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Abstract: In the recent years, different types of invariant features have been pro-
posed which promise to improve the robustness of speech recognition systems in
mismatching training-test conditions with respect to the mean vocal tract lengths.
Many state-of-the-art systems make use of system combination. By considering
speech recognition systems with different front ends, this paper investigates whether
the system combination of standard-feature and invariant-feature based systems
with ROVER yields improvements in accuracy. Results show that the combina-
tion of the considered systems leads to clear accuracy improvements. An error
analysis also shows that the considered invariant features carry different types of
information than the standard ones. The performance achieved with our system
combination is in the range of what the best systems achieve in literature, although
our approach does not yet include discriminative training or heteroscedastic feature
transformation.

1 Introduction

Variability is an inherent characteristic of speech signals. One of the many sources of variability
comes from the different vocal tract lengths (VTLs) of human speakers. Adult VTLs may differ
by up to 25 percent [9]. Without further processing, the performance of speaker-independent
automatic speech recognition (ASR) systems is two to three times lower than the one of speaker-
dependent systems [1].
State-of-the-art ASR systems usually combine several methods to enhance their robustness in
speaker-independent applications. On the one hand, there are methods that try to adapt the
acoustic models to the characteristics of each speaker, which are also known as (constrained)
maximum likelihood linear regression (MLLR) techniques [6]. On the other hand, there are
methods that try to normalize the features to reduce the mismatch between training and testing
conditions. The VTL normalization (VTLN) methods [9] belong to this group. In [18] it was
shown that VTLN can be seen as a constrained MLLR. A third class of methods tries to directly
extract features that are invariant to the spectral effects of VTL changes [11, 12, 13, 14, 15].
The application of auditory motivated scales like the mel [3] or the ERB [17] scale approxi-
mately maps the scaling to translation along the frequency axis of TF representations. This ef-
fect was used for translation-based VTLN [21], as well as for Gaussian-mixture-model (GMM)
based features [12]. Recently, different types of translation-invariant transformations were in-
vestigated for their applicability in the field of speech recognition. Correlation-based features
were proposed in [11]. Besides other invariant-transformation based features [13, 14], so-called
invariant integration features (IIFs) were described in [15] and showed a clear performance
enhancement for speaker-independent ASR systems. The transformations that are used within



these feature extraction methods are mathematically well founded and were successfully used
in the field of image analysis.
Another common approach of advanced ASR systems is system combination. Besides cross-
adaptation [7] that uses the output of one system as the input of another system, another common
method is to take hypotheses of multiple systems and combine them. This could be done, for
example, with the recognizer output voting error reduction (ROVER) [5] method or confusion
network combination (CNC) [4]. Compared to the accuracies of single recognition systems, the
combining approaches have shown the ability for large performance improvements [22, 20].
In this work, we investigate the combination of the outputs of systems, whose front ends use
standard feature extraction methods, as well as invariant feature extract methods as mentioned
above. The following section describes four different feature types that use different translation-
invariant transformations and were used in recent works. In Section 3.1, the data and modeling
of the individual systems is described. Baseline accuracies and an error analysis are made in
Section 3.2. The system combinations are investigated in the third part of Section 3. At last,
Section 4 summarizes the main contributions of this paper and describes future plans.

2 Invariant Feature Types

As described above, feature extraction methods have been proposed for ASR systems that are
based on different nonlinear invariant transformations. All methods have in common that they
rely on a TF representation that approximately maps the spectral effects due to VTL differences
to translations along the subband-index space. Common first steps of an ASR front-end are
the computation of the power spectrum for a given frame followed by a critical-band grouping.
All feature types considered in this work initially compute this sort of representation. In the
following, we give a brief description of the individual invariant feature types.
The vocal tract length invariant (VTLI) features [11] use the auto- and cross-correlation func-
tion for feature computation. They comprise three different correlation-based feature types that
differ in the parameters for the temporal and spectral lags. In contrast to the other invariant fea-
ture types considered in this work, the VTLI features are also supplemented with mel frequency
cepstral coefficients (MFCCs).
The second feature type uses an invariant transformation that originates from the field of image
analysis and is known as the class of translation-invariant transformations CT [2]. Transforma-
tions of this class can efficiently be computed with a complexity of O(N log(N)) and can be
understood as a generalization of the linear, fast Walsh-Hadamard transformation. Parameters
are the choice of two (arbitrary) commutative mappings used within the CT -transformations.
In [14], different combinations of CT -based transformations were applied on multiple scales of
the TF representation and supplemented in the same feature vector with a subset of the VTLI
features. In the following these features are referred to as CT features.
The third invariant feature type considered in this work is based on the class of transformations
known as generalized cyclic transformations (GCT) [10]. The computation of features of this
type involves two steps: first, the input signal is projected on basis vectors given by a matrix
A, which is the matrix product of a so-called generalized characteristic matrix (GCM) and the
transformation matrix of the modified Walsh-Hadamard transformation. The choice of coeffi-
cients for the GCM yields a high degree of freedom. In a second step, either an absolute-value
spectrum or an extended group spectrum can be computed as translation-invariant features.
In [13], different GCT-based features were computed from a series of sub-frames and combined
in the same feature vector with a subset of the VTLI features.



