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Abstract
A common procedure for the reconstruction in Lissajous-type magnetic particle imaging is solving a linear system
of equations which is based on the measurement of the so-called system matrix and the induced voltage signal
of the unknown magnetic particle distribution. To speed up the reconstruction process and to reduce memory
consumption, different compression techniques for the system matrix have been investigated. In this work, we
propose a system matrix compression using the tensor product of Chebyshev polynomials of first and second
kind. This method is motivated by recently published theoretical findings on the system function. For evaluation,
simulated and real-world system matrices have been compressed with the proposed method and other state-of-the-
art techniques. When using only one compression coefficient per row, the proposed compression outperforms the
compared methods for all tested system matrices in terms of the normalized error metric and better reconstruction
results.

I. Introduction

Magnetic particle imaging (MPI) is a tomographic imag-
ing technique that can show the distribution of super-
paramagnetic iron-oxide nanoparticles (SPIONs) inside
a field of view (FOV) [1]. Applying different magnetic
fields, a field-free point (FFP) is generated that moves
along a trajectory through the FOV. The SPIONs near the
FFP change their magnetization and induce a voltage
signal in the receive coils of the MPI scanner which is
used to reconstruct the SPION distribution. In case of a
FFP Lissajous trajectory, the reconstruction of the SPION
distribution is typically done by solving a regularized sys-
tem of linear equations. For this purpose, the system
matrix that links the induced voltage signal to the SPION
distribution is necessary. As the system matrix can be
very large and memory-demanding, compression tech-
niques have been proposed [2–4]. Since the structure of

the system matrix shows similarities to the tensor prod-
uct of Chebyshev polynomials (CPs) of second kind, the
discrete Chebyshev transform (DTT) has been used for
system matrix compression [2, 5]. In [5] it was shown
that for few coefficients, the DTT achieved better com-
pression results on the drive-field FOV (DF-FOV) than
the discrete cosine transform (DCT). Recently, in [6] a
mathematical formulation of the equilibrium model for
Lissajous FFP trajectory based MPI has been provided
that shows the relationship between tensor products of
CPs and the system function. Analysis of the provided re-
lationship leads to the assumption that the system func-
tion might be approximated better by the tensor product
of CPs of first and second kind. Based on this assump-
tion we propose a system matrix compression that uses
both CPs of first and second kind. To evaluate the ability
to compress, experiments are performed on both differ-
ently simulated system matrices and measured system
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matrices. The DCT, DTT and the proposed method are
used to compress the DF-FOV, respectively. Also a re-
construction with the real-world system matrix of the
OpenMPIData [7] as well as its different compressions is
performed. It is found that the proposed compression
achieves the best results on the simulations based on
the Langevin model and outperforms the DTT and also
the DCT when three or less compression coefficients are
used. The more realistic the simulation model becomes,
the smaller the advantage is. However, even on real data,
an advantage remains with strong compression for the
proposed method with CPs of the first and second kind,
which is also shown in better reconstruction results.

II. Methods and materials

II.I. System function
In the common MPI setup, the voltage signal induced
by the SPIONs is measured in L orthogonal receive coils.
Its relation to the SPION distribution in the temporal
Fourier domain is

u k =

∫

Ω

sk (r )c (r )dr , (1)

where u k ∈CL is the k -th frequency component of the
voltage signal, sk :RL →CL denotes the k -th frequency
component of the system function, c : RL → R is the
particle distribution, and Ω⊂RL the FOV.

In the following, we restrict us to the case L = 2, but
the same procedure can also be applied for L = 3. In [6] it
was derived that the system function components for a
two-dimensional Lissajous FFP-trajectory in a simplified
physical model can be expressed as

sk (r ) =
∑

λ∈Z
C k ,λ

∫
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with a known, constant matrix C k ,λ, A = diag(Ax , A y ) de-
noting the drive-field amplitudes in x - and y -direction,
and G = diag(Gx ,Gy ) the applied gradients of the selec-
tion field. For details of C k ,λ we refer to [6]. Besides,

