
 1

Abstract— Autonomous wireless devices for healthcare

monitoring become a reality only if such devices are embedded

with enough intelligent and processing capabilities to minimize

the amount of data being transferred through the wireless

network. Also, the embedded processing capability must be

made energy efficient so that the device can operate on

scavenged energy or very limited battery power. This paper

reports the development of a real-time EEG

(Electroencephalography) application based on DWT (Discrete

Wavelet Transform) and its mapping and optimization on an

Application Specific Instruction set Processor (ASIP). It shows

the drastic energy reduction that can be achieved by cross-

optimization of the algorithm and the ASIP architecture. Our

results indicate that such cross-optimization can reduced the

dynamic energy by more than 80%.

Index Terms— ASIP, DWT, EEG, Real-Time, Ultra-Low

Power.

I. INTRODUCTION

Recent advances in miniaturized wireless autonomous

devices are expected to enable ambulatory and non-invasive

monitoring of health parameters, thus increasing quality of

services in healthcare systems in the coming years. There

are still important technology challenges to overcome in

order to achieve widespread use of wireless intelligent

monitoring devices, as reported previously [1]. Some of the

tasks to materialize such an intelligent wireless autonomous

system include the development of low-power sensors to

collect data from human body, of real-time and efficient

algorithms for analysis of biomedical signals, of platforms

to process the data with very low energy consumption, and

of radios to transmit the analyzed data to a monitoring

center. For example, current devices used for monitoring of

bio-potential signals, such as Electroencephalography

(EEG), Electrocardiography (ECG), and Electromyography

(EMG) typically include long wires connecting sensors,

attached to the patient body, to a data acquisition box. The

implementation of an autonomous wireless intelligent

sensor with small size, low power, embedded processing

capabilities and low-cost would remove the burdens due to

wires and enable monitoring of the patient in normal

conditions. A first generation of such a system was

previously reported, and shown in an application for sleep

monitoring in a home environment [2]-[3].

Today’s wireless sensor nodes spend significant of their

power budget in wireless communication as shown in [4].

While power-efficient wireless communication is essential

in the autonomy of WSN, the problem can be alleviated by

local processing and reducing the amount of data needed to

be transferred over the wireless link. However, local

processing of the data is also expensive if not performed

effectively. While today some processing can be performed

using commercial micro-controllers, such as TI-MSP430,

their computational power is limited and their power

efficiency is not acceptable for autonomous WSN.

In [5], it was shown that by careful code and architecture

co-optimization, significant power reduction can be

achieved when running ECG R-peak detection algorithm.

This paper reports the development of a real-time

biomedical application analyzing EEG signal based on

DWT (Discrete Wavelet Transform) and its mapping on an

ASIP under-development in-house for bio-medical

application domain. The code and ASIP optimizations were

performed to achieve high energy efficiency.

The paper is organized as follows. Next section gives a

brief introduction to the DWT-based EEG. Section III

presents application mapping and optimizations and the

application mapping and architectural optimization. Section

IV presents the results. Section V outlines the conclusions

and future work.

II. EEG SIGNAL PROCESSING

A. EEG Overview

This section introduces the basic of EEG signals and a

widely used technique for processing the signals. EEG is the

Development of Real-Time EEG Application on an Ultra-Low-

Power DSP

Suzan Cirit
1
, Julien Penders

2
, Maryam Ashouei

2
, Jos Hulzink

2
, Michael de Nil

2
, Jos Huisken

2
, Ulrich G. Hofmann

3

1
 Methodpark Software AG, Wetterkreuz 19a, 91058 Erlangen, Germany

2 IMEC-NL/Holst Centre, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
3
 Institute for Signal Processing, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Corresponding author: maryam.ashouei@imec-nl.nl

 2

Table 1. Characteristics and the origin of brain waves

Type of

wave

Frequency

range [Hz]

Characteristics Source of generation

Alpha 8~12 Resting condition, sitting in a relaxed position with

eyes closed

Cortical, thalamic nuclei and brain stem

Beta 12~30 Mental thought and activity (eyes open) Inside the cortex

Gamma >30 Cognitive functions, sensory stimuli, motoric activity Local areas of the cortex and brain stem

Delta 2~4 Deep sleep Sub-cortical areas

Theta 4~8 Asleep Cortical, hippocampal, brain stem and thalamus

measurement of brain electrical activities using electrodes,

which are placed on a patient’s scalp following the

international 10-20 system as shown in Figure 1[6].