The invariant integration features (IIFs) [15] are the fourth invariant feature type considered in
this work. They are based on the idea of constructing invariant features by integrating nonlin-
early transformed input signals over a finite transformation group. In the context of designated
translation invariance, monomials up to a certain order are a good choice as nonlinear func-
tions. The parameter space of the IFFs is very large and an appropriate feature selection has
do be done. Experiments showed that, in contrast to the CT and GCT features, the IIFs do not
need any supplementary features in order to perform best. It is shown in [15] that the IIFs can
outperform MFCCs in matching as well as in mismatching scenarios.
A common disadvantage of the described invariant feature types is the high dimensionality
of the resulting feature vectors. Therefore, a dimensionality reduction usually followed by a
decorrelating method is applied. A detailed description of the experimental settings is given in
the next section.

3 Experiments

In the first part of the experiments, six individual ASR systems were built. Each system used
one of the described feature extraction methods in its front end. The acoustic and language
modeling as well as the adaptation components in the back end of the system were the same
for all systems. No attempt to optimize the back-end parameters, for example, word insertion
probability or grammar scale factor, for the individual feature types was made.

3.1 Data and Modeling

Phoneme recognition experiments have been conducted within this work. The TIMIT corpus
with a sampling rate of 16 kHz was used. The standard NIST training set consists of 3696 ut-
terances from 462 female and male speakers. The complete test set without “SA” sentences
consists of 1344 utterances from 162 speakers. Two training-test scenarios have been defined;
the first includes female and male utterances in the training and test set. The second scenario
simulates a mismatch in the mean VTL between training and test data. In practice, this situation
arises, for example, in case of children using an ASR system that was trained only on adult ut-
terances. Therefore, the training set of the second scenario includes only male utterances from
the original training set, while the test set includes only female utterances from the complete
test set. Following the standard approach [8], an initial set of 48 phonemes was used for training
acoustic models. This set was collapsed to 39 phonemes for testing purposes.
In all systems triphone context-dependent hidden Markov models (HMMs) were trained with a
left-to-right 3-state topology with no skip states. The output distributions were modeled with
diagonal covariance matrices. Decision-tree clustering was applied for state-tying and a bigram
language model was used. Each system applied VTLN. Here, the systems based on invariant
feature types used cepstral coefficients that were based on the TF representation used by the
individual feature types. In case of the MFCC- and PLP-based system, scaling was used for the
warping of the frequency axis, while the invariant-feature based systems used a translational
VTLN. Speaker-adaptive training (SAT) with CMLLR and speaker-adaptation with a combi-
nation of CMLLR and MLLR during testing were adopted.
Two systems with standard feature types were considered for the experiments. For the first
system, standard MFCCs with 12 coefficients were used. The second system computed 12 per-
ceptual linear prediction (PLP) coefficients. All systems used a frame length of 20 ms and a
frame shift of 10 ms and appended log-energy together with first and second order derivatives
to the feature vectors.



Table 1 - Baseline phoneme error rates (PER) of individual systems.

PER for scenario [%]
Front-end type matching mismatching

MFCC (39) 24.0 30.3
PLP (39) 23.4 30.0

GCT (55) 25.1 30.4
VTLI (55) 25.0 33.2
CT (55) 27.0 31.6
IIF (60) 22.5 27.4

The settings for the individual front-ends with invariant feature types were adapted to the set-
tings as presented in the works [15, 11, 13, 14]. The feature types that yielded the highest
accuracies within the individual works were taken. In case of VTLI-, GCT- and CT-based fea-
tures, a linear discriminant analysis (LDA) was used to reduce the dimension of the feature
vectors to 55. In case of IIFs, 30 features of order one were selected. The final dimensionality
of the IIF vectors after applying LDA was 60.

3.2 Baseline Error Rates and Error Analysis

The phoneme error rates (PER) of the individual systems for both scenarios are shown in Ta-
ble 1. The upper part of the table shows the results of the systems which use the standard
MFCC- and PLP-based front ends. It can be seen that the PLP-based system performs slightly
better than the MFCC-based system in both scenarios. The lower part of Table 1 shows the
accuracies of the systems whose front ends are based on invariant feature types. The highest
accuracies, which are also higher than the ones of the PLPs, are achieved with the IIFs. In con-
trast, the three other invariant feature types yield accuracies that are lower than the accuracies of
the non-invariant MFCC- and PLP-based systems. For the mismatching scenario, we expected
that the accuracies of the invariant-feature based systems would be higher than the ones of the
systems based on standard features. A reason for this shortfall may be the fact, that the back
ends were not individually optimized to the feature types. Another reason is that VTLN and
MLLR do a good job especially with the non-invariant features.
For a successful combination of system outputs, the ASR systems preferably use different kinds
of knowledge and, thus, make different types of errors [22]. First, we analyze the substitution
errors for the best performing system. Figure 1 shows a confusion matrix of substitution errors
for each phoneme of the IIF-based system. Here, approximately 75% of the confusions occur
within the same phoneme class. Therefore, it can be assumed that accuracy improvements
within individual phoneme classes will lead to improvements of the overall performance.
In a second step, the contributions of each phoneme class c to the total PER E were analyzed
for each ASR system,