Vn (x ) =

(

rect
�

x
2

�

�

−U|n |−1(x )
p

1−x 2

|n |

�

, n 6= 0
π
2 sgn(x +1)− rect

�

x
2

�

arccos(x ), n = 0,
(3)

where Un denotes the CP of second kind and n-th or-
der, and the Langevin function L : R → R describes
the particle magnetization in the equilibrium model. Its
multi-dimensional extensionLLL :RL →RL is defined as

LLL (x ) =

¨

L (‖x ‖) x
‖x ‖ , ‖x ‖ 6= 0

0, ‖x ‖= 0.
(4)
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Figure 1: First (left) and second (right) component of the ker-

nel ∂ 2

∂ z1∂ z2
LLL
�

βG z
�

, corresponding to the x - and y -coils. Here,
β = 1.2 · 10−3 mA−1 and Gx = Gy = 1µ−1

0 Tm−1 with µ0 the vac-
uum permeability are chosen. One can see the similarity to
discrete differentiation operators in the y - and x -direction,
respectively.

Thus, the system function consists of tensor products
of weighted CPs of the second kind, but those are subse-
quently convolved with the kernel ∂ 2

∂ z1∂ z2
LLL
�

βG z
�

. The
kernel is shown in Figure 1. As outlined in [8], one can see
that it forms an approximate derivative in one direction,
namely the first component in the y -direction, and the
second component in the direction of x . However, ap-
plying the product rule on the derivative of Vn for n 6= 0
one gets

d

dx

−U|n |−1(x )
p

1− x 2

|n |
=

T|n |(x )p
1− x 2

, x ∈ [−1, 1]. (5)

Here, Tn is the CP of first kind and order n . Besides, it
yields

d

dx
V0(x ) =

T0(x )p
1− x 2

, x ∈ [−1, 1]. (6)

This means that the system function can be approxi-
mated as the tensor product of CPs of first and second
kind. The direction here is different for the x - and y -coil.

II.II. System matrix compression

Applying the above derived insight to the procedure of [5],
a modified system matrix compression is quickly ob-
tained: For compression of a system matrix describing
an N ×N FOV, the transformation matrix B ∈ RN 2×N 2

must be set up. For an orthogonal transformation, the
coefficient matrix Ŝ ∈CM×N 2

can then be obtained via
Ŝ = S B with S ∈CM×N 2

denoting the original system ma-
trix. If B is unitary it yields S = Ŝ B H. To obtain a unitary
transformation matrix and thus to improve calculation
efficiency, like in [5], the N ∈N grid points

r Cheb = cos
� (n +0.5)π

N

�

, n = 0, ..., N −1 (7)
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and the weighting

w U
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(9)

can be used [9]. For x , y ∈ [−1, 1], we define

UTk ,l (x , y ) =
p

1− x 2Uk (x )Tl (y ) (10)

and
TUk ,l (x , y ) = Tk (x )Ul (y )

p

1− y 2. (11)

Then, obtaining k and l from the relationship m = k+l N ,
the transformation matrices can be written as

BUT = (w
U
k w T

l UTk ,l (r
Cheb
n ))n=0,...,N 2−1;m=0,...,N 2−1 (12)

and

BTU = (w
T
k w U

l TUk ,l (r
Cheb
n ))n=0,...,N 2−1;m=0,...,N 2−1, (13)

where the former is used for compressing the x -receive
path and the latter for compressing the y -receive path.
Besides, r Cheb

n denotes the n-th entry of the tensor prod-
uct grid constructed with the one-dimensional grid
points in (7).

Since Vn in (3) for n 6= 0 is nonzero only within the DF-
FOV, it is reasonable to apply the compression as in [5]
only to the system matrix in the DF-FOV. To obtain an
appropriate compression, a large fraction of the obtained
coefficients in Ŝ must be discarded. This can be done in
form of global [2] or local thresholding [3, 5].

