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Abstract
Model-based image reconstruction in magnetic particle imaging (MPI) is an alternative to common reconstruction
methods relying on a measured system matrix. It avoids the time-consuming measurement process but has the
problem of inferior image quality due to the complex imaging chain that has to be modeled. Recently, a direct
reconstruction method using weighted Chebyshev polynomials for multi-dimensional MPI has been proposed that
operates in the frequency domain and even does not need a simulated system matrix. However, as the underlying
model neglects several physical processes, including the anisotropy of nanoparticles, artifacts in the reconstructed
particle distribution can occur. In this work, an adaption of the direct reconstruction method to an anisotropic
particle model is proposed. It is shown that the adaption reduces deformations of the reconstructed particle
distribution and thus provides one further step towards fast and high quality model-based image reconstruction.

I. Introduction

Magnetic particle imaging (MPI) is a tomographic imag-
ing modality and can illustrate the distribution of super-
paramagnetic iron-oxide nanoparticles (SPIONs) inside
a field of view (FOV) [1]. Several methods exist to ob-
tain an image reconstruction of the SPION distribution.
One common approach is the measurement of the so-
called system matrix which then is used to set up a reg-
ularized system of linear equations. Its solution is the
concentration of the SPION distribution. To avoid the
time-consuming measurement process, several alterna-
tives have been proposed. One of these alternatives is
the modeling of the physical processes [2–6]. The model
can then be used to, e.g., obtain a simulated system ma-
trix [7]. Besides, a direct reconstruction without the use
of a system matrix was shown to be possible [8]. The latter
exploits the structure of the system function in the spatio-
temporal Fourier domain [9] to obtain a relationship be-
tween the induced voltage signal and the weighted tensor

product of Chebyshev polynomials. The reconstruction
method is very fast and memory efficient. However, as
the underlying model relies on the Langevin theory of
paramagnetism and neglects several physical effects, the
quality of the reconstructed images is worse than that of
reconstructed images using a measured system matrix.
To obtain a better image quality, more complex physical
models like [4] are necessary. In [5, 6], an equilibrium
model that also includes the effect of anisotropic parti-
cles has been presented, and in [10] the relationship of it
to the formulation of system function in the frequency
domain based on the Langevin model has been exploited.
Based on this relationship we propose to adapt the di-
rect Chebyshev reconstruction to the model including
anisotropy effects by adjustung the deconvolution step.
Our experiments on simulated data show that the image
quality can be improved using the proposed adaption in
the deconvolution step.
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II. Methods and materials
The direct Chebyshev reconstruction (DCR) presented
in [8] relies on the formulation of the system function in
the Langevin model of paramagnetism [9]. It was shown
that in multi-dimensional field-free point (FFP) MPI with
a Lissajous trajectory of the FFP, the convolved SPION dis-
tribution can be recovered by summing up tensor prod-
ucts of Chebyshev polynomials of second kind and cer-
tain order weighted with the frequency components of
the measured voltage signal. In a second step, this re-
sult has to be rescaled and deconvolved to obtain the
final image reconstruction. Here, we consider the two-
dimensional case: Let c : R2 → R+ denote the concen-
tration distribution of the SPIONs, LLL z1,z2

= ∂ 2

∂ z1∂ z2
LLL (z )

the partial derivative of the two-dimensional Langevin
function LLL : R2 → R2 with LLL (z ) = L (‖z ‖2)

z
‖z ‖2

and

L (z ) = coth(z )− 1
z . In the two-dimensional case, the

convolved SPION distribution

c̃ (x ) =
�

c (z ) ∗LLL z1,z2
(−βG z )

� �

G −1 Ax
�

(1)

can then be approximated by [8]

c̃ (x )≈
∑

k∈K

4|(k −λ∗k NB )(k −λ∗k (NB −1))|
π2β 2 det(A)

(C k )
−1

u k iλ
∗
k U|n∗k |−1(x1)U|m∗

k |−1(x2). (2)

Here, the setK contains certain frequency components,

NB is the frequency divider, λ∗k = round
�

(2NB−1)k
(2N 2

B−2NB−1)

�

is a

solution of a certain minimization problem, β ∈ R is a
known constant, C k ∈R2×2 is a known matrix, A ∈R2×2

and G ∈R2×2 are matrices containing the amplitudes and
gradients of the magnetic fields, u k is the k -th frequency
component of the Fourier transformed voltage signal,
and Un : R→ R are Chebyshev polynomials of second
kind and order n ∈N.

When now considering the model including uniaxial
anisotropy [5, 6], the convolution in (1) changes to [10]

c̃ (x ) =

�

c (z ) ∗
∂ 2

∂ z1∂ z2
EEE (−βG z ,αKanis

(x ), n (x ))

�

�

G −1 Ax
�

.