Different frequency components exist in the measured

signals. EEG waves are classified into five frequency bands

(Table 1). Each frequency band is generated by different

regions of the brain and indicates certain features in the

patient such as his depth of sleep. The recorded EEG

signals are used as input for health care monitoring and

diagnosis, such as epileptic seizure detection, emotion

monitoring, sleep monitoring, etc. For instance, one of the

early signs of epileptic seizure is the presence of

characteristic transient waveforms (spikes and sharp waves)

in EEG data.

Figure 1. Electrode placement scheme on scalp

Several methods exist to extract the oscillations of a

specific frequency from EEG data. Among the most popular

are wavelet transform (WT), Fourier transform (FT),

autoregressive model and bi-spectral analysis. Since the

EEG signals are non-stationary, (discrete) wavelet transform

(DWT) is widely used for EEG analysis [8]-[11]. This is

because the DWT maintains both time and frequency

resolution, which is essential for non-stationary signals.

DWT is explained in the next subsection.

A. DWT-based EEG Analysis

This subsection provides an overview of DWT without

going into the mathematical details behind it. Interested

readers are referred to [8] for further in-depth explanation.

DWT provides a time-frequency decomposition of the

signal and is usually implemented using two FIR filters, a

high-pass and a low-pass filter [15], derived from the

mother wavelet. The DWT of a signal is calculated by

recursively applying these filters (Figure 2). The filters’

outputs are down-sampled by a factor of two. This

procedure is repeated until the desired frequency band

remains in the signal.

At each iteration of the recursion (i.e. at each step of the

decomposition scale), two types of coefficients are left: the

details (d), representing high frequencies, and the

approximation (a), representing low frequencies of the input

signal of the respective decomposition step. During the

computation, the approximation coefficients are used as

input for the next decomposition level and the details will

be kept for the analysis, as illustrated in Figure 2 .

As mentioned earlier, at each decomposition scale, the

signals are down sampled. This introduces time-variance

and is not suitable for biomedical signal analysis (EEG,

ECG). To solve the aliasing issue caused by down sampling,

the un-decimated DWT was introduced. It is computed in a

similar way, except that the down-sampling step is by-

passed. Practically, this can be easy implemented by up-

sampling the filter coefficients at each decomposition level,

i.e. by inserting zeros between the filter coefficients. This is

known as the “trous algorithm” [15], and is used as a

starting point for our research.

x[n]

H o

G o

2

2

d1[n]

H o

G o

2 d2[n]

2

H o

G o

d3[n]

a3[n]

x[n]

H o

G o

22

22

d1[n]

H o

G o

22 d2[n]

22

H o

G o

d3[n]

a3[n]

Figure 2. Recursive calculation of DWT

On-the-fly analysis of EEG signals is essential to reduce

the output latency. Furthermore, in a wireless sensor node,

where the processor has limited resources, it is important to

limit the amount of memory space required. Therefore, we

implemented an un-decimated DWT algorithm that meets

 3

the real-time and limited memory space constraints by

optimization of filter coefficient up-sampling.

Table 2 shows the data buffer size, the program memory

size, and the latency of the original EEG algorithm and its

real-time implementation. The results were obtained on an

Intel Core 2 duo 1.8 GHz using Visual Studio 2005

compiler.

 Data

Buffer

Size

Program

Memory

Size

Latency

Original

Implementation

20 kB 184 kB 1022

samples

Real-Rime

Implementation

4 kB 40 kB 256

samples

Table 2: Algorithm Performance

Furthermore, since resource constrained low power

architectures usually are fixed-point architectures, we

converted the algorithm from floating point to fixed-point

format. The acquired signal from the sensor already is in

12-bit format. Therefore a conversion into fixed-point

format was applied only to the FIR filter coefficients and

computations. A fixed-point implementation has been done

in 32-bit representation. The output of the fixed-point

representation was compared with the output of the floating-

point format. The error distribution of the output is shown

in Figure 3. The 32-bit fixed-point implementation

introduces an error range of [-5, +4] with a mean error value

of 0.4899, which is negligible relative to the signal

magnitude.

Figure 3. The output error PDF using 32-bit fixed-point

implementation

The real-time implementation was verified with a use

case scenario “opening and closing eyes”. Open-eye and

closed-eye statues correspond to the brain wave beta (12-30

Hz) and the brain wave alpha (8-12 Hz) respectively. For

the experiment, EEG was recorded at O1 and O2 (the

occipital and visual locations on the scalp) locations.