II.III. Experiments
To evaluate the proposed system matrix compression,
different two-dimensional system matrices and compres-
sion techniques were tested. The proposed compression
has been performed using the transformation matrix BUT

for the x -receive path of the system matrix and BTU for
the y -receive path. It is called DTT-UT compression
in the following. For comparison purposes, a compres-
sion has also been performed using only CPs of second
kind as done in [5]. This type of compression is called
DTT-UU in the following. Besides, the discrete cosine
transform of type II has been applied which is referred
to as DCT in the following. The DCT compression is per-
formed on an equidistant grid while the DTT-UU and
the proposed DTT-UT compressions are performed on
a Chebyshev grid. All compression techniques are re-
stricted on the DF-FOV for a better comparison. For
the compression, we specify a number of allowed coef-
ficients per row, i.e., per frequency component, as was
done in [5]. This corresponds to a separate local thresh-
old per frequency component which has shown advan-
tages over a global threshold [3]. Because the presented

theory relies on the Langevin model, a system matrix
based on this physical model has been simulated and
used for compression. Besides, a more realistic simula-
tion has been carried out. For this, the physical model
described by both [10] and [11] has been used. For an
anisotropy gradient of gKanis

= 1250Jm−3, the simulated
system matrices are close to real-world system matrices.
All simulated system matrices had a size of 41×41 pixels.
Lastly, the two-dimensional system matrix of the Open-
MPIData [7] has been compressed. The provided system
matrix has been background corrected by subtraction
of the provided empty measurement. Besides, the mea-
sured system matrix is not perfectly centered. This was
corrected by a translation to obtain a better centering.
Because there is an overscan area included in the mea-
surement, the system matrix has been cropped so that
it consisted of the DF-FOV only, and then interpolated
on a finer grid of size 41× 41 using bicubic splines. A
frequency selection has been performed by discarding
rows with a signal-to-noise ratio below one. Since the
matrix is given on a Cartesian grid, a bicubic spline inter-
polation onto a Chebyshev grid has been performed after
the cropping. To compare the two compression meth-
ods, the compressed coefficient matrix was transformed
back. For a later reconstruction the error on a system
matrix with equidistant grid is more relevant. Therefore
the compressed SMs were interpolated on the Cartesian
grid by cubic spline interpolation and then compared
with the original matrix, i.e., its deviation from the orig-
inal system matrix was calculated. Two different error
metrics were used for this purpose. Firstly, we consider
the error metric used by [5]which is given as

σΓ =
1

|K |

∑

k∈K

‖Sk − S Γk‖2

‖Sk‖2
. (14)

Here, K is a set of frequency components and Sk denotes
the k -th row of the system matrix S . Besides, S Γ denotes
a compressed system matrix using Γ coefficients per row.
As a second error metric we consider the following

ρΓ =
1

|K |

∑

k∈K











Sk

Sk ,max
−

S Γk
S Γk ,max











2

(15)

where Sk ,max denotes the maximum value of |Sk |. To pre-
vent false extremely high values for Sk ,max due to noise
artifacts, the upper value of the 99 % percentile of |Sk |
is chosen here for Sk ,max. The error metric ρΓ is better
suited to show the structural similarity because differ-
ences in the magnitude are considered less. For recon-
struction, the structural similarity of the system matrices
might be more relevant to prevent reconstruction arti-
facts, while a similar magnitude might be more relevant
for obtaining the right concentration value.

For a better understanding of the differences of these
two metrics, the energies of the original and the differ-
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ently compressed system matrices are calculated per row
and compared.

As argued in Section II.II, it is reasonable to apply the
compression only to the DF-FOV. But the compression
of the complete FOV including an overscan area is of in-
terest because the inclusion of an overscan region can
reduce artifacts [12]. Therefore, we also test the DTT-UT
compression on the OpenMPIData system matrix includ-
ing the overscan region and compute both error metrics
σΓ and ρΓ . However, as neither the CPs of first nor sec-
ond kind fit the underlying model when considering an
overscan region, no advantage of the proposed DTT-UT
compression method can be expected here.

Lastly, we show some reconstruction results that were
obtained by the compressed OpenMPIData system matri-
ces on the DF-FOV. We reconstruct the resolution phan-
tom using the compressed system matrices with Γ = 1
and Γ = 6, and compare the root mean square errors
of the obtained reconstructions with respect to the re-
construction with the uncompressed real-world system
matrix. To focus on structural similarity, all reconstruc-
tions were normalized beforehand by division through
the maximum value. For the reconstruction, the stan-
dard procedure was performed, i.e., the discrete mini-
mization problem

arg min
c∈RN ,c≥0

‖S c −u‖2
2+λ‖c ‖

2
2 (16)

has been solved using the Kaczmarz algorithm. The reg-
ularization parameter λ has been optimized for each
reconstruction.

