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ABSTRACT
In this paper, we propose a novel way of using time-of-flight camera
depth and amplitude images to reduce the noise in depth images
with prior knowledge of spatial noise distribution, which is corre-
lated with the incident light falling on each pixel. The denoising
is done in wavelet space and the influence and implications of
the extended noise model to wavelet space and common denoising
methods are shown.

Index Terms— Time-Of-Flight, Denoising, Wavelet, Non-
Local-Means

I. INTRODUCTION
Time-of-flight cameras provide, beside an ordinary 2D intensity

image, a depth map containing gray levels proportional to the
distance of objects. The depth map itself is superimposed by a
considerable amount of noise, which intensity is correlated with
the amount of light collected by a single pixel.

In [1] we proposed a method for depth-image super resolution
with implicit noise reduction in spatial domain which exploited this
correlation. In contrast to that paper we herein use this correlation in
a wavelet context. For that we derive a novel noise adaptive wavelet
thresholding method. It is worth noting that depth-map noise is not
signal dependent in the sense that the noise level depends on the
depth-signal itself. It rather depends on the intensity image. This
is why the proposed method is not comparable to signal depended
noise reduction methods like in [2].

In the next section of this paper we introduce the principle of
time-of-flight cameras and show the signal model for the depth
map. In Section 3 we first recall the wavelet denosing through
thresholding and show the implications of the signal model on the
thresholding coefficients in wavelet space. In Section 4 we show
experimental results for our proposed scheme on simulated and real
data, and Section 5 concludes this paper.

II. TIME-OF-FLIGHT PRINCIPLE AND NOISE MODEL
Each time-of-flight camera is equipped with its own source of

light. An object in a distance d from the camera (and its light
source) reflects photons stemming from the modulated light source.
They are collected by the time-of-flight pixel as

s(t) = a0 cos(ω0t− φ) +B, (1)

where s(t) is the average number of photons per unit time at given
time t, φ is the phase shift resulting from photons traveling to
the object and back to the camera

(
φ = 2ω0

d
c

)
, with c being the

speed of light. Thus the phase shift has a linear dependency from
the distance of the reflecting object. The average incident light
and the modulation amplitude are taken into account by B and a0

respectively.
Since the phase shift can not be measured directly, many time-of-

flight systems use a pixel structure that performs some correlation
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Fig. 1. Cross section of a single time-of-flight PMD pixel contain-
ing two wells.

Fig. 2. Light intensity “seen” by a pixel over time. Correlation
Voltage Um(t) is shifted by 0◦ to the modulation of the light source.

of the optical received signal with an electrical reference source.
The pixel structure used for our experiments is shown in Fig. 1. The
modulation signal Um(t) (see Fig. 2) directs electrons (caused by
incoming photons) to either of two wells (a and b). To measure the
phase shift of incoming light, four images (each taken with Um(t)
shifted by 90◦ to its predecessor) have to be acquired. Fig. 2 shows
the light intensity integrated by a pixel using Um(t) shifted by 0◦

to the emitted modulated light. Each pixel provides two voltages
Ua and Ub. The differences (ΔU = Ua−Ub), sampled at the four
phase shifts, are used to calculate the modulation amplitude a0 and
phase shift φ of the optical echo [3]:

a0 =
1

2

√
(ΔU270 −ΔU90)2 + (ΔU0 −ΔU180)2 (2)

φ = arctan

(
ΔU270 −ΔU90

ΔU0 −ΔU180

)
. (3)

The number of photons collected during integration is underlying
a Poisson distribution (even with perfectly constant intensity) [4].
In practice, when collecting several hundreds of photons, the
distribution can be approximated by the normal distribution with
the same value for mean and variance. This photon shot noise
is responsible for the fact that a pixel collecting more light also
outputs more noise (even though the SNR gets better). Since the
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phase shift of the optical echo does not depend on the total amount
of light (but phase noise does), the depth-map SNR lowers when the
non-modulated light (B − a0) gets brighter or the modulated light
(a0) gets darker. The dependency of depth-map noise is derived in
[5]:

σ2
depth ∝

B

a2
0

, (4)

where σ2
depth is the variance of the depth signal.