(3)
Instead of the Langevin function, the kernel EEE : R2 ×
R×S2→R2 is assumed which is the first moment of the
probability density function of the magnetic moment of a
SPION in the equilibrium model with uniaxial anisotropy.
Here, S2 is the surface of the unit sphere, αKanis

:R2→R
denotes the strength of the anisotropy and n :R2→ S2

is the easy axis of the particle anisotropy. Both n (x ) and
αKanis

(x ) are considered to be time invariant. Thus, the
original concentration c can be obtained by deconvolv-
ing c̃ with ∂ 2

∂ z1∂ z2
EEE instead of LLL z1,z2

. Be aware that EEE
depends on the position x . This means that it can be
seen as a spatially varying kernel. For details on EEE and
its calculation, we refer to [10].

For the adapted reconstruction, we now consider the
discretizations of all continuous functions. Thus, for the
deconvolution, a convolution matrix M ∈ R2N×N+M−1

can be set up that contains in each row the kernel ∂ 2

∂ z1∂ z2
EEE

evaluated at the corresponding spatial position. Here,
N is the number of considered spatial positions of the
drive-field field of view and M is the number of spatial
positions at which the kernel ∂ 2

∂ z1∂ z2
EEE is evaluated. The

matrix M can be set up by joining two other matrices.
Let Mx ∈RN×N+M−1 denote the convolution matrix for
the x receive path and M y ∈RN×N+M−1 the convolution
matrix for the y receive path. Note that the correspond-
ing kernel components are the transposed components
of the other receive paths, so that only one component
has to be computed and saved to set up both convolu-
tion matrices Mx and M y . Let cd ∈ RN

+ denote the dis-
cretized concentration vector and c̃1,d , c̃2,d ∈RN denote
the discretized vector of the first and second component
of the convolved concentration that is reconstructed by
the DCR method. The final minimization problem then
reads

min
cd









�

Mx

M y

�

cd −
�

c̃1,d

c̃2,d

�







2

2

+λR (cd ). (4)

Here, λ ∈R+ is a regularization parameter and R :RN →
R+ the regularization function. To obtain a direct recon-
struction and thus to avoid the use of iterative algorithms,
the choice R (cd ) = ‖cd ‖2

2 can be made which leads to the
analytical solution cd = (M >M +λI )−1M >(c̃ >1,d , c̃ >2,d )

>.

III. Experiments
To test the isolated impact of anisotropy effects on the di-
rect reconstruction method and the effect of the adapted
deconvolution, numerical simulations with a simulated
system matrix were performed. The system matrix was
simulated including anisotropy effects. For this, the equi-
librium model including uniaxial anisotropy effects [5,
6] was used. This model is based on [4], but assumes
an equilibrium solution. Following the results of [4], the

easy axis n (x ) = H S (x )
‖H S (x )‖2

2
is aligned at the selection field

H S (x ) and the anisotropy strength is spatially varying

with αKanis
(x ) =

gKanis
VC

kB TB

‖H S (x )‖2

maxx∈Ω ‖H S (x )‖2 with the anisotropy

gradient gKanis
= 1250 Jm−1. Besides, the particle volume

is chosen as VC =
π
6 (25 ·10−9)3 m3, the particle tempera-

ture is set to TB = 300K , the Boltzmann constant is de-
noted as kB ,and Ω is the FOV. The induced voltage signal
of the phantom in Fig. 1 was simulated via multiplication
of the simulated system matrix with the concentration
vector of the SPION distribution of the phantom. Then,
the first step of the DCR was performed to obtain the
convolved concentration vectors c̃1,d and c̃2,d , i.e. (2) was
evaluated. Then, the deconvolution with the spatially
varying kernel was performed, i.e. (4) was solved. The
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Figure 1: Ground-truth concentration phantom (left) and direct reconstruction results with deconvolution assuming the

underlying Langevin kernel LLL z1 ,z2
(middle) and assuming the underlying spatially varying kernel ∂ 2

∂ z1∂ z2
EEE (right). The SSIM

is stated below. As the simulation considers the particle anisotropy, the deconvolution with the Langevin kernel leads to

deformations of the phantom elements. The kernel ∂ 2

∂ z1∂ z2
EEE considers those effects and thus leads to a better resolution of the

phantom shapes. Note that in [8] no particle anisotropy was considered in the simulations which is why those effects did not
occur.

size of the kernel was chosen to be the size of the drive-
field FOV, which is M =N = 45 ·45 and covers a size of
24 mm×24 mm. A Tikhonov regularization was used al-
lowing an analytical solving, and the parameterλwas op-
timized. For comparison purpose, the obtained vectors
c̃1,d , c̃2,d were also deconvolved assuming the Langevin
kernel LLL z1,z2

as proposed in [8]. The structural similarity
(SSIM) [11] was computed for both reconstruction re-
sults. Besides, the reconstruction time for both methods
is measured and compared with the reconstruction time
of a system matrix approach with a Kaczmarz algorithm
using 10 iterations.