III. Results
The errors of the proposed DTT-UT and the DTT-UU and
DCT baseline can be seen in Figure 2. As expected, the
proposed compression method outperforms the DTT-
UU compression in both error metrics for the system
matrix relying on the Langevin model. Compared with
the DCT, the DTT-UT compression is slightly better for
few coefficients in terms of theσΓ error, and gets worse
when more coefficients are used. When comparing the
ρΓ metric of these compression techniques, the DTT-UT
also outperforms the DCT and obtains the best results.

This behavior changes when the system matrices de-
viate from the Langevin model. But still the DTT-UT
outperforms the other methods when only one or two
coefficients per row are used for compression. Using
more coefficients, the DTT-UT gets worse than the DTT-
UU, but performs similar to the DCT.

These observations change again when compressing
the real-world system matrices. Here, the DCT outper-
forms the other compressions significantly when looking
at the σΓ error. Comparing the error ρΓ , the proposed
DTT-UT compression obtains the best result when using
one coefficient only per row. Using more coefficients,
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Figure 2: Error metricsσΓ (left) and ρΓ (right) dependent on
the number of used coefficients for the compression of different
system matrices. Top: Langevin model simulation. Middle:
Simulation including anisotropy effects. Bottom: Real-world
OpenMPIData.

the DTT-UT is better or equal compared to the DTT-UU,
but the DCT outperforms both in these cases.

A comparison of the original system matrix and the
different compressions for Γ = 1 can be seen in Figure 3.
The frequency components k = 115 and k = 213 are
shown exemplarily. One can see the different shapes of
each compression method. The position of the wave
hills from the proposed DTT-UT compression seems to
match the actual position slightly better than the two
other methods. Instead the obtained magnitude of the
wave hills is the lowest and differs the most from the
original system matrix. The magnitude of the DTT-UU
method is close to the DTT-UT, and the DCT compres-
sion has the highest values, though it is still away from
the original by about a factor of two. This seems to be
the reason why the error metricsσΓ and ρΓ behave dif-
ferently. These differences are investigated in Figure 4
where the energy distribution of the system matrix rows
is shown. For nearly all frequency components there is
the same pattern: The original system matrix has the
highest energy followed by the DCT compression. The
DTT-UU and DTT-UT compressions have a lower, similar
energy.

The error curves of the OpenMPIData system matrix
compression including an overscan region are shown in
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Figure 3: Original system matrix component and its compressed variants for the three compression methods and Γ = 1. Two
frequency components are shown exemplarily. Top: The frequency component k = 115 of the x -receive path. Bottom: The
frequency component k = 213 of the x -receive path. The simulated system matrix components (right) are shown for comparison.
For the x -receive path shown here, the Chebyshev polynomials of first kind are used in the y -dimension for the proposed
DTT-UT compression. In this dimension the position of the maxima and minima is better matched by the proposed DTT-UT
compression than by the other methods.
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Figure 5: Error metricsσΓ (left) and ρΓ (right) dependent on
the number of used coefficients Γ for the OpenMPIData system
matrix including the overscan region. As expected, the DTT-UU
and DTT-UT compression methods achieve similar results.

Figure 5. In terms of the error metric σΓ , which does
not compensate different amplitudes, the DCT outper-
forms the two other methods. When considering the
other error metric ρΓ the proposed DTT-UT method out-
performs the DCT for one compression coefficient, and
is only slightly better than the DTT-UU method. For two
compression coefficients, all methods achieve similar
results, and for three or more used coefficients, the DCT
obtains the best compression. Thus, when compressing
measured data, the advantages and disadvantages over
the DCT are similar whether compressing the DF-FOV
only or the FOV including an overscan region. The main
difference lies in the relationship between the DTT-UT
and the DTT-UU method: The advantage of the proposed
DTT-UT over the DTT-UU method shrinks when includ-
ing the overscan region, as it was expected.