This leads to an image model for time-of-flight depth images
with a spatial variation of noise variance:

y = f + vΘ, (5)

where f is the ideal depth image1, y is the measured depth image
and vΘ represents zero mean Gaussian noise with a covariance
matrix which is known from (4) up to a scaling factor:

Σv = diag[σ2
1 , σ

2
2 , ..., σ

2
N] = diag[Θ] = ξ diag

[
B • a−2

0

]
, (6)

where Θ is called noisemap, which holds the spatial variances. B
and a0 are images holding the respective value of B and a0 for each
pixel (see (1)). A potentiation of the form ab and a multiplication
of the form a•b are understood as element-wise operations in this
paper.

III. WAVELET BASED DENOISING
III-A. Thresholding

Wavelet thresholding (also known as shrinkage) has been in-
troduced by Donoho and Johnson in 1994 [6]. In literature many
signal recovery methods have been published since then based on
their initial idea in [7], [8], [9] and references therein.

In this section we concentrate on the basic two concepts pro-
posed by Donoho and Johnson called universal (i) hard and (ii)
soft thresholding. We show the effect of the model (5) to the
noise distribution in wavelet space and its successful combination
with the well known methods. The basic motivation for wavelet
thresholding is the fact that natural images (signals) tend to be
sparse in wavelet space (e.g. concentrate their energy locally),
while additive noise is distributed uniformly. If one could classify
the wavelet coefficients in relevant and nonrelevant for noise-free
signal description the resulting signal reconstruction using only the
(modified) relevant coefficients leads to a less noisy signal. Wavelet
thresholding consists therefore of 3 steps:

1) Transformation of noisy input signal to wavelet space.
2) Modification of wavelet coefficients.
3) Transformation to signal space.

Consider a noisy sampling process, according to the model

y = f + v, (7)

with f = [f(ti)]
n
i=1 and (ti = i · T · n−1) being the vector

representation of a band limited function f(t) we wish to recon-
struct. y is the measured data, and v is a white Gaussian noise
vector with zero mean and covariance matrix σ2I. Denoising can be
described as finding an estimate f̂ which minimizes ||y−f̂||2 subject
to some prior knowledge about the expected signal. One way of
incorporating a reasonable prior is to transform the measured data
into the wavelet space where natural signals tend to concentrate
their energy locally. If we use an orthonormal wavelet basis
Tw = [gi]

n
i=1, with gi being the basis vectors, the coefficients w

are calculated by

w = Twy = Tw(f + v) = Twf + Twv = wf + wv. (8)

Since ||gi||2 = 1, it is easy to see that wv is again a white Gaussian
noise vector with zero mean and covariance matrix σ2I. And as the

1All images are represented as lexicographic ordered vectors in this paper

main ”clean” signal energy is concentrated to some coefficients,
thresholding can be applied. Donoho and Johnson proposed a hard
thresholding method

ŵi,h = ηh(wi) =

{
wi |wi| > σλi

0 otherwise
(9)

and a soft thresholding method

ŵi,s = ηs(wi) =

{
sign(wi) · (|wi| − σλi) |wi| > σλi

0 otherwise,
(10)

where wi and ŵi are the elements of w and ŵ respectively. The
latter vector is used to calculate the estimate f̂ = T −1

w ŵ. σ is the
noise level and λ is a positive number. In literature there have been
different approaches to estimate an optimal λ, either universal or
dyadic level adaptive (e.g. [10], [11], [12], and [13]). We chose the
optimal value (in the minimax sense) by the dyadic level adaptive
SUREShrink procedure, proposed in [12].

III-B. Thresholding depth data
To the best of our knowledge the model (5) has never been used

in the context of wavelet denoising algorithms. The difficulty is,
however, to determine the power distribution in wavelet space from
a known distribution in image space for successful application of
wavelet thresholding. For the model (7) with white Gaussian noise,
the variance does not change by transforming to an orthogonal
wavelet space but this does not hold true in the case of model (5).

Given a signal u = HvΘ, where vΘ is a nonstationary and
uncorrelated Gaussian noise process with zero mean and covariance
matrix E[vΘ ·vT

Θ] = diag[Θ]. H is a linear FIR filter operator with
impulse response h. The covariance matrix of the signal u is then
E[uuT ] = E[HvΘ · vT

ΘHT ] = HE[vΘ · vT
Θ]HT = H · diag[Θ] ·

HT = Σu, where the average powers of the elements of u are
given by diag[Σu] = GΘ with G being a linear FIR operator with
impulse response g = h2.