IV. Results and discussion
The obtained reconstruction results are shown in Fig. 1.
Besides, also the obtained SSIM indices are stated be-
low the reconstruction images. It is visible that, when
anisotropy effects are involved in the signal generation
but not considered in the reconstruction, there arise
deformations of the original shapes. This effect is the
larger the closer the SPIONs are located to the image cor-
ners. At these locations also the anisotropy strength is the
largest following the considered model. When using an
adjusted kernel for the deconvolution which considers

Table 1: Reconstruction time for the system matrix approach
using Kaczmarz algorithm with 10 iterations (SM-Kacz-10), the
DCR using the Langevin kernel for deconvolution (DCR-L), and
the DCR with the spatially varying kernel used for deconvolu-
tion (DCR-A).

Method SM-Kacz-10 DCR-L DCR-A
Reconstr. time 0.23 s 0.02 s 1.41 s

the anisotropy effects, the deformations become consid-
erably less: In the right reconstruction image in Fig. 1,
the shape of the circles and the squares are matching the
original phantom much better than the reconstruction
in the middle. This is also reflected in the higher SSIM in-
dex. The reconstruction quality could be improved, but
the proposed method has drawbacks regarding the re-
construction speed and the memory consumption. In Ta-
ble 1, an overview of the reconstruction time of the DCR
based on the Langevin model (DCR-L), the system ma-
trix approach with 10 iterations of Kaczmarz algorithm
(SM-Kacz-10) and the proposed DCR assuming uniaxial
anisotropy (DCR-A) is given. The proposed DCR-A is the
slowest of the tested methods while the DCR-L is by far
the fastest. Due to the used spatially varying kernel, the
deconvolution can no longer be performed efficiently
in the Fourier domain. Therefore, a convolution matrix
has to be set up which has a larger memory consump-
tion. Because the matrix is larger and less sparse than the
multiplication matrix used in the Fourier domain in [8],
the analytical solution of the linear system of equations
in (4) with a Tikhonov regularization consumes more
time. Compared to the direct reconstruction based on
the Langevin model, instead of one kernel of the size M
now N kernels of size M are stored. Whether the size
of a system matrix containing 2N K entries is larger de-
pends on the relation of M and K . Therefore, to achieve
a meaningful use of the proposed method, the memory
consumption and reconstruction time must be reduced.
However, this seems to be quite possible: The used kernel
∂ 2

∂ z1∂ z2
EEE is very similar in neighboring areas. Therefore

it seems feasible to reduce the number of spatial posi-
tions at which the kernel is saved without large losses in
reconstruction quality. Then, a patch-wise deconvolu-
tion performed in the Fourier domain might be possible
that saves time and memory. Further speedup without
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adjusting the method would also be conceivable by per-
forming a one-time singular value decomposition on M ,
thus greatly speeding up the solution of the system of
equations in (4) for future reconstructions.

For the application to real-world measurements, rea-
sonable model parameters must be chosen and the im-
pact of the signal chain of the MPI scanner must be con-
sidered, e.g. via the estimation of a transfer function
as done in [7]. The parameter choice used in the experi-
ments were those of [4]. In [4], they were used to simulate
a system matrix that was shown to be very close to real-
world measurements. Using this reasonable parameter
choice, the kernel EEE can be computed and the only differ-
ence in the reconstruction of real-world measurements
is then to correct the voltage signal for the scanner’s re-
ceive chain via, e.g., the division of the estimated transfer
function. If one wants to further optimize the parame-
ter choice of the underlying model, this can be done by
comparing differently simulated system matrices and a
measured system matrix, as done in [4].

V. Conclusion
An adaption of the DCR [8] to a more complex model in-
cluding anisotropy effects has been prosposed that uses
the insights of [10]. To this end, the deconvolution step
was modified and a spatially varying kernel was used in-
stead of the partial derivative of the Langevin function.
The simulations show that this modification leads to a
better reconstruction of the shape of the SPION distri-
bution at the border of the FOV, when anisotropy effects
have been regarded in the simulation of the induced volt-
age signal. The main drawback is the higher time and
memory consumption due to the processing and stor-
age of the spatially varying kernel. Future research on a
patch-wise deconvolution in the Fourier domain might
overcome this drawback.
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