Ec :=
Dc +Sc + Ic

N
×100%, (1)

where Dc is the number of deletions, Sc is the number of substitutions, and Ic is the number
of insertions within class c. Furthermore, N is the total number of phonemes within the tran-
scription. The matching scenario was considered here. The error contributions Ec are listed
in Table 2. Though lower in overall accuracy, it can be observed that the GCT, VTLI, and CT
features perform equally good or slightly better within the class of strong fricatives compared
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Figure 1 - Confusion matrix of substitution errors with radii linearly proportional to the error. The
largest bubble represents 4.9% of the total error.

to MFCCs and PLPs. This observation can also be made for VTLI features in the “silence”
phoneme class.
Table 3 shows the relative differences of the number of substitution errors of each feature type
compared to the corresponding number of substitution error of the IIF-based system. Since
the IIFs perform best in all categories, these values are all positive. Again, it can be seen that
the worse performing systems (GCT-, VTLI-, CT-based) make in some phoneme classes less
substitution errors than the better performing systems (PLP- and MFCC-based).

3.3 System Combination

The outputs of the individual systems have been combined with the ROVER approach: after
the alignment of the 1-best hypotheses into a single phoneme transition network, a subsequent

Table 2 - Contribution of phoneme classes to the total phoneme error rate (including insertions, dele-
tions, and substitutions) in the matching scenario.

PER [%]
Phoneme class MFCC PLP GCT VTLI CT IIF

vowels 12.5 12.4 13.3 13.3 14.5 12.2
nasals 2.1 2.1 2.8 2.6 3.1 1.9
strong fricatives 1.7 1.6 1.6 1.5 1.6 1.4
weak fricatives 2.4 2.2 2.3 2.4 2.4 2.1
stops 2.9 2.9 2.9 2.9 3.0 2.6
silence 2.3 2.2 2.3 2.2 2.4 2.4

∑ 24.0 23.4 25.1 25.0 27.0 22.5



Table 3 - Relative differences of numbers of substitution errors of each feature type compared to the
number of substitution errors of the IIFs.

Rel. difference to #IIF subst. errors [%]
Phoneme class PLP MFCC GCT VTLI CT

vowels 5.1 4.8 7.9 9.3 18.1
nasals 10.7 7.0 41.9 31.9 54.1
strong fricatives 21.6 15.6 8.1 5.0 11.3
weak fricatives 10.9 5.0 3.6 9.9 5.4
stops 13.1 13.1 11.6 12.1 16.5
silence 10.3 5.1 16.0 15.4 31.4

Table 4 - Phoneme error rates (PER) of system combinations with different sizes. The systems combined
with each other are marked with •.
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F PER [%] for scenario

(24.0) (23.4) (25.1) (25.0) (27.0) (22.5) matching mismatching

• • 22.0 27.1
• • 22.5 27.3

• • • 20.7 26.2
• • • 22.1 26.8

• • • • 20.6 25.6
• • • • 21.5 26.2

• • • • • 20.4 25.3

• • • • • • 20.3 25.8

module processes the network and selects the word with the best score [5]. Within this work,
the ROVER implementation of the NIST Scoring Toolkit (SCTK) [16] was used.
All possible combinations of the individual systems as described above have been considered
for this part of the experiments. Table 4 shows a selection of the results. This contains the
combinations of size two, three, four, five, and six with highest accuracy, as well as the best
combinations of different sizes when only invariant feature types are used. Generally, it can
be observed that an output combination of the considered ASR systems leads to performance
improvements. The combination of systems based on non-invariant features with systems based
on invariant feature types yields higher performance improvements than combinations of only
invariant-feature based systems. It can be observed for the matching scenario that the accuracy
increases with an increasing number of systems combined with each other. For the mismatching
scenario, the combination of five systems is slightly better than that of six systems. Compared
to the baseline IIF system, the error rate is reduced by 2.2% in the matching and 2.1% in the
mismatching case. This means a relative error rate reduction of 11% for the matching and 6%
for the mismatching scenario. The error rates reported in this work are higher than the lowest
reported phoneme recognition rate of 19% on TIMIT [19]. However, the ASR system used in
this work does not yet include discriminative training or heteroscedastic feature transformation.



4 Conclusions

In this work, we have considered six different ASR systems that differed in the feature ex-
traction method within the front end. Four different invariant feature types were considered in
combination with standard MFCC and PLP features. The back ends of all systems were kept
the same. We have shown that the (substitution) errors within certain phoneme groups made
by the individual systems are differently distributed. Furthermore, the combination of 1-best
hypotheses of the systems with ROVER yields improvements in performance.
In the future, we are interested in improving the accuracy of the individual systems. This could
be done, for example, by fine-tuning the individual back ends to each feature type. Also using
discriminative training, other dimensionality reduction methods, or more sophisticated methods
for the computation of a TF representation could further increase the accuracies.
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