According to the À-Trous algorithm, wavelet coefficients wd,J

of an image x on the dyadic level J can be calculated by wd,J =
DJHd,Jx, where DJ is an operator performing a subsampling of
factor 2J in both dimensions, and Hd,J is an FIR filter operator
with impulse response hd,J . d can be HH , LH , or HL indicating
the diagonal, horizontal, and vertical details, respectively. The
impulse response hd,J can be calculated by recursive convolution
of upsampled analysing filters or in z-space

Z{hd,J} =
{
Hd

1 (z), for J = 1,

Hd
1 (z)

∏J−2
j=0 H0

(
z2

j
)
, for J > 1,

(11)

where Hd
1 (z) and H0(z) are the high- and lowpass filters for the

dyadic wavelet analysis.
Consequently the noise power propagation through the wavelet

transform of a nonstationary process like model (5) is

wd,J
Θ = DJ · diag[Hd,J · diag[Θ] ·HT

d,J] = DJGd,JΘ, (12)

where Gd,J is a linear operator with impulse response gd,J = h2
d,J .

This means that highpass and lowpass filters in MRA decomposi-
tion act as filters with lowpass characteristic 〈1, gd,J〉 > 0 on the
noise propagation, where 1 is a vector of same size as gd,J filled
with ones and 〈·, ·〉 denotes the inner product. This fact is shown
in Fig. 3. The result of a noise propagation analysis is shown
in Fig. 3(c). For the analysis we used a D4 wavelet basis and
100 images (Fig. 3(b)) with mean value of 128 and a noisemap
as shown in Fig. 3(a). From now on we denote the transformed
2D noisemap as wΘ = [wΘ,1, wΘ,2, · · · , wΘ,N ] without denoting
dyadic or detail levels.
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(a) (c)(b) (d)

Fig. 3. Noise propagation through wavelet transform. (a) Noisemap
(variance of 250 in white areas and 0 in black areas). (b) Single in-
put image for wavelet transformation with Gaussian noise variance
according to noisemap (a) and mean of 128. (c) Empirical noisemap
in D4 wavelet space measured over 100 transformed input images.
(d) Dydic wavelet levels for noise propagation.

The results of the noise propagation can then be used to replace
the thresholding value σλ in (9) and (10) by σiλ, where σi directly
corresponds to the noise variance of the i-th wavelet coefficient.

IV. EXPERIMENTAL RESULTS
IV-A. Setup

In this section we show results of our denoising methods for
depth images on simulated and real data. The simulated data
are generated with the model (5) and images from the Middle-
bury stereo database2 where we used from each dataset the gray
scaled image view1.png as amplitude image (a0) and the image
disp1.png as depth map. All images are scaled to 128 × 128
pixel and we assumed no non-modulated light (a0 = B). To avoid
undefined values for the noise map the a0-images were modified
to not drop below 5% of full scale value. As noise scaling factor ξ
(see (6)) we used four different values (0.01, 0.03, 0.05, and 0.10).

The real data in our test setup is a scene from our laboratory
taken with a CamCube 2.0 from PMDtec3. A single shot (which
includes the a0 and depth image) has been taken without any non-
modulated light. The noisemap has been calculated with the a0-
image and denoising was done on the depth image.

IV-B. Methods
To show the superiority of our noise adaptive thresholding (AT)

over the conventional thresholding (CT), we used the universal soft
and hard thresholding (ST and HT) with a constant λ over the
whole wavelet space. This parameter is chosen for AT and CT by
the SUREShrink procedure [12] on variance-normalized data. For
CT we choose the parameter σ to yield the best PSNR results.
The optimization was done with Matlab’s fminsearch and the start

parameter σ0 =
√

N−1
∑N wΘ,i. For our AT the parameter σ

was taken directly from the noisemap for each wavelet coefficient
individually, without any optimization towards PSNR. As we don’t
have ground truth for the real data, no PSNR can be calculated,
therefore we omitted the optimization step on that data for CT. As
a wavelet basis we chose the D4-basis.

