shows
the original performance when all features are used.

There is no clear tendency visible which subset performs best,
the scores behave differently for each set-up. Some reach the base-
line performance for almost all subsets, some get close for only one
or two sub-sets and others are far below the baseline performance
for all parts. Depending on the outlier data and the corresponding
set-up this knowledge can be used to further save runtime for
applications that are based on set-ups that already lead to good
results when GraN is only evaluated on the gradients of the last
layers. The backpropagation computations could stop when all rel-
evant gradient information are extracted and the remaining run-
time could be saved.

5. Conclusion

Choosing a method to detect misclassified samples led to a
trade-off between state-of-the-art performance and approaches
that are runtime and parameter efficient. This was problematic
for applications in which the resources are limited and hence a
runtime and parameter efficient method was required. Further-
more, state-of-the-art methods concentrated on either the detec-
tion of out-of-distribution data or adversarial examples, whereas
no attention was paid to real world corruptions leading to misclas-
sifications. In this paper, we therefore investigated the perfor-
mance and runtime and parameter requirements of GraN, a
detection method for misclassified samples. It achieves perfor-
mance similar to state-of-the-art for the detection of adversarial
and out-of-distribution samples while being runtime and parame-
ter efficient. The main advantage of GraN however is its detection
of real world corruptions that lead to misclassification. This was
proven for various datasets, attack methods and network architec-
tures in the field. Furthermore, we investigated the relevance of the
pre-processing step of GraN, which leads to a performance boost
especially for the detection of more advanced adversarial attacks
and some real world set-ups. This shows that using GraN without
pre-processing could be a solution for applications that do not
expect advanced adversarial attacks and tolerate a small perfor-
mance loss in order to further downsize runtime requirements.
Experiments for layer importance show that further runtime sav-
ings, also associated with a performance loss, can be achieved by
using only gradient information of the last layers. Thus, no full
backpropagation step would have to be executed, which saves
even more computing time.

GraN needs examples of correctly and misclassified samples of
the DNN for its training process. Such samples are usually a by-
product of the training and validation process of any classification
task anyway. However, a challenge to address in future work might
be to adapt GraN to be independent of outlier data in its training
procedure such that it generalizes well to unknown types of out-
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Fig. 3. Performance comparison of GraN trained on different feature subsets. The i-
th subset contains the i-th tenth of the feature vector. For all set-ups the dashed line
in the corresponding color shows the original performance when the whole feature
vector is used.

liers. One possible starting point could be to replace the norm-
based feature extraction with a more sophisticated process.
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