The reconstruction results for the resolution phan-
tom are shown in Figures 6 and 7. Note that only the
DF-FOV is reconstructed. For a compression with only
one coefficient Γ = 1 per row, the proposed DTT-UT com-
pression obtains the best RMSE, followed by the DTT-UU
and DCT compression. This corresponds to the error ρΓ

of the compressed system matrices, where for Γ = 1 the
same order is obtained. The better RMSE in the recon-
structed image is also visible in terms of less background
artifacts and the better detailed reconstruction of the
phantom’s upper arm. Looking at the compression ob-
tained with Γ = 6 coefficients per row, the DCT compres-
sion achieves the best reconstruction, while the DTT-UU
and DTT-UT reconstructions are very similar. This also
corresponds to the profile of the error curve of ρΓ in Fig-
ure 2.
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Figure 6: Reconstructions of the resolution phantom with
Γ = 1. In the upper left corner, the reconstruction obtained
by the uncompressed real-world system matrix is shown. The
used compression method and the obtained RMSE is stated
above the reconstructed images.

IV. Discussion

The consideration of the proposed DTT-UT compression
originates from a simplified model and outperforms the
compared compression methods on this model. This
shows that the observations made in the derivation are
meaningful. The further the system matrix deviates from
this ideal, the more the advantage over the other meth-
ods shrinks. Though, when considering the real-world
system matrices, the proposed DTT-UT compression
still outperforms the DTT-UU and the DCT compression
when using one compression coefficient per row only in
terms of a lower error metricρ1 and a better RMSE of the
obtained reconstruction image. This also shows that the
system function of Lissajous-type MPI actually is more
similar to a tensor product of CPs of first and second
kind instead of the long assumed tensor product of CPs
of second kind. This is also reflected in the comparison
of the system matrix components in Figure 3, in which
the structure of the DTT-UT compression comes closest
to both the simulated and the original real-world system
matrix. Though, when using more than one coefficient
per row for compression, the DCT obtains the best re-
sults on real data. Regardless, balancing of the energy or
maximum amount of the rows of the compressed system
matrices should take place so that the reconstructed im-
ages match those of the measurement in the amount of
concentration.

However, as only the DF-FOV is compressed, no over-
scan region can be included which has been shown to
reduce reconstruction artifacts [12]. Though, in the pro-
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Figure 7: Reconstructions of the resolution phantom with
Γ = 6. In the upper left corner, the reconstruction obtained
by the uncompressed real-world system matrix is shown. The
used compression method and the obtained RMSE is stated
above the reconstructed images.

vided reconstructions using the DF-FOV only, no signif-
icant reconstructions artifacts could be observed, be-
cause most of the tracer material was located inside the
DF-FOV.

Although the physical model is not fitted by neither
CPs of first or second kind when including an overscan
region, we found that the proposed DTT-UT compres-
sion can also be used without quality loss compared to
the DTT-UU method. As both DTT-UU and DTT-UT out-
perform the DCT when using only one compression coef-
ficient in terms of a lowerρΓ metric, the wave hill pattern
seems to be matched better in this case. However, when
compressing real data with three or more coefficients per
row, the DCT seems to be still the method of choice.

V. Conclusion

Based on the mathematical description of the simplified
physical MPI model without relaxation effects, it was
found that the system function in Lissajous-type MPI is
more similar to the tensor product of CPs of the first kind
with CPs of the second kind, unlike what was previously
thought. Based on this consideration, a compression of
the system matrix was proposed using as basis functions
the products of CPs of first and second kind. The pro-
posed compression was compared with the compression
using only CPs of second kind and the DCT compres-
sion on different physical simulations and on real-world
data. The closer the system matrix is to the simplified
model, the better the proposed compression method
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performs compared to the other methods. When using
only one compression coefficient, the proposed com-
pression outperforms the other methods for all tested
system matrices including the real-world system matri-
ces in terms of the normalized error metric ρΓ . When
three or more coefficients are used, the proposed DTT-
UT method performs still better on the Langevin model,
but is outperformed on the OpenMPIData by the DCT.
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