IV-C. Results
Table II shows the result for simulated data. The higher PSNR of

AT or CT is highlighted for hard and soft thresholding, respectively.
Our AT method shows mostly better results than the best CT in
the case of soft thresholding. For hard thresholding the situation
is different since the CT sometimes provide much better PSNR
results (Laundry ξ = 0.05). But as Fig. 4(a,b) shows, hard
thresholding sometimes tends to produce overly smooth images,

2The images can be downloaded from http://vision.middlebury.edu/
stereo/data/scenes2005/ThirdSize/zip-2views/ALL-2views.zip

3http://www.pmdtec.com/products-services/pmdvisionr-cameras/
pmdvisionr-camcube-20/

when optimizing to PSNR. And even if the PSNR of our AT
is worse, the perceptual quality and usability seems to be better.
Fig. 4(c,d) shows an example where the noise reduction of our
method provides very good results. Around the horns of the reindeer
the very good noise suppression of our method can be seen. It is
worth noting that in all cases of CT, the parameters are optimized
towards the best PSNR value, whereas our method is not optimized
at all.

(a) (c)(b) (d)

Fig. 4. Reconstruction results on simulated data for extreme cases
in Table I. (Laundry ξ = 0.05): (a) Conventional hard thresh-
olding (CHT), (b) Adaptive hard thresholding (AHT). (Reindeer
ξ = 0.10): (c) Conventional soft thresholding (CST), (d) Adaptive
soft thresholding (AST)

Fig. 5 shows the results on real camera data. In subfigure (a) we
marked four regions and measured the spatial standard deviation
(Table I). Again, the results show the superiority of our method
against the convectional methods.

(a)

1

2

3

4

(d)

(b) (c)

(e) (f)

Fig. 5. Reconstruction results on real depth image. (a) Original
Depth map. (b) Reconstruction using convectional soft thresh-
olding. (c) Reconstruction using adaptive soft thresholding. (d)
Original amplitude image (a0). (e) and (f) magnification of (b) and
(c) respectively.

V. CONCLUSION
In this paper we showed the successful application of a time-

of-flight depth map model with spatial variant noise variance on
wavelet thresholding. We showed denoising results on real and
simulated data with a universal threshold method and showed that
our method outperforms existing methods. The Experiments were
done by optimizing the existing methods towards a good PSNR and

121



Region Noisy Measurement CST AST

1 25.0 cm 16.2 cm 7.0 cm
2 32.1 cm 23.7 cm 13.6 cm
3 4.2 cm 2.8 cm 2.7 cm
4 13.7 cm 8.3 cm 7.3 cm

Table I. Standard deviation in 4 regions of Fig. 5 for the original
depth map provided by the camera, the reconstruction using con-
vectional soft thresholding (CST), our adaptive soft thresholding
(AST).

without optimizing our method. And as our method modifies the
thresholding coefficients in wavelet domain it is neither restricted
to a certain wavelet basis nor to constant thresholding parameters.
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Dataset ξ CST AST CHT AHT

Art 0.01 31.22 31.51 30.53 28.83
Art 0.03 28.07 28.56 24.37 25.31
Art 0.05 26.93 27.29 26.02 24.12
Art 0.10 25.17 25.84 20.59 22.62
Books 0.01 35.14 35.40 34.68 32.91
Books 0.03 31.85 32.39 27.88 28.70
Books 0.05 30.26 31.08 25.64 26.67
Books 0.10 28.21 29.43 27.93 24.67

Dolls 0.01 32.64 33.87 28.60 30.35
Dolls 0.03 29.84 31.18 28.74 26.64
Dolls 0.05 27.75 29.99 27.80 25.17
Dolls 0.10 26.77 28.55 26.04 24.17

Laundry 0.01 32.82 32.73 32.10 32.25
Laundry 0.03 30.50 30.76 30.75 28.32
Laundry 0.05 29.32 29.68 29.26 26.27
Laundry 0.10 27.86 28.19 27.77 24.84

Moebius 0.01 34.29 34.84 31.02 31.66
Moebius 0.03 31.05 31.88 26.70 27.43
Moebius 0.05 29.69 30.53 28.69 26.05
Moebius 0.10 27.89 28.96 27.02 23.80

Reindeer 0.01 30.87 31.98 29.98 28.35
Reindeer 0.03 27.90 28.92 27.15 24.20
Reindeer 0.05 25.49 27.66 25.98 22.67
Reindeer 0.10 22.91 26.06 17.13 21.42

Table II. Experimental PSNR results (in dB) on simulated data.
CST: Conventional soft thresholding. AST: Proposed adaptive soft
thresholding. CHT: Conventional hard thresholding. AHT: Pro-
posed adaptive hard thresholding.
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