The upper part of Figure 4 shows the recorded EEG data

at O2 location. The opening and closing of eyes happen

every 20 seconds. Alpha waves are expected in the sixth

scale, whereas beta waves appear in the fifth scale. To

validate this assumption a decomposition depth of six was

applied to the signal. From the figure, one can see that in

closed-eye status, an increase in alpha activity is present

(the lower part of Figure 4).

Figure 4. The raw EEG data sampled at 1kHz is shown

in the upper part. The lower part shows the energy

content of the decomposition at each scale.

In the following section, the code and ASIP (Application

Specific Instruction set Processor (ASIP) optimizations are

described.

III. APPLICATION MAPPING AND OPTIMIZATIONS

EEG signal processing can be performed on a range of

hardware platforms including general purpose processor,

DSP, ASIP, or ASIC. While general purpose processors are

the most flexible in terms of programming capability, they

consume substantial amount of power, which makes them

unsuitable for a WSN. On the other hand, ASIC’s, while

power efficient, provides little to no programmability,

which makes them cost-inefficient in the presence of

changing algorithm. For this reason, the Human++ activity

at IMEC is focusing on ASIP designs, which provide some

degree of programmability while still power efficient.

Today, there are a few commercially available design

tool suits for ASIP design. One of such a tool is Silicon

Hive [17], used for architectural exploration in this study.

A. ASIP Design Flow

Silicon Hive processors are described in a high level

object oriented language from which a processor and a C

compiler for that processor can be generated [17]. The

compiled code can be run on the processor using a

simulation environment. This way the bottlenecks can be

identified and optimizations can be performed.

The high-level processor description allows for quick

changes in the architecture and fast architectural

exploration. This way, application specific processors can

be designed easily.

For the optimized processor, then Silicon Hive can

generate the synthesizable RTL code. The commercially

available CAD tools for synthesis and place & route are

then used to complete the design flow from RTL to GDSII.

 4

This way the acquired power and timing information are

more accurate as will be discussed in Section IV.

B. Code and Architectural Optimizations

The reference processor (Figure 5) is a 3 issue slot

machine connected to a bus and controlled by a host, which

can be a simple state machine. Each issue slot has its own

local register file and separate set of functional units.

Looking at the interfaces, issue slot 1 has two FIFO

connections, issue slot 2 is connected to the local data

memory and issue slot 3 has a master interface to the bus,

which can be used for accessing external memory. The

processor reads its instructions out of a 128-bit wide

program memory.

Figure 5. Reference architecture

The optimizations are performed with the objective of

reducing the cycle count. The idea is that if the cycle count

is reduced with minimal increase in overall architecture

power consumption, the execution time (i.e. active time) is

reduced and that directly translates to dynamic energy

reduction. Leakage reduction techniques then can be

applied during the idle time to reduce the standby leakage

consumption. The rest of this section presents different

optimization steps and their impacts on the cycle count. The

result is summarized in Table 3.

1) Code Enhancement:

The following code enhancements were performed to

reduce the cycle count.

- Memory access reduction: Analyzing the execution

statistics, it turns out that a performance bottleneck is

having only one load/store unit in issue slot 2 to

communicate with the data memory. This results in

many stall cycles for instructions requiring access to

the data memory. The memory access should be as few

as possible because of their limited availability and

also their high energy per access. Therefore, the code

has to be rewritten into a compact form to avoid many

load operations.

- Conditional statement: Conditional statements such

as if-else or switch-case statements should be removed

when possible because they consume clock cycles for

checking whether the condition is true or not.

Rewriting the code into a loop kernel and removing

the conditional statements gives a more compact code,

reducing the cycle count.

- Native data type: We also remove non-native data

types whenever possible. This is beneficial because

whenever arithmetic operations are performed on data

types shorter than integer, the compiler is obliged to

insert sign-extend operations after it to make sure that

the value stays within the range of the data type.

Rewriting the most prominent code segment into a loop

kernel and changing the non-native data types into 32-bit

integer native data type reduce the cycle count from 7494

clock cycles to 5982 clock cycles per sample, a 20%

reduction.

2) Circular Buffer

There are six linear buffers in the code, each of which

corresponding to a different decomposition level, n. In the

algorithm, a sliding window principle is applied to the data

such that all elements of a buffer were shifted by one to

overwrite the oldest sample in the buffer and to insert the

new incoming sample at the end of the buffer. Because the

buffer size increases from decomposition level n-1 to

decomposition level n by 2
n
, the required move operations

increases by 2
n
. On the other hand, the register files are not

large enough to keep the entire buffer and it must be stored

in the memory. To solve the problem, we used a circular

buffer instead of a linear buffer. In terms of hardware, the

circular buffer is a storage element with two ports for write

and read. The one advantage of circular buffer versus shift

buffer is having write- and read-pointers and using them in

parallel. The other advantage comes from rotating the read-

and write-pointers instead of physically moving elements of

a buffer.

In practice, a circular buffer is a linear buffer with

circular addressing mode. Therefore a manual bound

checking for the end of the circle using modulo arithmetic is

required.

After implementing the circular buffer and running the

rewritten code on the processor, the cycle count was not

decreased. On the contrary, the cycle count was increased

by a factor of 2. The conclusion is that this implementation

is only efficient for processors that support the circular

addressing mode.

The modulo arithmetic operation can be replaced by the

binary mask operation. In other words, the number to use as

a mask in order to perform a modulo 2n is 2n-1. The

following example explains the concept.

Modulo operation: x = y % 8 x = y % 16

Equivalent binary mask

operation:

x = y & 7 x = y & 15

Implementing the circular buffer using the binary mask

operation reduces the cycle count from 5982 to 2352, a 60%

reduction.

3) Custom Operations

Silicon Hive provides two ways of running an application

on the processor. One is without any customer instruction.

The complier decides which path will be taken in the

processor. The other way is to force the compiler to use

customer instruction. The following custom operations were

used and their impacts were analyzed.

 5

- Modadd: Such a operation can be used in the

circular buffer (see III.B.2). With this operation,

the the intermediate code from III.B.2) can be

rewritten with the custom operation modadd.

- Mac: Since the loop kernel uses convolution, the

computation is done using multiplication and a

successive addition. This can be also optimized

using a multiply accumulate unit (MAC), which is

usually available on a common DSP processor.

However, the reference processor does not

support the MAC function unit. Therefore, the

processor architecture needs to be modified to

implement the MAC operation. To increase the

parallelism, it would be more efficient to insert

MAC unit into issue slot 1.

Adding the MAC function unit reduces the cycle count

from to 2352 to 1713. Further modification was applied to

issue slot 2 by removing the multiplication function unit.

Since all multiplications in the code is done by the MAC

function unit, the multiplication unit is redundant and can

removed.

4) Exhaustive Scheduling and Software Pipelining

As a result of the above optimizations, the main part of

the code now has an optimized loop kernel that does not

have any control flow. Moreover, all iterations of the loop

are independent. The computations in any given iteration do

not depend on the results of the previous iterations. Thus we

can apply software pipelining, a.k.a. loop-folding.

We can also have a better utilization of different

functional units/issue slots. We use the compiler option for

exhaustive scheduling in the Silicon Hive compiler.

Applying the two mentioned techniques reduces the cycle

count from 1713 to 1415.

5) Removing Global Variables

The use of global variables should be kept minimal,

because global variables are stored in the memory and

loading them from the memory and storing them to the

memory is expensive. Whenever possible the global

variables should be changed to local variables to keep them

in the register files. This step reduces the cycle count from

1415 to 1396.

The next section presents the power measurement results.

Table 3. Performance optimization steps

Step Optimization Techniques Cycles/Sample

1 Initial Code 7494

2 Code Enhancement (reducing

conditional branches)

5982

3 Employing Circular Buffer 2352

4 Using Custom Operation (mod

& mac)
1713

5 Exhaustive Scheduling, software

pipelining

1415

6 Code Enhancement (removing

globals)

1396

IV. RESULTS

To obtain the power consumption of running the DWT-

based EEG algorithm on the optimized architecture, the

VHDL model of the processor was generated. Then, the

VHDL design was synthesized and placed & routed using

TSMC 90 nm process technology. The memory blocks were

generated using a commercial memory generator.

The DWT-based EEG algorithm then was simulated on

the back-annotated netlist of processor after place and route

using Cadence NCSim. The value change data (VCD)

information, generated during the simulation was used by

Synopsys PrimeTime to get power numbers.

The reference processor runs at 100 MHz and consumes

68.7 micro-Watt/MHz dynamic energy and 100 micro-Watt

of leakage. It takes 7494 cycles to process one EEG sample.

Given that EEG samples arrive at 1 kHz, the duty cycle of

the application is approximately 8%. The active

energy/sample is approximately 515 nJ. The leakage

energy/sample is 100 nJ. Since the active energy is

substantially larger than leakage energy, our initial effort

was concentrated on reducing the active energy by reducing

the cycle counts as described in the previous Section III.B.

The energy consumption per sample calculated from the

cycle count at each optimization step is shown in Figure 6.

Figure 6. Energy consumption per sample in each

optimization step

It shows an initially exponential drop of energy

consumption during the optimization steps. After the 4
th

optimization step, the cycle count goes down slowly and so

does the energy saving. The optimization steps reduce the

active energy consumption from 515 nJ to 96 nJ. The new

duty cycle of the application after optimization is about 1%

now. With the reduced duty cycle, the active energy is

reduced to 96 pJ, making the leakage energy also a

dominant component in the overall system energy

consumption. Further optimizations are required to reduce

leakage. The leakage power consumption of the architecture

is shown in Figure 7 [5].

Figure 7. Leakage power break down

Optimization Steps

E
n
e
rg
y
/S
a
m
p
le

 6

It can be seen that the power consumption of memory

dominates over the power consumption of the logic.

Memory consumes 89% of the total power. This needs to be

addressed in future. One way of reducing the memory

power consumption was memory width reduction. The

power consumption of the program memory is 39% and

decreasing the width of the VLIW processor reduces it.

However, by having a 2-issue-slot VLIW machine, the cycle

count goes up by 6.5% but the power consumption in the

program memory goes down. This brings a gain of 30% in

the energy consumption.

V. CONCLUSION

This paper provides a low power platform for processing

EEG signal by cross-optimizing the EEG application and

the processing architecture. Such processing platform can

be embedded into wireless devices for health care

monitoring system to perform local signal processing and to

reduce the wireless data transfer, which consumes

substantial energy. This work is a step toward making the

wireless health care monitoring devices a reality. We were

able to reduce the dynamic energy consumption (per EEG

sample) from 515 nJ to 96 nJ, an 81% reduction. Currently,

we are working on adapting the code and the architecture

for processing multiple-lead EEG signals using vector

processing.

REFERENCES

[1] B. Gyselinckx, et al., "Human++: emerging technology for Body

Area Networks", in Brave New Interfaces: Individual, Social and

Economic Impact of the Next Generation Interfaces (Crosstalks)

2007

[2] J. Penders, et al., “Human++: from technology to emerging

monitoring concepts”, Proceedings of the 5th International workshop

on wearable and implantable Body Sensor Network, 2008

[3] N. de Vicq, et al., “Wireless Body Area Network for Sleep Staging”,

in Proc. Int. Conf. on Biological Circuits and Systems, 2007

[4] J. Penders, et al, “Human++: Emerging Technology for Body Area

Network”, in VLSI book, G. De. Micheili, Ed. Springer, 2007

[5] M. de Nil, et al., “Ultra Low Power ASIP Design for Wireless Sensor

Nodes”, ICECS 2007

[6] www.picobay.com/projects/2006/05/controlling-video-game-with-

brain.html

[7] I. Al Khatib, et al. “MPSoC ECG Biochip: A Multiprocessor System-

on-Chip for Real-Time Human Heart Monitoring and Analysis”,

Proceeding of the 3rd conference on Computing Frontiers, 2006

[8] P. S. Addison, “The illustrated wavelet transform handbook:

Introductory theory and applications in science, engineering,

medicine and finance”, Institute of Physics Publishing, 2002

[9] O. A. Rosso, et al, “EEG analysis using wavelet-based information

tools”, Journal of Neuroscience Methods, 2006

[10] J. C. Letelier and P. P. Weber, "Spike sorting based on discrete

wavelet transform coefficients", Journal of Neuroscience Methods,

2000

[11] L. Qin, L. and B. He, "A wavelet-based time–frequency analysis

approach for classification of motor imagery for brain–computer

interface applications." J. Neural Eng., 2005

[12] A. Jensen and A.la Cour-Harbo, “Ripples in Mathematics: Discrete

Wavelet Transform”, Springer Press Book, 2001

[13] Matlab 7.1 Release 14, Wavelet Toolbox 4.2, licensed version,

description available:

http://www.mathworks.com/products/wavelet/description1.html

[14] C. S. Burrs, et al, “Introduction to Wavelets and Wavelet

Transforms: A Primer”. Prentice Hall Inc., 1998

[15] A. Mertins “Signal Analysis: Wavelets, Filter Banks, Time-

Frequency Transforms and Applications”, Wiley, English Rev.

Edition, 1999

[16] D. Lee Fugal,“Wavelets: An In-Depth, Practical Approach for the

Non-Mathematician”, Space & Signals Technologies LLC, available:

www.ConceptualWavelets.com.

[17] Silicon Hive, available: http://www.silicon-hive.com

